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With the emergence of an increasing number of functional near-infrared

spectroscopy (fNIRS) devices, the significant deterioration in measurement

caused by motion artifacts has become an essential research topic for fNIRS

applications. However, a high requirement for mathematics and programming

limits the number of related researches. Therefore, here we provide the

first comprehensive review for motion artifact removal in fNIRS aiming to

(i) summarize the latest achievements, (ii) present the significant solutions

and evaluation metrics from the perspective of application and reproduction,

and (iii) predict future topics in the field. The present review synthesizes

information from fifty-one journal articles (screened according to three

criteria). Three hardware-based solutions and nine algorithmic solutions are

summarized, and their application requirements (compatible signal types,

the availability for online applications, and limitations) and extensions are

discussed. Five metrics for noise suppression and two metrics for signal

distortion were synthesized to evaluate the motion artifact removal methods.

Moreover, we highlight three deficiencies in the existing research: (i) The

balance between the use of auxiliary hardware and that of an algorithmic

solution is not clarified; (ii) few studies mention the filtering delay of the

solutions, and (iii) the robustness and stability of the solution under extreme

application conditions are not discussed.
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Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-
invasive brain imaging technique that uses near-infrared light
(typically of wavelengths between 650 and 1,000 nm) to monitor
hemodynamics changes in the cortical layer. Compared to
electroencephalography (EEG), fNIRS enables to measure brain-
activity related hemodynamics in terms of cerebral oxygenation
and is less susceptible to electric noises (Huppert et al., 2009;
Tak and Ye, 2014; Naseer and Hong, 2015; Chiarelli et al.,
2017; Afkhami et al., 2019; Ghafoor et al., 2019; Khan et al.,
2021). In addition, fNIRS can be integrated into a portable,
wearable, and ergonomic device at low costs and operational
expenses, making it a superior candidate for a user-friendly
brain-computer interface system compared to other modalities,
such as functional magnetic resonance imaging (fMRI) and
magnetoencephalography (MEG) (Hu et al., 2010; Piper et al.,
2014; Scholkmann et al., 2014a; Pinti et al., 2015; Wyser et al.,
2017; Zhao and Cooper, 2018; Hong and Zafar, 2018; Zhao H. B.
et al., 2020, 2021; Ghafoor et al., 2021; Huang and Hong, 2021).

Fantini et al. (1999) reported that the artifacts caused by
subjects’ movements, specifically motion artifacts (MAs), can
significantly influence the quality of the recorded optical signals
of fNIRS. Some studies claimed that MAs reduce the signal-
to-noise ratio (SNR) of fNIRS signals (Izzetoglu et al., 2005;
Izzetoglu et al., 2010). Researchers have also verified that using
MA removal techniques can ameliorate classification accuracy
in cognition experiments (Zhou et al., 2021). Therefore, the issue
concerning the causes, characteristics, and rejection methods of
MAs in fNIRS signals is a crucial topic in fNIRS studies (Safaie
et al., 2013; Piper et al., 2014).

During the early days, researchers skipped the analysis
or discarded the data set when the measured signals were
significantly corrupted by motion artifacts (Bartocci et al., 2000;
Jasdzewski et al., 2003; Akgul et al., 2005; Khan and Hong, 2015;
Nguyen and Hong, 2016; Zafar and Hong, 2017). Schroeter et al.
(2003) removed the outliers manually. Moosmann et al. (2003)
eliminated the disturbances by immobilizing the subjects’ heads
with a vacuum pad. Subsequently, a moving average was used
(Kameyama et al., 2004; Lee et al., 2007). Channel rejection is
another common method in early studies (Wilcox et al., 2005;
Blasi et al., 2010). Attempts were made to remove MAs using
an improved optical model. Nevertheless, the performances of
the aforementioned solutions were not sufficient (Scholkmann
et al., 2014b). Nowadays, a correction for motion artifacts has
become a common consensus: Some processed the signals in
two stages: artifact identifications and artifact corrections in the
existing methods (Scholkmann et al., 2010; Virtanen et al., 2011;
Yucel et al., 2014a), or minimized a user-defined cost function
(Kim et al., 2011), or proposed a new model to compensate the
artifacts (Izzetoglu et al., 2010; Yamada et al., 2015).

The existing literature indicates that the movements that
cause MAs are diverse. Several studies have reported that the

movements of subjects’ heads (including nodding, shaking,
tilting, etc.) could result in MAs in fNIRS measurements
(Izzetoglu et al., 2005; Radhakrishnan et al., 2009; Robertson
et al., 2010; Kim et al., 2011; Cui et al., 2015). Some researchers
further discovered that facial muscle movement, including
raising eyebrows, can lead to MAs (Izzetoglu et al., 2005;
Robertson et al., 2010; Yucel et al., 2014b; Zhou et al., 2021).
In addition, body movements, including the movement of the
upper and lower limbs, degrade the fNIRS signals by causing
head movements or by the inertia of the device (Yucel et al.,
2014a; Rea et al., 2014; Abtahi et al., 2017; Vitorio et al.,
2017; Khan et al., 2018; Siddiquee et al., 2020; Dybvik and
Steinert, 2021). Vinette et al. (2015) monitored five epilepsy
patients for a long period. Their data showed that MAs existed
when the subjects were talking, eating, or drinking. These
behaviors involve jaw movements. Novi et al. (2020) found that
jaw movements could lead to two different motion artifacts.
The direct cause of MAs is imperfect contact between the
optodes and the scalp, including displacement, non-orthogonal
contact, and oscillation of the optodes (Yamada et al., 2015;
Nishiyori, 2016).

In this study, the authors reviewed journal articles
concerning MA removal techniques in the Web of Science
database. The keywords and numbers of journal papers are listed
in Table 1. To narrow down our review scope, we list all journal
articles found in the database. Subsequently, all the overlapping
papers and irrelevant articles were removed by examining their
context, which yielded 89 papers. Next, we proceeded to select
journal papers that satisfied at least one of the following criteria:
(i) The paper proposes a novel MA removal technique; (ii)
the paper presents a quantitative comparison of several MA
removal techniques; and (iii) the paper introduces a toolbox
for MA removal. Eventually, 55 papers were selected from
the literature. Forty-three papers presented a new solution to
suppress MAs, seven papers compared the performance of
the existing methods, and one study introduced a toolbox.
Figure 1 shows the partitioning of different types of papers
in the selection process. Among the 47 new solutions, twelve
solutions added auxiliary hardware. A list of selected studies and
their categories is presented in Table 2. Since research on MA

TABLE 1 The number of journal papers (1990∼2022) obtained from
the Web of Science database by combining different keywords.

Keywords Paper
number

fNIRS + motion artifact 90

NIRS + motion artifact 61

NIRS + motion correction 18

fNIRS + motion correction 27

Functional near-infrared spectroscopy + motion correction 32

Near-infrared spectroscopy + motion correction 51

Near-infrared spectroscopy + motion artifact 150

Functional near-infrared spectroscopy + motion artifact 109
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FIGURE 1

Percentage partitions: (A) Article types of the selected papers
and (B) hardware-based solutions against algorithmic solutions
among the papers proposing new solutions.

removal techniques requires a solid foundation in mathematics
and programming, it is difficult for new scholars to assimilate
the existing solutions in their studies. Moreover, some solutions
were described in the text rather than using equations, making
it difficult for other researchers to reproduce the reported
methodologies. Therefore, this study aims to (i) provide a
general view of the latest achievements in MA removal studies,
(ii) briefly introduce several significant solutions from the view
point of application and reproduction by using equations, and
(iii) discuss future topics in the field.

This study is divided into five sections. The “Introduction”
section presents the causes and significance of MA issues
in fNIRS. In addition, this section specifies the objectives
of this study and provides a quantitative summary of the
existing literature on the topics. The section “Additional
hardware-based techniques” summarizes the existing
hardware-based solutions. The section “Signal processing-
based techniques” discusses the algorithmic solutions.
The section “Evaluation metrics” briefly introduces the
definitions of some metrics to evaluate the performance
of MA removal techniques. The final section “Conclusions
and outlook” concludes this study and discusses potential
issues concerning MA removal. We will use the compact
notation provided in Table 3 for the remainder of
the paper.

Additional hardware-based
techniques

Among the eight-nine selected papers, 17 discussed
solutions using additional hardware, while 11 studies

discussed accelerometer-related methods. Other auxiliary
hardware includes a headpost cemented to the skull, a three-
dimensional (3D) motion capture system, collodion-fixed
prism-based optical fibers, an inertia measurement unit (IMU),
a gyroscope, a magnetometer, and a camera. This section
presents two solutions using accelerometers and one using
linearly polarized light.

Accelerometer

Accelerometer-based methods include adaptive filtering,
active noise cancelation (ANC) (Kim et al., 2011),
accelerometer-based motion artifact removal (ABAMAR)
(Virtanen et al., 2011), acceleration-based movement artifact
reduction algorithm (ABMARA) (Metz et al., 2015), multi-stage
cascaded adaptive filtering (Islam et al., 2017), blind source
separation, accelerometer-based artifact rejection, and detection
(BLISSA2RD) (von Luhmann et al., 2019). The introduction
of the accelerometer improves the feasibility of real-time
rejection of MAs.

Active noise cancelation
The method assumes that the measured signals, z(n), are the

sum of motionless signals, x(n), and MAs, v(n) (Kim et al., 2011).
The objective of the solution is to minimize the power of the
recovered signals, that is,

min
(
E
(
x̂ (n)2

))
= min

(
E
((

x (n)+ v (n)− v̂ (n)
)2
))

= min
(
E
(
x (n)2

)
+ 2E (x (n) v (n))

−2E
(
x (n) v̂ (n)

)
+ E

((
v (n)− v̂ (n)

)2
))
.

(1)

where E(·) denotes the expectation function, and the hat over
x and v denotes the estimation of motionless fNIRS signals
and MAs. Ideally, x is uncorrelated to either v or the estimate
of v. Therefore, the two cross-terms on the right-hand side
are equal to zero implying that the objective is equivalent to
minimizing the square difference between the MAs and the
estimated MAs. Moreover, because the actual MAs are highly
correlated to the accelerometer output, a(n), but unknown to
users, v(n) is replaced by a(n) in the application. Subsequently,
the final objective of signal processing is to minimize the square
difference between a(n) and the estimated MAs, that is,

min
(

E
((

a (n)− v̂ (n)
)2
))

(2)

The estimate of v(n) can be obtained using the difference
between z(n) and the estimate of x(n). The estimate of v(n)
can then be computed in real time using a recursive least-
squares filter. The procedure for the solution is graphically
presented in Figure 2. The ANC solution was applied to optical
intensities in real time. Whether this method was applied to
optical densities or concentration changes is not clear. Another
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TABLE 2 List of selected papers, article types, and information on
additional hardware.

Paper Type Additional hardware

Izzetoglu et al. (2005) New solution

Zhang et al. (2005) New solution

Lee et al. (2007) New solution

Blasi et al. (2010) New solution Accelerometer

Cui et al. (2010) New solution

Izzetoglu et al. (2010) New solution

Robertson et al. (2010) Comparison

Scholkmann et al. (2010) New solution

Kim et al. (2011) New solution Accelerometer

Virtanen et al. (2011) New solution Accelerometer

Cooper et al. (2012) Comparison

Molavi and Dumont (2012) New solution

Amian and Setarehdan
(2013)

New solution

Barker et al. (2013) New solution

Santosa et al. (2013) New solution

Sweeney et al. (2013) New solution

Takahashi et al. (2013) New solution 3D motion capture system

Brigadoi et al. (2014) Comparison

Selesnick et al. (2014) New solution

Yucel et al. (2014b) New solution Collodion-fixed prism-based
optical fibers

Yucel et al. (2014a) New solution

Chiarelli et al. (2015) New solution

Hu et al. (2015) Comparison

Metz et al. (2015) New solution Accelerometer

Yamada et al. (2015) New solution Linearly polarized light
sources, an orthogonally
polarized analyzer

Barker et al. (2016) New solution

Gu et al. (2016) New solution

Guerrero-Mosquera et al.
(2016)

New solution

Islam et al. (2017) New solution Accelerometer

Janani and Sasikala (2017) Comparison

Santosa et al. (2017) New solution

Behrendt et al. (2018) Comparison

Dong and Jeong (2018) New solution

Jahani et al. (2018) New solution

Lee et al. (2018) New solution

Nguyen et al. (2018) New solution

Reyes et al. (2018) Comparison

Shukla et al. (2018) New solution

Siddiquee et al. (2018) New solution Inertia measurement unit
(IMU)/accelerometer,
gyroscope, magnetometer

Sutoko et al. (2018) New solution

Di Lorenzo et al. (2019) Comparison

Fishburn et al. (2019) New solution

Seghouane and Ferrari (2019) New solution

(Continued)

TABLE 2 (Continued)

Paper Type Additional hardware

von Luhmann et al. (2019) New solution Accelerometer

Arunkumar and Bhaskar
(2020)

New solution

Gao et al. (2020) New solution

Sherafati et al. (2020) New solution

Zhao J. et al. (2020) New solution

Gemignani and Gervain
(2021)

Comparison

Lacerenza et al. (2021) New solution TD-fNIRS

Perpetuini et al. (2021) New solution Camera

Zhao Y. et al. (2021) Toolbox

Zhou et al. (2021) New solution

Gao L. et al. (2022) New solution

Kim et al. (2022) New solution

Huang et al. (2022) New solution

Gao Y. et al. (2022) New solution

issue in the approach of Kim et al. (2011) is that the performance
was visually evaluated. Therefore, a quantitative evaluation
of ANC in the sense of both noise suppression and signal
distortion is needed.

Accelerometer-based motion artifact removal
algorithm

The ABAMAR method is an offline analysis method for
MA removal, where accelerometer outputs are used for MA
detection, and the MA removal process is based on the measured
fNIRS signals (Virtanen et al., 2011). Accordingly, we first define
two Boolean functions as follows.

f1 (x) =

{
1 x ≥ 0
0 x < 0

(3)

f2 (x) =

{
1 x > 0
0 x ≤ 0

(4)

A motion event can then be identified using the acceleration
at the x- and y-axes, where 1t is the sampling period. The
subscript x or y at a(n) denotes the acceleration at the two axes.
The subscript ME denotes the motion event, and operator ∨
denotes the OR operation. The flag for the motion events can
be computed as follows.

flag ME = f1 (|ax (n)− ax (n− 1)| − 1.31T)

∨ f1
(∣∣ay (n)− ay (n− 1)

∣∣− 1.31T
)

(5)

If flagME is one, the signals encounter a motion event; otherwise,
zero. Once a first true value of the flag appears, the timing of
the motion event starts and is stored/defined as Tm. The motion
event is ended when the flag remains false for over 20 s. The
ending time is identified as the last sample when flagME is true.
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FIGURE 2

Procedures of active noise cancellation (ANC) algorithm.

Another flag, flagMA, is introduced to identify the existence
of MAs, which is defined as follows.

flagMA = f1 (Tm − 1) (6)

Tm is the starting time of a motion event. The baseline of fNIRS
signals, Avg, is defined as the average of the signal amplitudes
before and after Tm. To avoid disturbance during the motion
event, we marked 5 s before Tm as Tbefore and 5 s after Tm as
Tafter . The amplitudes of the signals before Tm, Avgbefore, and
those after Tm, Avgafter , are calculated as follows.

Avgbefore = mean
(

z (n)|Tbefore−15≤n<Tbefore

)
(7)

Avgafter = mean
(

z (n)|Tafter<n≤Tafter+15
)

(8)

flagBS is a flag identifying baseline shifts in motion events.
Specifically, one for baseline shifts, and zero for no shift.

flagBS = f2
(∣∣Avgbefore − Avgafter

∣∣− 2.6σbefore
)

(9)

σbefore = std
(

z (n)|Tbefore−15≤n<Tbefore

)
(10)

The function std(·) computes the standard deviation of its input.
The correction procedure only applies to baseline shift

segments. Moreover, a flag for correction, flagcrr , is introduced.
If its value is one, a correction of signals will be conducted;
otherwise, it is zero. Moreover, operator ∧ denotes the AND
operation. The flagcrr can be computed as follows.

flagcrr = f1
(

Nch

(
flagBS

∣∣
flagBS=1

)
− 2

)
∨ f1

(
Nwv

(
flagBS

∣∣
flagBS=1 − 2

))
∧ flagME (11)

where Nch(·) denotes the number of channels satisfying the
condition specified in the input, and Nwv(·) denotes the number
of wavelengths satisfying the input. When flagcrr is one, z(n) is

FIGURE 3

Optode arrangement for multidistance optode arrangement
technique.

corrected as follows.

ẑ (n)
∣∣
n after Tm

=
Avgbefore

Avgafter
z (n) (12)

ẑ (n)
∣∣
n inside Tm

= Abefore (13)

The ABAMAR solution is applied to optical intensities, optical
densities, and concentration changes. It can efficiently suppress
step-like artifacts. However, the signal details during motion
events will be lost owing to the correction method. Moreover,
empirical constants, such as 1.3 g/s in Eq. (5) (g denotes the
gravitational acceleration of 9.81 m/s2) and 2.6 in Eq. (9), may
need to be updated for tasks other than sleeping monitoring.
Some researchers have proposed an AMARA, which is an
improvement of ABAMAR (Metz et al., 2015), by combining
the movement artifact reduction algorithm (MARA; see section
“Spline interpolation”) and ABAMAR.

Linearly polarized light-based solution

Multidistance optode arrangement technique
An optical model of light transmission between a source

and a detector is developed using light transmittance
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TABLE 3 Definitions of variables, parameters, and their values.

Variables/
Parameters

Definitions

z(n) Measured signals

x(n) Motionless signals

v(n) Motion artifacts

x̂(n) Estimated motionless functional near-infrared
spectroscopy (fNIRS) signals

v̂(n) Estimated motion artifacts

a(n) Accelerometer output

1t Sampling interval

∨ OR operation

flagME Flag for motion events

Tm Timing of a motion event starts

Tbefore 5 s before Tm

Tafter 5 s after Tm

Avgbefore Signals’ amplitudes before Tm

Avgafter Signals’ amplitudes after Tm

flagBS Flag identifying the baseline shifts in motion events

std(·) Standard deviation of its input

flagcrr Flag for correction

∧ AND operation

Nch(·) Number of channels satisfying a given condition

Nwv(·) Number of wavelengths satisfying a given input

G Gravity acceleration approximating 9.81 m/s2

rs(n) Light transmittances of the source-scalp gap

rd(n) Light transmittances of the detector-scalp gap

N Time instance

I0 Light intensity emitted by the source

I1(n) Light intensity reflected by hair

I2(n) Light intensity scattered by head tissue

DPF Differential pathlength factor

D Source-detector distance

1µ Absorption coefficients change in the gray matter

g(n) Wiener filter

px(w) Power spectral densities (PSD) of the actual fNIRS
signals

pv(w) PSD of the motion artifacts

ai Parameters of the AR model

φ(n) Composed of p motion artifact-free fNIRS signals

ωn Zero-mean noises in the AR model

Q Error covariance matrix

νn Measurement noise with an error covariance matrix R

W Samples of moving time window

msd(n) Moving standard deviation

ξ (n) Corresponding samples

zMA(n) Motion artifacts segments

zNC(n) Non-corrupted segments

zdiff (n) Difference between zMA(n) and its spline interpolation
fitting

i0 Coarsest scale

(Continued)

TABLE 3 (Continued)

Variables/
Parameters

Definitions

8(n) Mother scaling function

9(n) Mother wavelet function

N Number of samples in the signals

NCDF(·) Normal cumulative distribution function

σHbO Standard deviation of zHbO

σHbR Standard deviation of zHbR

WL Large-window size

WS Small-window size

Nch Number of channels

Id An identity matrix

ν1 and ν2 Two types of motion artifacts

� Gaussian white noise

[·]i,j Element located at the ith row and the jth column

[·]i ith element of the vector

W1 Window size of the first median filter

W2 Window size of the second median filter

Var (·) Variance of the variable in the parentheses

σdur Standard deviation of the filtered fNIRS signals during
stimulus

σpre Standard deviation of the filtered fNIRS signals before
stimulus

∈ Small nonnegative constant

Am Set of time segments where motion artifacts (Mas)
occur

Ntrl Number of trials in the signals

Nsub Number of subjects

1CC Difference of correlation coefficient

(Yamada et al., 2015). Here, the light transmittances of the
source-scalp gap, detector-scalp gap, and head tissue at time
instance n are denoted by rs(n), rd(n), and R(n), respectively.
Moreover, the light intensity emitted by the source is denoted
by I0, the light intensity reflected by the hair is denoted by I1(n),
and the light intensity scattered by the head tissue is denoted by
I2(n). The optical density can then be computed as follows.

1A (n) = −
I1 (n)+ I2 (n)
I1 (0)+ I2 (0)

= − log
I1 (n)+ I0rs (n)R (0) rd (n)
I1 (0)+ I0rs (0)R (0) rd (0)

− log
I1 (n)+ I0rs (n)R (n) rd (n)
I1 (n)+ I0rs (n)R (0) rd (n)

, (14)

where
I0 = I1 (n)+ I2 (n) (15)

The MA removal solution includes two steps: Step 1 involves
suppressing I1(n), and Step 2 involves attenuating the first
term in the model.
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Polarized optical films are attached to the source and
detector in an orthogonal direction to suppress I1(n). Light
reflection does not change the polarization of light, but
scattering will change; therefore, only scattered light can be
captured by the detector, that is, I1(n) = 0. Thus, Eq. (14) can
be reduced to the following form:

1A (n) = − log
rs (n) rd (n)
rs (0) rd (0)

− log
R (n)
R (0)

(16)

Step 2 is to cancel out the first term because it is independent of
the hemodynamic changes. The optode arrangement is depicted
in Figure 3. Accordingly, the method assumes that if two
unidirectional inline channels have a small distance difference
(two sources and one detector), their concentration changes
will have similar temporal patterns. The hemodynamic changes
contribute to the second term in Eq. (16), so according to the
modified Beer–Lambert law, we obtain the following equation:

− log
R (n)
R (0)

= DPF · d1µ (17)

where DPF denotes the differential pathlength factor, d indicates
the source-detector distance, and 1µ corresponds to the
absorption coefficient change in the gray matter. Moreover, the
light transmittances of the source-scalp gaps for both channels
and the detector-scalp gap for the detector are denoted by
rs1(n), rs2(n), and rd(n), respectively. R1(n) and R2(n) denote
the transmittances of the head tissues for the two channels. We
can obtain the following equation from Eq. (17) by weighted
subtraction of the optical densities of the two channels.

1A1 (n)− k1A2 (n) = − log
rs1 (n) rd (n)
(rs2 (n) rd (n))k

− log rs1 (0) rd (0)+ k log rs2 (0) rd (0)

− log
R1 (n)
R1 (0)

+ k log
R2 (n)
R2 (0)

= − log
rs1 (n) rd (n)
(rs2 (n) rd (n))k

+ C +
(
DPF1d1 − kDPF2d2

)
1µ(n) .

(18)

The constant k (approximately one) depends on the wavelength,
and C is a constant that depends on the initial installation of
the device. When the two sources and the detector are fixed
relatively well, rs1(n) and rs2(n) will be consolidated to a similar
value. Thus, the first term tends to be zero.

The solution above was evaluated on a hairy phantom,
and its hardware solution in the first step inspired a creative
solution to the hair-blocking problem encountered while using
fNIRS devices. The validity of the second step is decided by the
approximation that k = 1, whereas in actual measurement, k may
occasionally become negative (Yamada et al., 2015). Besides,
the optical model neglects detection noise and the angular
fluctuation of optodes. The multidistance optode arrangement

technique is applied to optical density and is available for real-
time monitoring. The solution in Step 1 (using polarized optical
film) can attenuate hair-reflected light.

Signal Processing-Based
Techniques

Wiener filter

The Wiener filter approach is the first to remove motion
artifacts without incorporating additional hardware devices
(Izzetoglu et al., 2005; Orihuela-Espina et al., 2010; Li L. et al.,
2021). The technique assumes that the measured fNIRS signals
are a simple addition between the actual fNIRS signals, x(n), and
motion artifacts, v(n). Moreover, it is assumed that x(n) and v(n)
are stationary and uncorrelated.

corr (x (n) , v (n)) = 0 (19)

Consequently, the Wiener filter, g(n), minimizes the mean
square error between x(n) and x̂(n), that is,

min
(
E
[
e (n)2

])
= min

(
E
[(

x (n)− x̂ (n)
)2
])

(20)

Therefore, the optimum filter can be obtained using the
orthogonality principle and simplified using Eq. (19) as follows.

corr[e(n), x(n)+ v(n)] = corr[x(n), x(n)]

− g(n) ∗ corr[x(n)+ v(n),

x(n)+ v(n)] (21)

= 0.

We obtain the Fourier transform of the Wiener filter by
converting Eq. (21) into the frequency domain using the Fourier
transform, which is as follows.

G (w) =
px (w)

px (w)+ pv (w)
(22)

where px(w) and pv(w) denote the power spectral densities
(PSDs) of the actual fNIRS signals and motion artifacts.

In application, a prior experiment is required to determine
the PSDs of g(n) by calculating the values of x(n) and v(n).
Subsequently, we can determine g(n) on a time scale using the
inverse Fourier transform and apply it to new experimental data.

The Wiener filter is the first attempt to remove motion
artifacts without a reference signal from additional hardware
devices, such as accelerometers. With the g(n) determined, the
filter can be implemented for online applications. However, it
requires prior knowledge of the PSDs of x(n) and v(n), which
makes initial calibration more complex (a particularly designed
paradigm is needed). The idea of building the filter model from
a prior experiment inspired later research on motion artifact
removal techniques.
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Kalman filter

The Kalman filter approach was also proposed based on
the general idea of the Wiener filter but as a different model
(Izzetoglu et al., 2010). The motion artifact-free fNIRS signal,
x(n), was modeled using an autoregressive (AR) model. An AR
model of order p can be written as

x(n) =
p∑

i=1

aix (n− i) (23)

With the motion artifact-free data from the prior experiment,
the parameters of the AR model, ai, i = 1, . . ., p, can be
determined using the Yule-Walker equations. Therefore, the
process equation for the Kalman filter has the following form.

φ (n) = Aφ (n− 1)+ ωn, φ (n) =
[

x (n) · · · x
(
n− p+ 1

) ]T

(24)
where φ(n) is composed of p motion artifact-free fNIRS signals,
and ωn denotes the zero-mean noises in the AR model with an
error covariance matrix Q. Matrix A can be obtained using Eq.
(23) as follows.

A =


a1 · · · ap−1 ap

1 · · · 0 0
... · · · · · ·

...

0 · · · 1 0

 (25)

The measurement equation can be written as follows.

z (n) = Cφ (n)+ νn (26)

C =
[

1 0 · · · 0
]

︸ ︷︷ ︸
p elements

(27)

where νn denotes the measurement noise (such as the motion
artifact) with an error covariance matrix R. z(n) denotes the
motion artifact corrupted signal.

Subsequently, Eqs. (24) and (26) form the state-space
model for the Kalman filter, see Table 4. The minus sign
in the superscript denotes the prior estimate of a variable.
Subsequently, the motion-free fNIRS signal can be obtained
using the Kalman filter (Wan and Nelson, 2001). The Kalman
filter method can be applied to any online application of optical
intensities, optical densities, and concentration changes, and
in the Kalman filter theory, both ωn and νn are assumed to
be zero-mean Gaussian white noise (Huang and Hong, 2021;
Haghighi and Pishkenari, 2021; Li B. A. et al., 2021; Sun and
Zhao, 2021; Yang et al., 2021; Lv et al., 2021; Tang et al.,
2020; Pham et al., 2021). However, it is not the case for
νn (motion artifacts do not observe the zero-mean Gaussian
distribution). It may degrade the filter’s performance (Zhou
et al., 2017). Moreover, matrices A and C were fixed once

TABLE 4 Kalman filter algorithm.

Initialization:

φ̂ (0) = E (φ (0)),

P (0) = E
(
(φ (0)− E (φ (0))) (φ (0)− E (φ (0)))T

)
.

Computation: For n = 1, 2, . . ., compute:

State estimate propagation

φ̂− (n) = Aφ̂ (n− 1).

Error covariance propagation

P− (n) = AP (n− 1)AT
+ Q.

Kalman gain matrix

G (n) = P− (n)CT (CP− (n)CT
+ R

)−1 .

State estimate update

φ̂ (n) = φ̂− (n)+ G (n)
(

z (n)− Cφ̂− (n)
)

.

Error covariance update

P (n) =
(
Id − G (n)C

)
P− (n).

determined by the Yule-Walker method. Therefore, further
development of the algorithm focuses on; (i) the compensation
of the instrumental noises (Amian and Setarehdan, 2013)
and (ii) adaptive adjustment of A and C, or using a more
sophisticated and nonlinear model in place of Eqs. (24) and (26)
(Dong and Jeong, 2018).

Additionally, the state-space model for the Kalman filter
method is not unique. A typical example is the incorporation
of the autoregressive iterative robust least-squares model (AR-
IRLS), the general linear model (GLM), and two linear Kalman
filters (Barker et al., 2016). A GLM and an AR-IRLS replaced
the state-space model in the Kalman filters. The GLM was
introduced to describe the dynamics of hemodynamic responses
and physiological noises. The AR-IRLS was introduced as
compensation for the MAs in the signals. A difference between
the GLM-based method and the AR model-based method
is that the GLM-based method requires the information of
experimental paradigms, while the AR model-based method
does not. Despite the significant adaptation ability of the
Kalman filter regarding its state-space model, its applications
are limited due to the effort required to set its initial
parameters (e.g., the error covariance matrices for the state and
the observation).

Spline interpolation

The spline interpolation method was first proposed
by Scholkmann’s group and is referred to as the MARA
(Scholkmann et al., 2010; Selb et al., 2015; Lee et al., 2021).
The method made two fundamental assumptions: (i) The
measured fNIRS signal is a linear addition of the motion artifacts
and the motion-free fNIRS signal, and (ii) in the motion-
corrupted segments in the signal, the motion artifact component
dominates the measured fNIRS signal. Therefore, the proposed
MARA comprised two parts: (i) Motion artifact detection and
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FIGURE 4

Flowchart of the movement artifact reduction algorithm (MARA)
algorithm. The process blocks in the blue box are one of the
reasons that limit the solution’s online application.

segmentation, and (ii) motion artifact removal. A flowchart
of MARA is illustrated in Figure 4. The spline interpolation
method encompasses six processing steps. First, the moving
standard deviation (MSD) is calculated within a moving time
window of W samples and stored as msd(n).

msd (n) =
1

W

√√√√√ k∑
i=−k

n+ i−
1

W

 k∑
i=−k

z (n+ i)

2

,

W = 2k+ 1, k ∈ N∗ (28)

where N∗ is the set of natural numbers.
We can determine the start and end points of the motion

artifacts and store the indices of the corresponding samples in
a vector ξ (n) by comparing with the MSD [i.e., msd(n) in Eq.
(28)] with a user-defined threshold value T. If the MSD is smaller
than T, the corresponding msd(n) will be assigned as zero. The
start points and endpoints of motion artifacts can be extracted
by considering the first and last samples of non-zero values in
msd(n). Next, let us suppose that there are L segments of motion
artifacts and let the motion artifact segments, zMA(n), and the
non-corrupted segments, zNC(n), be expressed, respectively, as

zMA (n) =
{

zMA,1 (n) , · · · , zMA,L (n)
}

(29)

zNC (n) =
{

zNC,1 (n) , · · · , zNC,L (n)
}

(30)

Using Eqs. (29) and (30), the measured fNIRS signals can
be segmented into non-corrupted segments and motion
artifact segments.

In the next part, the spline interpolation method
corrects motion artifact segments. Because the motion
artifact components dominate the MA segments, the
spline interpolation fitting of zMA(n) can be viewed as
the motion artifact component. The difference between
zMA(n) and its spline interpolation fitting is stored as zdiff (n):

zdiff (n) =
{

zdiff,1 (n) , · · · , zdiff,L (n)
}

(31)

Because zNC(n) and zdiff (n) may have different magnitude
levels, the final step involves correcting the signal levels for the
entire time series. Each segment is parallel-shifted according
to the mean of the previous segment and that of the target
segment. Two empirical constant thresholds, α = 3−1 Hz−1

·f s
and β = 2 Hz−1

·f s (where the variable f s denotes the
sampling frequency), were chosen for comparison. The detailed
shifting rules are listed in Table 1 in Scholkmann et al.
(2010).

The spline-interpolation method is used widely for
offline analysis in fNIRS studies. It has also been included
in some open-source toolboxes, such as HomER2 and
NIRSLAB (Balardin et al., 2017). Moreover, the method applies
not only to the optical intensities and optical densities
but also to concentration changes. However, both the
segmentation procedure (the procedures in the blue box
in Figure 4) and the parallel-shifting procedure (in the
reconstruction process) increase the difficulty for online
filtering applications. Moreover, the filter performance
depends on artifact detection results (Brigadoi et al.,
2014). Some variations of the spline interpolation method
have also been proposed (Jahani et al., 2018; Zhou et al.,
2021).

Wavelet-based method

The wavelet-based method eradicates motion artifacts by
removing the corresponding wavelet coefficients (Molavi and
Dumont, 2012; Pinti et al., 2015), without requiring auxiliary
devices. The method made the same assumption as the Wiener
filter case, that is, z(n) = x(n) + v(n). Based on discrete wavelet
transform (DWT), fNIRS signals can be expanded as follows.

z (n) =
∑

k

ai0kϕi0k (n)+
∞∑

i=i0

∑
k

bikψ (n) (32)

where i denotes the dilation parameter, k indicates the
translation parameter, and i0 denotes the coarsest scale. The
scaling function ϕi0k and the wavelet function ψik are as follows.

ϕi0k (n) = 2i0/28
(
2i0 n-k

)
(33)

ψik (n) = 2i/29
(
2in-k

)
(34)
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The functions 8(n) and 9(n) correspond to the mother scaling
function and mother wavelet function, respectively. With the
fast wavelet transform, the coefficients of the DWT of z(n)
become

ai0k =

N−1∑
l=0

h
(
l− 2k

)
z
(
l
)
, k = 0, . . . , 2i

− 1 (35)

bik =

N−1∑
l=0

g
(
l− 2k

)
z
(
l
)
, i = i0, . . . , J − 1 (36)

where N denotes the number of samples in the signal and N = 2J .
g(n) and h(n) denote the wavelet filter bank high- and low-pass
filters, respectively. Therefore, Eqs. (35) and (36) can be written
in the matrix form as follows.

W = �Z,Z =
[

z (0) . . . z (N − 1)
]T

(37)

where W = [B1, B2, . . ., BJ−1, Ai0]T , Bi = [bi0, . . ., bi(2∧i−1)],
Ai0 = [ai00, . . ., ai0(2∧i0−1)]. � is an N by N DWT matrix.
For any element wik in the wavelet coefficient vector W, the
probability of observing its value can be written as

pik = 2
(

1− NCDF
(
|wik|

σ̂

))
(38)

where NCDF(·) is a normal cumulative distribution function.
The estimated standard deviation of wik can be approximated
empirically as

σ̂i =
Median (|Wi|)

0.6745
(39)

where Wi denotes Bi or Ai0 according to the value of i. Given
a probability threshold α, if pik < α, we consider that the
corresponding wavelet coefficient wik is dominated by artifacts
and set to zero. The filtered signals can be obtained from the
updated wavelet coefficient vector as[

x̂ (0) . . . x̂ (N − 1)
]T
= �TŴ (40)

The hat over x(·) denotes the filtered fNIRS signal, and the
hat over W denotes the updated wavelet coefficient vector
after thresholding.

Similar to the spline interpolation method, the wavelet-
based method can be applied to optical intensities, optical
densities, and concentration changes. Initially, the wavelet-
based method was first introduced as an offline artifact removal
algorithm. It may be adjusted to be an online method using
the windowing technique; however, its filtering performance
will be degraded. Several variations of this method have also
appeared in recent years (Chiarelli et al., 2015; Shukla et al.,
2018; Perpetuini et al., 2021). Gao Y. et al. (2022) addressed
that the tuning of the probability threshold is crucial, and Wei
et al. (2018) designed a dual-threshold structure to improve the
performance of the wavelet-based method.

Correlation-based signal improvement
method

Based on the negative correlation between measured
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR)
concentrations, the correlation-based signal improvement
(CBSI) method was proposed in 2010 (Cui et al., 2010;
Haeussinger et al., 2014). The algorithm made three
fundamental assumptions: (i) HbO concentrations are strictly
negatively correlated with HbR concentrations (close to –1);
(ii) motion artifacts have identical effects on HbO and HbR,
subject to a constant factor; and (iii) motion artifacts are not
correlated to the actual concentration changes. The measured
concentration changes were modeled as follows.

zHbO (n) = xHbO (n)+ χv,
zHbR (n) = xHbR (n)+ v,

(41)

where v denotes the motion artifact of the HbR signals, and χ

is a constant. Based on the first assumption, we can reasonably
obtain

xHbO (n) = −βxHbR (n) (42)

β denotes the free ratio accounting for the magnitude difference
between HbO and HbR. Equations (41) and (42) can be used to
obtain the following:

v (n) = zHbO(n)+βzHbR(n)
χ+β ,

xHbO (n) =
β

χ+β (zHbO − χzHbR) .
(43)

Based on the third assumption, we set the correlation between v
and xHbO to zero, yielding∑

n
zHbO (n)2 + (β − χ)

∑
n

zHbO (n) zHbR (n)

− χβ
∑

n
zHbR (n)2 = 0 (44)

We assumed that χ = β . Then, Eq. (44) can be reduced to

χ =
σHbO

σHbR
(45)

where σHbO and σHbR denote the standard deviations of zHbO
and zHbR, respectively. Therefore, the final CBSI filter is

xHbO (n) = 1
2 (zHbO (n)− χzHbR (n)) ,

xHbR (n) = − 1
α

xHbO (n) .
(46)

Once χ is decided based on prior-experimental data, the CBSI
filter can be easily implemented for online applications using
Eq. (46). As mentioned in (Cui et al., 2010), CBSI can be applied
after an exponential moving average (EMA) filter to facilitate
real-time analysis. The behavior of an EMA filter is similar to
an online version of a band-pass filter. The EMA is described as

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.878750
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-878750 September 29, 2022 Time: 8:46 # 11

Huang et al. 10.3389/fnins.2022.878750

follows.

L (n) = 1
WL

z (n)+
(

1− 1
WL

)
L (n− 1) ,

S (n) = 1
WS

∑WS
k=0 z

(
n− k

)
,

x (n) = S (n)− L (n) .

(47)

L(n) denotes the signal filtered by a large-window moving
average (window size as WL), and S(n) denotes the signal filtered
by a moving average of window size WS.

Owing to the fundamental assumptions of the filter, the
CBSI filter can only be applied to concentration changes.
However, the negative correlation assumption between the
HbO and HbR concentrations may not always be true for
experimental data. Typically, the CBSI method is used for
comparison in the literature (Janani and Sasikala, 2017; Reyes
et al., 2018; Sherafati et al., 2020).

Principal component analysis

The solution based on principal component analysis
(PCA) was developed from a multivariate method to remove
physiological noises. The PCA-based method, entitled targeted
PCA (tPCA), is similar to spline interpolation, except for
using PCA instead of spline interpolation to fit the noisy
segments in the signals (Yucel et al., 2014a). In this
subsection, we subsequently explain the mechanism of Zhang’s
method and tPCA.

In accordance with the regular PCA method, the systemic
spatial interference subspace (the actual hemodynamic
responses) dominates in the baseline over the measured
concentration changes and it spans during the stimulation
periods for the first few components. The measured fNIRS
signals are first converted to HbO and HbR concentration
changes and are band-pass filtered. The filtered data from a
chosen channel set are formatted into two Nch × N matrices,
ZHbO and ZHbR, where Nch denotes the number of channels and
N is the number of time samples. When segmented into two
parts according to the baseline and stimulation periods, the two
matrices turn out to be as follows.

ZHbO =
[

ZHbO,base ZHbO,stim

]
(48)

ZHbR =
[

ZHbR,base ZHbR,stim

]
(49)

For simplification, we omit the subscripts HbO and HbR,
primarily because the filtering operations are identical for both
chromophores. Accordingly, the spatial correlation matrices for
the baseline signals are as follows.

Cbase = 1/N · ZbaseZT
base (50)

The eigen-values and the eigenvectors can be obtained by the
eigen-decomposition of spatial correlation matrices:

Cbase = Ubase6baseUT
base (51)

where the rows of Ubase contains the eigenvectors, and 6base
contains the eigenvalues in its diagonal. Based on the dominant
interference subspace assumption, we assume that the first r
spatial eigenvectors span in the stimulation period as Ubase,r ,
an Nch by r matrix padding by zeros. Accordingly, the
actual hemodynamic responses will be the projection of the
measured fNIRS signals onto the orthogonal subspace of the
first r eigenvectors. The superscript ⊥ denotes the orthogonal
subspace. Then, the filtered fNIRS signals were

Xstim =
(

Id − Ubase, rUT
base, r

)
Zstim = U⊥base,rU⊥ T

base, rZstim

(52)
where Xstim denotes the filtered fNIRS signal and matrix Id
is an Nch by Nch identity matrix. Finally, we can block the
average Xstim around the stimulus to improve the signal-to-
noise ratio (SNR).

To remove MAs, tPCA applies the multivariate PCA method
on MA segments. The eigenvectors in Ubase are ranked in
decreasing order of the percent variance of eigenvalues in6base.
The number of spatial eigenvectors span, r, is the minimum
integer obtaining not less than 97% percent variance. Then,
the filtered fNIRS signals of the segments are stitched back
into the original signals after shifting the average of adjacent
data segments (identical to MARA). The processing procedures
are repeated twice or three times until there is no further
improvement in the results.

Targeted PCA applies to optical densities. Due to the
iteration in MA identification, the method cannot apply to
online filtering. tPCA can remove both spike-like MAs and
baseline shifts. It can better suppress high-frequency MAs than
MARA (Yucel et al., 2014a). However, during application, the
performance of tPCA may degrade if the MAs are not present in
multiple channels (Brigadoi et al., 2014). The method requires
multiple channels, which is not an appropriate choice when the
number of channels is limited.

Multi-channel regression

The idea of the method is to subtract a best-fit linear
combination of the noise references from each signal (Robertson
et al., 2010). For a k-channel regression, the measured signal is
modeled as follows.

z = aH + x (53)

where z ε R1 × N , a ε R1× k, H ε R(k + 1) × N , x ε R1 × N . The
row vector, a, is the weight for each reference channel in H. The
regressor H is defined as follows.

H =


1 · · · 1

zr1 (1) · · · zr1 (N)
...

...
...

zrk (1) · · · zrk (N)

 (54)
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where zri (i = 1, 2, . . ., k) is the measurement of the ith reference
channel. It is recommended to take co-located channels as
reference channels in priority. Therefore, a can be estimated
using the least-squares method.

a =
(

HTH
)−1

HTz (55)

The motionless signal, x, can be obtained by subtracting aH
from z.

The multi-channel regression method does not require
an auxiliary device and applies to optical intensities, optical
densities, and concentration changes. It was first designed as an
offline filtering method, but it can apply to online applications
simply by replacing the least-square estimation procedure
with recursive least-square estimation. When different types of
artifacts affect collocated channels differently, the multi-channel
regression method may not remove MAs entirely.

Independent component analysis

Independent component analysis (ICA) can decompose a
signal to the weighted sum of multiple independent sources
statistically (Kohno et al., 2007; Santosa et al., 2013). Therefore,
the ICA solutions belong to blind source separation methods
(von Luhmann et al., 2019). The key to removing MAs using
ICA is how to select the components relevant to motionless
signals or MAs. Kohno et al. (2007) suggested identifying the
components related to artifacts using the coefficient of spatial
uniformity (CSU).

CSUj =

∣∣∣∣∣ s̄j

std
(
sj
) ∣∣∣∣∣ (56)

Additionally, Santosa et al. (2013) estimated motionless
signals by weighted reconstructing from independent
components according to the t-values between each
component and the desired hemodynamic response. The
desired hemodynamic response is the convolution between
the canonical hemodynamic response and the experimental
paradigm (a boxcar function).

The ICA applies to optical intensities, optical densities,
and concentration changes. The input requirements may vary
according to the reconstruction strategy. Some researchers
concluded that the performance of ICA was not satisfactory in
some applications because fNIRS signals contained both non-
instantaneous and non-constant coupling, correlated noise, and
source dependencies (von Luhmann et al., 2019).

Temporal derivative distribution repair

The temporal derivative distribution repair (TDDR) is an
online filtering method based on the temporal derivative of

fNIRS signals. Three basic assumptions were made for this
method: Non-motion fluctuations are assumed to be normally
distributed; most fluctuations are independent of motion
artifacts; and the derivatives of motion artifacts dominate
in the derivatives of fNIRS signals when they are present
(Fishburn et al., 2019). Therefore, the algorithm can be divided
into five steps.

Step 1: For time instance n, the variation in the fNIRS signal
can be calculated as follows.

Dz (n) = z (n)− z (n− 1) (57)

where the D before z(n) denotes the temporal derivative of the
measured signal at instance n.

Step 2: The observation weight w(n), corresponding to
Dz(n), is initialized as one.

Step 3: The observation weight is adaptively updated using a
robust estimator, M-estimator, and Tukey’s biweight function:

w (n) =

{ (
1− σs (n)2

)2
σs (n) < 1,

0 otherwise,
(58)

where σs(n) denotes the scaled deviation at instance n. An
estimate of σs(n) can be obtained from the weighted mean
of the fluctuations, the absolute residuals of the temporal
derivative, and the median absolute residual scale for the normal
distribution. Let µ denote the weight mean of fluctuations,
res(n) denote the absolute residuals of temporal derivatives,
and σ(n) represent the median absolute residuals scale.
Subsequently, we can obtain the following:

µ =
1∑n

i=1 w (i)

n∑
i=1

w (i)Dz (i) (59)

res (n) = |Dz (n)− µ| (60)

σ = 1.4826 ·median (res) (61)

Repeat (54)–(57) and consider σs(n) = σ(n) until µ converges.
Step 4: The filtered temporal derivative can be obtained

using µ and w(n) obtained in Step 3.

Dx (n) = w (n) (Dz (n)− µ) (62)

Step 5: The final filtered signal is the integration of corrected
temporal derivatives.

x (n) =
n∑

i=1

Dx (n) (63)

Importantly, the filter can be implemented offline and online.
The only difference is that when implemented online, the sum
of w(n) and w(n)Dz(n) should be stored in each loop to facilitate
the calculation in Eq. (59). The TDDR algorithm can be used for
concentration changes, optical intensities, and optical densities.
The performance and computation time of the TDDR depend
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on the convergence criterion in Step 3. In particular, in Eq.
(61), the iterative application of the median operator may
result in a significant computation time. Furthermore, as the
total number of data increases, the computation time increases
according to regarding the complexity of the sorting algorithm
in the median filter. Fishburn’s group claimed that 130 ms
were required to process a dataset of 20 Hz (50 ms in period)
(Fishburn et al., 2019). A long computation time may lead to a
loss in data transfer or a delay in the data output. In addition,
high-frequency noise may degrade the performance of TDDR.

Transient artifact reduction algorithm

The transient artifact reduction algorithm (TARA) is an
offline artifact removal method. The algorithm attempts to
estimate motion artifacts instead of filtering the original signal
directly (Selesnick et al., 2014). Generally, motion artifacts can
be divided into two types. The Type 1 artifacts are modeled as
spikes, whereas Type 2 artifacts are modeled as additive step
shapes. The corrupted fNIRS signals were modeled as a low-pass
filter/compound noise denoising problem (LPF/CSD).

z = x+ ν1 + ν2 + ω (64)

where ν1 and ν2 denote the two types of MAs, and ω denotes the
Gaussian white noise. Besides, the desired uncorrupted fNIRS
signal x is assumed to approximate an all-zero signal when
filtered by an appropriately chosen high-pass filter, denoted
by HF. Accordingly, when designed as a zero-phase recursive
discrete-time filter, H can be factorized into matrices A and B
such that

HF = BA−1 (65)

The first-order difference operator matrix D is defined as
follows.

D =


−1 1
−1 1

. . .
. . .

−1 1


︸ ︷︷ ︸

N elements

(66)

Inversely, the discrete-time integrator S is defined as the matrix
satisfying DS = IdN × N , where IdN × N indicates an N by N
identity matrix. Then, matrix B can be further factorized as

B = B1D (67)

Subsequently, we can change the variables using the following
equations.

ν1 = Au1 (68)

ν2 = SAu2 (69)

Type 2 MAs are expressed in Eq. (69) because their first-order
difference resembles Type 1 artifacts.

The two types of artifacts can be estimated using the
following procedures when the factorization matrices A and B
for the desired high-pass filter, two weight parameters λ1 and
λ2, and two penalty functions r0, r1, and r2 are available.

Step 1: Input fNIRS signals z, three regularization
parameters λ0, λ1, and λ2, penalty functions r1 and r2,
and factorization matrices A and B for the desired high-pass
filter (they can be calculated from a given degree, cutoff
frequency, and length of z).

Step 2: The first additive terms for the estimator for both
types of artifacts are as follows.

z1 = BTBA−1z (70)

z2 = BT
1 BA−1z (71)

The vectors u1 and u2 will be initialized as zero vectors.
Step 3: Repeat the following calculation until u1 and u2

converge.
[30]n,n = λ0/ψ0 ([Au1]n) (72)

[31]n,n = λ1/ψ1 ([DAu1]n) (73)

[32]n,n = λ2/ψ2 ([Au2]n) (74)

Q1 = 2BTB+ AT
(
30 + DT31D

)
A (75)

Q2 = 2BT
1 B1 + AT32A (76)

g = Bu1 − B1u2 (77)

u1 = Q−1
1

(
z1 + BTg

)
(78)

u2 = Q−1
2

(
z2 + BT

1 g
)

(79)

where3i, (i = 0, 1, or 2) is diagonal, ψi = ui/ri’, [·]i,j denotes the
element located at the ith row and jth column of the matrix, and
[·]i denotes the ith element of the vector. The superscript prime
notation, ′, is the derivative operator.

Step 4: The estimated artifacts can be obtained using Eqs.
(68) and (69). Accordingly, the filtered fNIRS signals becomes
the following.

x = z − ν1 − ν2 (80)

The TARA method is applied to optical densities, optical
intensities, and concentration changes. TARA exhibits a similar
performance to the wavelet-based method but is better at
removing Type 2 motion artifacts. TARA is limited to Type 1
and Type 2 artifacts but is not designed for oscillatory transients.
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Dual-stage median filter

The dual-stage median filter (DSMF) method resembles an
online method for motion artifact removal (Huang et al., 2022).
Similar to the TARA, the design of a DSMF is based on Type 1
and Type 2 artifact categories.

The measured fNIRS signal, z, is first filtered using the first
median filter with a window size of W1.

x1 = medianW1 (z) (81)

Subsequently, the difference between z and x1 is filtered using
the second median filter with a window size of W2.

x2 = medianW2 (z − x1) (82)

The output of the second median filter conserves the variations
in the uncorrupted signals; however, it is biased. Therefore, the
final step involves compensation of the bias using the initial time
point.

x = x2 + z (0) (83)

W1 can be set as 8 s, while W2 as 18 s.
The DSMF is applied to optical intensities, optical densities,

and concentration changes. Unlike the TDDR method, although
two median filters are used in the algorithm, they are called
once within fixed window sizes for each estimate. Moreover,
registers can store the sorted data sequence during real-time
applications, thereby reducing computation time. Therefore,
a long computational time problem can be solved relatively
quickly. Similar to the TARA, the DSMF is not designed for
oscillatory transients.

Convolution neural networks

The convolution neural network (CNN) was adopted for
MA removal in 2022 (Gao Y. et al., 2022; Kim et al., 2022). The
denoising auto-encoder (DAE) model adopted a serial structure
incorporating max-pooling and up-sampling layers (Gao Y.
et al., 2022). The model enabled an offline MA removal by
minimizing the linear combination of mean square error (Lmse),
variance (Lvar), standard deviation (Lstd), and amplitude loss
(Lamp).

Loss = Lmse + θ1 × Lvar + θ2 × Lstd + θ3 × Lamp (84)

where θ1, θ2, and θ3 were set as 1, 1, and 10. The model
parameters were estimated using simulated data generated from
experimental data in the training process. The CNN structure is
shown in Figure 1 of the reference (Gao Y. et al., 2022).

Kim et al. (2022) adopted the CNN in the U-net structure for
offline MA removal. Different from the DAE model, the U-net
structure accepted an input containing two feature channels.

u
(
k
)
=

[
z
(
k
)

dHR
(
k
) ]
∈ RN×2, k ∈ {1, 2, . . . , J} (85)

where u(k) is the input of U-net of the kth package, J is the total
number of packages, and dHR(k) is the desired hemodynamic
response of the kth package. dHR(k) is the convolution between
a canonical hemodynamic response function and a stimulus
function.

dHR
(
k
)
= cHR ∗ stim

(
k
)

(86)

The U-net solution adopted the mean square errors between the
ground-truth motionless fNIRS signals and the estimated signals
as its loss function in the training process. The configurations
of the U-net structure are shown in Figure 1 of the reference
(Kim et al., 2022).

The DAE model can be applied to optical intensities for
offline filtering. It takes measured data in a full-time sequence,
outputs the estimated motionless signals, and is trained using
simulated data from an AR model. Therefore, the quality of
the simulated data has a significant impact on the filtering
performance of the model.

In contrast, the U-net structured CNN was applied to
concentration changes. The training dataset was obtained
through a semi-simulation process, and the size of each package
was fixed as 1,024 samples. If the fNIRS data are obtained at
a low sampling frequency, the package size is sufficient, but
the filtering performance for high-sampling-frequency fNIRS
data remains unknown. The matrix structure of the input
data enables an easy adaptation to fNIRS measurement with
multi-distance configurations. However, similar to the GLM-
based method, the information of the stimulation paradigm is
a prerequisite in the input. The inclusion of the stimulation
paradigm is critical to obtain good performance of the method.

Comparison of diverse solutions

The methods presented above are the fundamental
techniques available from the existing MA removal solutions.
Among the new techniques under investigation, many solutions
were developed from or in stack of one or several basic
techniques. Table 5 demonstrates the relationship between
other new solutions and these basic techniques. For a fair
comparison among these techniques, systematic approaches are
required and the results are presented.

Comparisons have been made among the trial rejection
method, recursive least squares adaptive filtering method (Park
et al., 2020), wavelet-based method, ICA, two- or multi-channel
regression method, Kalman filter, MARA, PCA, moving average,
band-pass filter, median filter, Savitzky–Golay filter, and CBSI
for adults’ fNIRS data. Overall, the MA correction approach
is better than the trial rejection approach (Brigadoi et al.,
2014). MA correction can also help to improve classification
accuracy (Janani and Sasikala, 2017). Wavelet-based method,
ICA, multiple-channel regression, and MARA had a good
performance in noise suppression. When processing children’s
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TABLE 5 List of motion artifact (MA) removal approaches and their relationship.

Paper Solution name or category Validation data type Age group Motion artifact type Input Source code
availability

Izzetoglu et al.
(2005)

Wiener filtering Experimental Adults Optical
intensities

Matlab

Zhang et al.
(2005)

principal component analysis (PCA Experimental Adults Concentration
changes

Homer3

Lee et al. (2007) Periodic moving average Experimental Adults PPG signals No

Blasi et al. (2010) Channel rejection, adaptive filtering Experimental Infants Concentration
changes

Matlab

Cui et al. (2010) Correlation-based signal improvement (CBSI) Experimental Adults Spike Concentration
changes

Homer3

Izzetoglu et al.
(2010)

Discrete Kalman filter Experimental Adults Optical
intensities

Matlab

Scholkmann
et al. (2010)

Moving standard deviation, movement artifact reduction
algorithm (MARA)

Experimental Adults Spike + drift Optical densities Homer3

Kim et al. (2011) Active noise cancellation (ANC) Experimental Adults Spike Optical
intensities

No

Virtanen et al.
(2011)

Accelerometer-based motion artifact removal (ABAMAR) Experimental Adults Spike + drift Optical
intensities and
accelerations

No

Molavi and
Dumont (2012)

Wavelet-based method Experiment Infants Spike Optical densities Homer3

Amian and
Setarehdan
(2013)

ARMA model-based KF Simulated + experimental Adults Optical
intensities

No

Barker et al.
(2013)

AR model and reweighted least squares Simulated + experimental Infants Spike + drift Optical
intensities

No

Santosa et al.
(2013)

Independent component analysis (ICA) Experimental Adults Concentration
changes

MNE-Python

Sweeney et al.
(2013)

Ensemble empirical mode decomposition with canonical
correlation analysis (EEMD-CCA)

Simulated + experimental Adults Optical
intensities

No

Takahashi et al.
(2013)

Motion artifact reconstruction Experimental Adults Concentration
changes

No
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TABLE 5 (Continued)

Paper Solution name or category Validation data type Age group Motion artifact type Input Source code
availability

Selesnick et al.
(2014)

Transient artifact reduction algorithm (TARA) Simulated + experimental Adults Spike + drift Optical
intensities

https://ieeexplore.ieee.org/
abstract/document/6942269/
media#media

Yucel et al.
(2014b)

Collodion-fixed prism-based optical fibers Experimental Adults Spike + drift Optical
intensities

No

Yucel et al.
(2014a)

Targeted PCA Experimental Adults Spike + drift + oscillation Optical
intensities

Homer3

Chiarelli et al.
(2015)

Kurtosis-based wavelet filtering (kbWF) Semi-simulated Adults Spike Optical densities No

Metz et al.
(2015)

MARA + ABAMAR Experimental Adolescents Spike + drift Optical
densities +
acceleration

No

Yamada et al.
(2015)

Multidistance optode arrangement technique Experimental Phantom Spike + drift Optical
intensities

No

Barker et al.
(2016)

Kalman autoregressive, iterative robust least-squares
functional near-infrared spectroscopy (fNIRS) model, KF

Semi-simulated Adults Spike Optical
intensities +
stimulated
function

AnalyzIR

Gu et al. (2016) Empirical mode decomposition (EMD) + MARA Semi-simulated Children Spike + drift Optical
intensities

No

Guerrero-
Mosquera et al.
(2016)

CBSI-based automatic artifact detection Experimental Adults Concentration
changes

No

Islam et al.
(2017)

Multi-stage cascaded adaptive filtering (RLS) + singular
spectrum analysis (SSA)

Experimental Adults Optical
intensities +
acceleration

No

Santosa et al.
(2017)

Robust correlation of the innovations models Simulated + experimental Children Optical
intensities

www.bitbucket.
org/huppertt/

Dong and Jeong
(2018)

EKF with non-linear state-space model and short
separation

Semi-simulated Adults Concentration
changes

No

Jahani et al.
(2018)

MARA, Savitzky-Golay filtering Semi-simulated + experimental Adults Spike + drift Optical densities Homer3

Lee et al. (2018) Wavelet-decomposed back-propagation neural network
(BPNN) + contaminated channel identification algorithm
based on entropy

Experimental Adults Spike + drift Optical
intensities

No

Nguyen et al.
(2018)

Adaptive filtering based on RLS with an exponential
forgetting factor

Simulated + experimental Adults Spike Concentration
changes

No

Shukla et al.
(2018)

Stationary wavelet transforms, zero-mean Laplace
distribution modeling

Experimental Adults Spike Original EDA
signals

No

Siddiquee et al.
(2018)

Autoregression with exogenous input Experimental Adults Concentration
changes

No
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TABLE 5 (Continued)

Paper Solution name or category Validation data type Age group Motion artifact type Input Source code
availability

Sutoko et al.
(2018)

Adaptive algorithm, rejection Simulated + experimental Children Product of
concentration
changes and
optical path
length

No

Fishburn et al.
(2019)

TDDR + robust regression Simulated + experimental Children Spike + drift + oscillation Optical densities MNE-Python

Seghouane and
Ferrari (2019)

Robust fNIRS HRF estimation algorithm Simulated + experimental Adults Optical
intensities

No

von Luhmann
et al. (2019)

Blind source separation and accelerometer-based artifact
rejection and detection (BLISSA2RD), ICA + Canonical
Correlation Analysis and temporal embedding

Simulated + experimental Adults Optical
intensities

https://github.com/avolu/
BLISSARD

Arunkumar and
Bhaskar (2020)

Cascaded RLS, normalized least mean square (NLMS),
LMS adaptive filter

Experimental Adults Optical
intensities +
acceleration

No

Sherafati et al.
(2020)

Global variance of temporal derivatives (GVTD) Experimental Adults + infants Optical densities
or concentration
changes

No

Zhao J. et al.
(2020)

Targeted median filter and mathematical morphology
(tMedMor)

Semi-simulated Adults Spike + drift + oscillation Optical densities No

Lacerenza et al.
(2021)

TD-fNIRS Experimental Adults Photon
distribution of
time-of-flight

No

Perpetuini et al.
(2021)

Wavelet-based method, wavelet coherence (WCOH), video
tracking

Semi-simulated Adults Spike + oscillation Optical densities No

Zhou et al.
(2021)

NIRS-ICA toolbox, PCA Simulated + experimental Adults Optical
intensities

NIRS-ICA

Gao L. et al.
(2022)

MARA + wavelet Semi-simulated Adults Spike + drift + oscillation Concentration
changes

Homer3

Kim et al. (2022) U-net CNN Semi-simulated Adults Spike + drift + oscillation Concentration
changes

No

Huang et al.
(2022)

Dual-stage median filter Simulated + experimental Adults Spike + drift Optical
intensities

https://gitee.com/cognoholic/
differential-median-filter.git

Gao Y. et al.
(2022)

Deep learning-based CNN Simulated + experimental Adults Spike + drift + oscillation Concentration
changes

https://github.com/
YuanyuanGao216/fNIRS_
denoise_by_DL
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fNIRS signals, researchers compared PCA, MARA, wavelet-
based method, moving average, CBSI, and tPCA. MARA,
tPCA, and CBSI can retain a higher number of trials.
The tPCA and MARA are more robust. Moving average,
wavelet-based method, and tPCA have a better performance
than other methods. Researchers also examined the filtering
performance of infants’ fNIRS data. Trial rejection, wavelet-
based method, tPCA, MARA, and different processing pipelines
were compared in their studies. MA correction can retain
many trials, but hemodynamic response functions were also
suppressed. The optimal pre-processing pipeline depends on
the dataset (Gemignani and Gervain, 2021). Similar to the
conclusion for adults’ data, MA correction is better than trial
rejection. The wavelet-based method alone or in a stack with
MARA and the wavelet-based method (iqr = 0.5) had better
performance in noise suppression. MARA in a stack with the
wavelet-based method can recover a higher number of trials.

Reportedly, the wavelet-based filter has good performance
when MAs are caused by sudden large movements (or spikes).
Moreover, ICA and multi-channel regression also perform well
in terms of noise suppression (Robertson et al., 2010). Cooper
et al. (2012) reported that PCA, MARA, wavelet-based method,
Kalman filter, and trial rejection method could reduce the MSE
in corrupted fNIRS signals (Cooper et al., 2012). PCA, MARA,
and wavelet-based methods exhibited much better performance
than the other methods (Piper et al., 2014). In contrast, Brigadoi
et al. (2014) claimed that the Kalman filter performed better
using the area under the curve (AUC ratio) of the mean
hemodynamic responses than PCA, and MARA, followed by
the wavelet-based method and CBSI. They also claimed that
the wavelet-based method exhibited a better performance in
reducing the AUC for the first two seconds after stimulus onset
(AUC0−2).

Therefore, the evaluation of MA removal techniques
depends on the evaluation metrics of the researchers. Due
to this phenomenon, multiple metrics need to be considered
when comparing various methods. Cooper et al. (2012) used
MSE to assess how different solutions can suppress MAs
and contrast-to-noise ratio (CNR) to evaluate how well the
solutions can retain brain activation signals. Janani and Sasikala
(2017) reported that a band-pass filter, median filter, and
Savitzky-Golay filter could increase the CNR. Additionally, the
performance of the MA solutions differs from each other when
the MA types are different. Figure 5 showed an example of MA
removal using different filters.

The optimal solution for different age groups can be
different. Hu et al. (2015) tested the MA removal performance
of six solutions using fNIRS data from children: wavelet-
based method, PCA, MARA, moving average, CBSI, and the
combination of moving average and wavelet-based methods.
It was found that MARA successfully suppressed all types
of MAs but had an unsatisfactory AUC ratio. Moving
average and wavelet-based method turned out to be better

solutions for children. Meanwhile, CBSI was efficient in
removing spike-like and fast step-like MAs. Besides, Reyes
et al. (2018) claimed that tPCA was the best solution for
processing children’s fNIRS signals and the authors added that
CBSI occasionally produced unstable hemodynamic responses.
However, the authors also claimed that MARA was robust
and performed well in both AUC and the average standard
deviation of each trial-specific hemodynamic response. The
contradiction between Reyes and Hu’s findings regarding
the MARA originates from improper artifact correction (Hu
et al., 2015). Another study by Di Lorenzo et al. (2019)
used a combination of MARA and wavelet-based methods
and found it to be more effective for infant data than
using trial rejection, MARA, or wavelet alone. They further
justified that using MA correction could retain many trials.
Similar results were obtained by Behrendt et al. (2018).
They claimed that trial rejection was not recommended for
infants’ data. Table 6 summarizes the data type, age group,
techniques in comparison, and main conclusions of all nine
comparison papers.

Evaluation metrics

Various evaluation metrics have been defined in the
literature for noise suppression and signal distortion to
quantitatively evaluate the performance of artifact removal
solutions. Some metrics have been defined to describe the
extent to which the solutions could suppress the artifacts, while
others were designed to assess the signal distortion after data
processing. In this section, we introduce the details of several
metrics for artifact removal except for some commonly used
metrics such as root-mean-squared error (to assess the square-
root distance between filtered signals and reference signals), the
area under the curves (AUC. e.g., researchers can take the initial
1–2 s and the 2–6 s of HbO concentrations) (Reyes et al., 2018),
and the t-test (e.g., used together with GLM) (Hu et al., 2015).

Noise suppression

Signal to noise ratio
The signal-to-noise ratio (1SNR) in motion artifact removal

(Izzetoglu et al., 2005) is different from the more commonly
known signal-to-noise ratio (SNR), which is simply the ratio
between the power of real signals and the power of noises
expressed in decibel. 1SNR (1SNR) is defined as the difference
between the estimation SNR (SNRe) and the input SNR (SNRi).
The two variables are defined as follows.

SNRe = 10log10

(
Var (x)

Var
(
x̂− x

)) (87)
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FIGURE 5

Different motion artifact (MA) removal techniques have different performances when processing experimental data.

SNRi = 10log10

(
Var (x)

Var (z − x)

)
(88)

The operator Var(·) denotes the variance of the variable in
the parentheses. A hat over the motionless fNIRS signal x
denotes the estimated motionless fNIRS signal, and z denotes
the measured fNIRS signal. Subsequently, 1SNR is defined as
follows.

1SNR = SNRe − SNRi (89)

If the filter of interest can perfectly remove motion artifacts in z,
then 1SNR→ +∞. If 1SNR < 0, the filter of interest amplifies
the artifacts in the measured signal. Otherwise, the filter can
partially remove motion artifacts. In contrast, the larger the
1SNR, the better the performance of the filter. Physically,
the metric describes how well the filter can attenuate motion
artifacts in the measured signals.

Since a motionless fNIRS signal is required in the
calculation, 1SNR can be well suited to evaluate the
filtering performance of the simulated data. When applied to
experimental data, a desired motionless signal is required in
place of the motionless fNIRS signal.

Contrast to noise ratio
The contrast to noise ratio (CNR) describes the difference

in the fNIRS signal before and during stimulation (Zhang et al.,
2005). Here, the subscript “pre” denotes any signal before the
stimulus, and the subscript “dur” denotes any signal during the

stimulus. The CNR can then be computed as follows.

CNR =
¯̂xdur − ¯̂xpre√

σ2
dur + σ2

pre + ε
(90)

where σdur and σpre denote the standard deviations of the
filtered fNIRS signals during and before the stimulus, and ε

corresponds to a small non-negative constant compensating
for channels with a small stimulus response but relatively
low activity. Empirically, ∈= 0.1 µM. In some studies, ∈
was ignored. When MAs exist, the CNR map may appear as
all active or negative channels. The active and inactive areas
spread throughout the map. Once MAs are properly removed,
CNR maps with more concise active zones can be obtained
(Kohno et al., 2007).

Percent root difference
The percent root difference (PRD) is a metric that describes

how well the two signals match each other (Scholkmann et al.,
2010; Dong and Jeong, 2018). When using the motionless signal
x as a reference, the PRD is defined as follows.

PRD = 100%×

√√√√ N∑
i=1

(
x̂ (i)− x (i)

)2∑N
i=1 x2 (i)

(91)

The smaller the PRD, the better the filtered signals match
the motionless signals, that is, fewer artifacts exist in the
filtered signals.
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TABLE 6 Data type, age group, motion artifact (MA) removal techniques and main conclusions in the studies of MA comparison.

Paper Data type Age group Techniques of interest Main conclusions

Robertson
et al. (2010)

Experimental Adults (i) RLS adaptive filtering
(ii) Wavelet-based method
(iii) ICA
(iv) Two-channel regression
(v) Multi-channel regression

(i) Independent component analysis (ICA) or multiple-channel regression has the largest SNR changes.
(ii) RLS adaptive filtering produced the smallest SNR improvement.
(iii) Wavelet-based method is most effective for spike-like artifacts.
(iv) ICA and multiple-channel regression are good options when time-consuming manual techniques are absent.

Cooper et al.
(2012)

Semi-simulated Adults (i) PCA
(ii) Movement artifact reduction algorithm (MARA)
(iii) Wavelet-based method
(iv) Kalman filter

(i) All methods yield a significant reduction in mean square error (MSE) and an increase in contrast-to-noise ratio (CNR).
(ii) MARA has the largest drop in MSE.
(iii) Wavelet-based method has the highest average increase in CNR.
(iv) The authors recommend the routine application of MA correction.

Brigadoi
et al. (2014)

Experimental Adults (i) Trial rejection
(ii) PCA
(iii) MARA
(iv) Wavelet-based method
(v) Kalman filter
(vi) Correlation-based signal improvement (CBSI)

(i) MA correction is better than trial rejection.
(ii) Wavelet-based method is the most powerful method.

Hu et al.
(2015)

Experimental Children (i) PCA
(ii) MARA
(iii) Wavelet-based method
(iv) Moving average
(v) CBSI
(vi) Wavelet + moving average

(i) Moving average and wavelet-based method outstand the others.
(ii) Types C and D artifacts have a larger influence on GLM model than Types A and B∗ .

Janani and
Sasikala
(2017)

Experimental Adults (i) Band-pass filter
(ii) CBSI
(iii) Median filter
(iv) Savitzky–Golay filter
(v) Wavelet denoising, ICA

(i) Wavelet-based method attenuates the MA energy and increases the CNR of Subjects 1 and 2.
(ii) ICA also suppresses physiological noises and spike-like MAs.
(iii) MA removal helps to classify motor tasks.

Behrendt
et al. (2018)

Semi-simulated Infants (i) Trial rejection
(ii) Wavelet-based method
(iii) Targeted PCA (tPCA)
(iv) tPCA + wavelet-based method

(i) The authors suggested using the wavelet-based method with iqr = 0.5.
(ii) Trial rejection alone is not recommended.
(iii) Assessing MA removal performance may not require full simulation studies.

Reyes et al.
(2018)

Experimental Children (i) tPCA
(ii) MARA
(iii) Wavelet-based method
(iv) CBSI

(i) tPCA, MARA, and CBSI retained a higher number of trials.
(ii) The CBSI produced sometimes unstable hemodynamic response functions.
(iii) The tPCA and MARA were the most robust in all metrics.
(iv) The tPCA outperformed MARA.
(v) The tPCA is an effective technique in MA correction for young children.

Di Lorenzo
et al. (2019)

Semi-
simulated +
experimental

Infants (i) Trial rejection
(ii) MARA
(iii) Wavelet-based method
(iv) MARA + wavelet-based method

(i) MA correction is better than trial rejection.
(ii) Wavelet-based method alone or in stack with MARA are the most effective in reducing the between- and within-subject
standard deviation.
(iii) MARA + wavelet-based method performs the best in semi-simulation and recovering the greatest number of trials.

Gemignani
and Gervain
(2021)

Simulated +
experimental

Infants Five pipelines (i) MA correction can retain many trials.
(ii) Hemodynamic response functions were suppressed as well.
(iii) MA rejection preserved adequately the characteristics of HRF.
(iv) The performance of all pipelines declined when noise power increased but less than no pre-processing.
(v) No difference in running pre-processing on either optical densities or concentration changes.
(vi) Pre-processing depends on the dataset.

*Type A: Spike-like MA with a standard deviation (SD) of 50 from the mean within 1 s. Type B: Spike-like MA with a SD of 100 from the mean within 1 to 5 s. Type C: Baseline shift with a gentle slope between 5 and 30 s with a SD of 300 from the mean.
Type D: Slow baseline shift longer than 30 s with a SD of 500 from the mean.
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Artifact power attenuation
Artifact power attenuation (APA) indicates how much the

artifacts in the measured signal can be suppressed in the signal
of interest within the corrupted segments (Molavi and Dumont,
2012). Therefore, the metric is expressed in decibels as follows.

APA = 10 log10

∑
i∈Am

(
zHP (i)

)2∑
i∈Am

(
x̂HP (i)

)2 (92)

where Am denotes the set of time segments in which the
MAs occur. The set constrains the evaluation domain within
corrupted segments. The superscript HP denotes a high-pass
signal. It is introduced to remove low-frequency physiological
variants (Molavi and Dumont, 2012). Since the measured signals
are placed in the nominator, the larger the APA, the better
the filter of interest that can suppress MAs. Typically, APA is
expressed in decibels (Shukla et al., 2018).

APA can directly reveal a filter’s resistance to MAs without
disturbance from physiological noise. When using APA, the
high-pass filter needs to be chosen carefully to ensure efficient
filtering of the physiological noise. Importantly, the filters for
both the nominator and denominator should be identical to
facilitate a fair comparison.

Within/between-subject standard deviation
Within-subject standard deviation and between-subject

standard deviation are two different metrics for evaluating
the performance of the MA filter on the experimental data.
Within-subject standard deviation refers to the average standard
deviation of single-trial hemodynamic responses for a given
channel and chromophore. Ntrl denotes the number of trials in
the signals, k denotes the sample index, i denotes the trial index,
and N denotes the number of samples in a trial. 1ĉi(k) is the
estimated concentration change at instance k in trial i.

σwithin =

∑N
k=1 stdi

(
1ĉi

(
k
))

N
, i = 1, . . . ,Ntrl (93)

In practice, there is a within-subject standard deviation for each
chromophore in each channel of each subject. The metric is
used under the assumption that most of the variability between
single-trial hemodynamic responses for each subject is because
of the influence of MAs. When comparing the two signals, the
within-subject standard deviations can be computed for each
chromophore, channel, and subject. Then, the two values were
mapped to a point in a scatter plot. We can compare the filtering
performance of the two filters by counting the number of points
below or above the line y = x.

The between-subject standard deviation refers to the
standard deviation of the averaged hemodynamic responses
across subjects for each channel (Brigadoi et al., 2014; Di
Lorenzo et al., 2019). Nsub denotes the number of subjects, i
denotes the subject number, N denotes the number of samples in
an experiment, and 1ĉi(k) denotes the estimated concentration

change at instant k of subject i. The between-subject standard
deviation becomes

σbetween =

∑Nsub
k=1 stdi

(
1̂ci

(
k
))

N
, i = 1, . . . , Nsub (94)

It is assumed that the MAs dominate the variability of
hemodynamic responses across subjects when using the metric.

Signal distortion

Correlation coefficient
There are two methods for evaluating the motion artifact

removal performance using the correlation coefficient. The first
method computes the correlation between a reference signal
and a block-average signal (Zhang et al., 2005). The reference
signal was obtained by shifting the rectangular pulse signal to
the right. The desired metric is then calculated as the correlation
coefficient between the reference signal and the block-averaged
response of the filtered signal.

The second method defines the difference in the correlation
coefficient (1CC) (Izzetoglu et al., 2005; Jahani et al., 2018) as
the difference between the estimated correlation coefficient and
the input correlation coefficient, that is,

1CC = corr
(
x, x̂

)
− corr (x, z − x) (95)

The operator corr(·, ·) represents the correlation between two
variables in brackets. The second term in this definition tends
to be zero. If 1CC < 0, then the filter of interest significantly
distorts the motionless signal. As 1CC is closer to one, the
distortion reduces in the filtered signal.

Similar to 1SNR, 1CC is well-suited for simulated data.
When applied to experimental data, reference motionless
signals are required in place of motionless fNIRS signals. In
contrast, the first definition of the correlation metric requires
an experimental paradigm, primarily because it compares
the shifted rectangular pulse signal and the block-averaged
response.

Pearson product-moment correlation
coefficient

This metric appeared in 2008 and was designed to measure
the similarity between two signals (Scholkmann et al., 2010). The
coefficient is defined as follows.

r =
1
M

N∑
i=1

(
x̂ (i)− ¯̂x (i)

σx̂

)(
x (i)− x̄ (i)

σx

)
(96)

where σ denotes the standard deviation and M = N–1. Moreover,
the coefficient can also be used to evaluate the similarity
between the motionless signal x and measured signal z. The only
difference is the replacement of the estimated motionless signal
with z in the equation. It is used to calculate the improvement
of the proposed method compared with the measurement. The
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TABLE 7 Suitability checking of the defined metrics to three types of data.

Metrics Evaluation function Simulated data Semi-simulated data Experimental data

1SNR Noise suppression
√ √

CNR Noise suppression
√ √ √

PRD Noise suppression
√ √

APA Noise suppression
√ √ √

Within-/between-subject SD Noise suppression
√ √ √

1CC Signal distortion
√ √

Pearson product-moment correlation coefficient Signal distortion
√ √

more significant the absolute difference between r(x̂, x) and r(x,
z), the better the performance of the proposed method. As r
becomes closer to one, there is less distortion in the signal of
interest. Occasionally, the difference in the Pearson product-
moment correlation coefficient can also be used to evaluate the
improvement of the filtered signals. The difference is defined as
follows.

1r = r
(
x̂, x

)
− r (z, x) (97)

The difference may be expressed as a percentage.

Data type compatibility

According to Table 5, three types of data exist: (i)
Simulated data, (ii) semi-simulated data, and (iii) experimental
data. A semi-simulated dataset can be generated by
adding desired concentration changes to MA-corrupted
experimental data at resting state, or by adding uncorrupted
experimental data at the resting state to the sum of desired
concentration changes and designed artifact sequence. For
both simulated and semi-simulated datasets, the ground-
truth motionless signals are known. Nevertheless, this is
not true for experimental datasets. Therefore, the input
requirements of each metric decide the metric’s compatible
data types. Table 7 summarizes the data type compatibility of
different metrics.

Conclusion and outlook

This review suggests that removing MAs is unavoidable
in developing a more generalized fNIRS device. Literature
reported that fNIRS demonstrate a good tolerance to motion
artifacts when well-positioned (Pinti et al., 2020). However, a
generalized fNIRS apparatus may not guarantee that all users
will stick to this rule. The introduction of motion artifact
removal techniques will add to the device’s robustness and
stability even when the users are involved in significant physical
activities. These improvements will add to a positive user
experience. The MA issue will become crucial for portable

and wearable fNIRS devices. Once the problem is solved,
we can envision a more exciting application of fNIRS to
connect people or connect the real world with the digital
world. Additionally, Tables 5 and 6 show that the filtering
performance of one method on different age group can be
divers. Hence, for a specific application, a study regarding
the optimal solution is still necessary. Our in-depth review
can help experienced researchers as well as novices in three
ways. First, a brief introduction to some core solutions from
a different perspective can help gain a better understanding
as to how the solutions can be replicated, whether they
are suitable for online or offline applications, and their
advantages and disadvantages. Second, the definitions and
physical meanings of commonly used metrics were summarized.
Researchers can select the best metrics according to their
requirements. Third, a sketch of the latest developments
in MA removal techniques can help readers familiarize
themselves with the field and decide their research focus.
This review can be served as a list of different motion
artifact removal solutions. When targeting the application of
fNIRS, readers can pick the methods or metrics fulfilling their
requirements for their specific scenario. When attacking a
better noise removal solution, readers can develop their theory
from the methods mentioned in this work or take another
path.

The research in MA removal has made significant progress
since the early 21st century. Different attempts have been
made to remove MAs, especially for offline processing. Some
researchers have also investigated the role of MA removal
techniques in fNIRS data analysis pipelines (Gemignani and
Gervain, 2021). Some studies managed to find out the
optimal techniques among several candidates when doing
experiments on a targeted population (Hu et al., 2015; Behrendt
et al., 2018; Reyes et al., 2018; Di Lorenzo et al., 2019).
Some attempted to solve the problem by improving the
optical models (Scholkmann et al., 2014b; Yamada et al.,
2015).

However, this review also revealed several lacunae
concerning MA removal. First, no research has explained
how to achieve a balance between the use of auxiliary hardware
and that of an algorithmic solution. A comparative study
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compared an adaptive filter (accelerometer is needed) with
wavelet-based filtering, ICA, two-channel, and multi-channel
regression (Robertson et al., 2010); however, it is far from
sufficient. Second, the existing online MA removal solutions are
primarily validated for noise suppression and signal distortion,
but their filtering delays are not evaluated. An online solution
with high noise suppression, low signal distortion, and low delay
is significant for portable and wearable fNIRS devices. Third,
the robustness and compatibility of the solutions in different
application scenarios were not thoroughly studied. A solution’s
filtering performance may change when the user’s age, tasks,
external disturbance, or user’s physical health are different.
This issue is crucial for developing application-oriented fNIRS
devices, such as devices that operate in extreme environments
or a targeted population.

The research to remove MAs is not a method-oriented topic
but an application-oriented topic. Any solution that can help
make one step further to either general applications or a specific
application would be advantageous to the fNIRS community.
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