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Oral contraceptives and hormone therapies require a progestogen component to
prevent ovulation, curtail uterine hyperplasia, and reduce gynecological cancer risk.
Diverse classes of synthetic progestogens, called progestins, are used as natural
progesterone alternatives due to progesterone’s low oral bioavailability. Progesterone
and several synthetic analogs can negatively impact cognition and reverse some
neuroprotective estrogen effects. Here, we investigate drospirenone, a spironolactone-
derived progestin, which has unique pharmacological properties compared to other
clinically-available progestins and natural progesterone, for its impact on spatial memory,
anxiety-like behavior, and brain regions crucial to these cognitive tasks. Experiment
1 assessed three drospirenone doses in young adult, ovariectomized rats, and
found that a moderate drospirenone dose benefited spatial memory. Experiment 2
investigated this moderate drospirenone dose with and without concomitant ethinyl
estradiol (EE) treatment, the most common synthetic estrogen in oral contraceptives.
Results demonstrate that the addition of EE to drospirenone administration reversed
the beneficial working memory effects of drospirenone. The hippocampus, entorhinal
cortex, and perirhinal cortex were then probed for proteins known to elicit estrogen- and
progestin- mediated effects on learning and memory, including glutamate decarboxylase
(GAD)65, GAD67, and insulin-like growth factor receptor protein expression, using
western blot. EE increased GAD expression in the perirhinal cortex. Taken together,
results underscore the necessity to consider the distinct cognitive and neural impacts of
clinically-available synthetic estrogen and progesterone analogs, and why they produce
unique cognitive profiles when administered together compared to those observed when
each hormone is administered separately.
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INTRODUCTION

Most individuals use some form of contraception during their
reproductive years (Daniels and Abma, 2018). In the past several
decades, there has been a rise in the popularity of exogenous
hormone-containing methods, including oral contraceptives,
intrauterine devices, vaginal rings, and subcutaneous implants
due to their high reliability not only in preventing unintended
pregnancy, but also for their value in treating a range of
other health-related indications such as endometriosis, acne, and
premenstrual dysphoric disorder (PMDD; Dayal and Barnhart,
2001). It is currently estimated that 79.3% of women have used
the oral contraceptive pill at some point during their life; 13.9%
of United States women ages 15–44 report current use of the pill
between 2015 and 2017; this percentage increases to 19.5% for
users in the 20–29 year old age range (Centers for Disease Control
and Prevention, 2019). Likewise, some women undergoing the
menopause transition opt to take hormone therapy to alleviate
unwanted symptoms including hot flashes, dyspareunia, and
vaginal dryness (Pinkerton et al., 2017). Furthermore, oral
contraceptives are often prescribed for pregnancy prevention
during the menopause transition when fertility is variable (Ikhena
and Johnson, 2012; Liu, 2021). Thus, a significant number of
people will have had exposure to hormone-containing therapies
at some point in the reproductive lifespan, and it is imperative to
understand the long-term health effects of hormone-containing
contraceptives and menopausal hormone therapies.

Progestins act by inhibiting ovulation and altering the
uterine and cervical environment for pregnancy prevention
(Rivera et al., 1999). If an estrogen-containing formulation
is used and the uterus is intact, the progestin component
also facilitates prevention of endometrial hyperplasia, making
combined oral contraceptives the most popular form of
oral contraceptive use (Hall and Trussell, 2012). Due to the
low oral bioavailability of natural 17β-estradiol (E2) and
progesterone, synthetic forms of estrogen and progesterone
are most often utilized. Ethinyl estradiol (EE) is the synthetic
estrogen used in nearly all combined oral contraceptive
formulations. However, a wide range of progesterone synthetics
exist, collectively called progestins. Progestins are derived
from a variety of parent molecules structurally related to
either testosterone or progesterone. This results in different
pharmacological and pharmacokinetic profiles, including
variable affinities to the steroid hormone receptors for
progesterone, androgens, estrogens, glucocorticoids, and
mineralocorticoids (Schindler et al., 2003; Kuhl, 2005; Sitruk-
Ware and Nath, 2010). Although progestins have similar
progesterone-like effects peripherally, research suggests that
many progestins have a negative impact on cognition and
reverse neuroprotective estrogen effects (Chesler and Juraska,
2000; Bimonte-Nelson et al., 2004b, 2006; Rosario et al.,
2006; Harburger et al., 2007, 2009; Braden et al., 2010, 2011,
2015; Lowry et al., 2010), while others have neutral or even
beneficial effects when administered independently (Braden
et al., 2017; Prakapenka et al., 2018). Given the prevalence and
diversity of progestins used in contraceptives and hormone
therapies, it is of critical importance to better understand how

synthetic hormones impact the brain and behavior beyond their
prescribed uses.

While most United States Food and Drug Administration
(FDA)-approved progestins are structurally similar to
testosterone and progesterone, the progestin drospirenone
is derived from a novel source: spironolactone, an anti-
androgenic aldosterone antagonist (Krattenmacher, 2000;
Archer et al., 2015). This makes the molecular structure and
function of drospirenone unique. Aldosterone is an adrenal-
derived hormone that regulates water retention and blood
pressure; thus, beyond drospirenone’s capacity to bind to the
progesterone receptor with high affinity and its structural
similarity to progesterone compared to other clinically-available
progestins (Muhn et al., 1995; Fuhrmann et al., 1996), it may
also modulate fluid retention that naturally occurs during the
menstrual cycle (Foidart, 2005; Fenton et al., 2007; Bitzer and
Paoletti, 2009). Drospirenone possesses spironolactone-derived
anti-androgenic and anti-mineralocorticoid receptor properties
without concomitant glucocorticoid receptor activity (Schindler
et al., 2003). As such, drospirenone-containing contraceptives
are FDA-approved to treat acne vulgaris and PMDD, a mood
disorder different from premenstrual syndrome affecting
approximately 5% of women (Fenton et al., 2007; Hofmeister
and Bodden, 2016). Although drospirenone was reported to
increase deep vein thrombosis when it was first popularized, this
finding has since been refuted, and its safety profile is considered
consistent with other clinically-used progestins (Larivée et al.,
2016). It remains a popular progestin component in both oral
contraceptives (e.g., YAZ R©, Yazmin R©, OcellaTM, Slynd R©, and
Nextsellis R©) and menopausal hormone therapies (e.g., Angeliq R©)
at the time of this writing.

Though drospirenone and EE have been reported to improve
anxiety, PMDD symptoms, and psychosexual wellbeing in
reproductive age women (Paoletti et al., 2004; Pearlstein
et al., 2005; Yonkers et al., 2005; Nappi et al., 2009) and
drospirenone plus E2 was shown to not impact cognition in
menopausal women (Davison et al., 2013), little attention has
been dedicated to methodically understanding drospirenone’s
impact on memory and anxiety-like behaviors from a preclinical
perspective. Given drospirenone’s unique pharmacological
properties and potential for alleviating cognitive symptoms
associated with PMDD, it is of significant interest to evaluate
its effects on cognition alone and in combination with the
synthetic estrogen EE. Our laboratory has demonstrated unique
cognitive effects of progestins and estrogens depending on
whether the drugs are administered alone or in combination
with each other, and which animal model is used to evaluate
these effects. For example, the progestin levonorgestrel has
null or beneficial effects on spatial working memory when
given alone (Braden et al., 2017; Prakapenka et al., 2018), but
its beneficial effect is attenuated when combined with E2 in
middle-aged ovariectomized (Ovx; surgical ovary removal) rats
(Prakapenka et al., 2018). Yet, when E2 and levonorgestrel were
co-administered to middle-aged rats with intact but follicle-
depleted ovaries, this combined treatment regimen benefited
spatial memory, anxiety-like, and depressive-like behaviors
(Koebele et al., 2021a). Our laboratory has also reported spatial
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memory impairments associated with the progestins segesterone
acetate (Woner et al., 2019) and medroxyprogesterone acetate
(Braden et al., 2010, 2011).

Estrogens, progesterone, and their synthetic analogs, impact
multiple neural systems to influence learning and memory
processes. For example, both E2 (Nakamura et al., 2004; Joh
et al., 2006) and the progestin medroxyprogesterone acetate
(Pazol et al., 2009; Braden et al., 2010) act on the λ-aminobutyric
acid (GABA)ergic system, which is the primary inhibitory
neurotransmitter system in the brain and a critical modulator
of normal learning and memory. Indeed, E2 is known to
modulate hippocampal GABAergic activity (Murphy et al.,
1998; Nakamura et al., 2004; Moura and Petersen, 2010;
Wójtowicz and Mozrzymas, 2010) and synaptic plasticity
(Woolley and McEwen, 1993, 1994; Woolley et al., 1997;
Miranda et al., 1999; Barha and Galea, 2010; Frankfurt and
Luine, 2015; Smith et al., 2016). Although the hippocampus is
the most well-characterized structure in terms of E2’s impact
on cognition, newer studies implicate ovarian hormones in
functional changes in the perirhinal and entorhinal cortices,
including E2-induced decreases in perirhinal cortex dendritic
spine density (Gervais et al., 2015). Recently, it was shown
that membrane-bound estrogen receptors enhanced synaptic
excitation in the entorhinal cortex, while progesterone and
allopregnanolone did not alter entorhinal synaptic responses
(Batallán Burrowes et al., 2021). Systemic and intracranial E2
infusions into the perirhinal and entorhinal cortices enhanced
novelty preference in Ovx rats, but impaired delayed-non-
match to sample task performance (Petrulis and Eichenbaum,
2003; Gervais et al., 2013, 2016), demonstrating hormone-
mediated cognitive-behavioral implications. We have previously
reported altered glutamate decarboxylase (GAD)65+GAD67
expression in the hippocampus and surrounding cortical
areas of Ovx rats treated with medroxyprogesterone acetate
(Braden et al., 2010), which points to a putative mechanism
for the detrimental cognitive effects of progestogens. Natural
progesterone can reverse estrogen-induced growth factor
increases in the entorhinal cortex in aged female rats (Bimonte-
Nelson et al., 2004a), while the progestin segesterone acetate
increased expression of insulin-like growth factor-1 receptor
(IGF1-R), which is important for neurogenesis, in the frontal
cortex of mice (Chen et al., 2018). Estrogen receptors also
frequently colocalize with IGF1-R receptors on neuronal and
glial cells, which may promote estrogen-induced neuroprotective
effects (Garcia-Segura et al., 2007). Indeed, even short-term E2
administration has been shown to produce long-lasting increases
in IGF1-R expression and benefit cognition (Witty et al., 2013),
while IGF1-R blockade alters E2-induced hippocampal plasticity
changes and spatial memory enhancements (Nelson et al.,
2014). While evaluations of neurobiological mechanisms of
the synthetic analog EE are in their infancy, our laboratory
reported dose-dependent effects of EE on memory, wherein
a higher dose impaired memory (Mennenga et al., 2015a).
This underscores the need to investigate neural actions of EE,
as well as whether drospirenone has similar neurobiological
actions as other progestogen-mediated effects reported
in the literature.

Elucidating whether drospirenone differentially impacts
cognition in contrast to progestins from traditional derivatives
is an important step toward refining and discovering novel
pharmacotherapies that can provide long-term health benefits,
including potential neuroprotection. In order to assess the impact
of drospirenone on cognition, two experiments were performed.
Using young adult, Ovx Fischer-344-CDF (F344-CDF) rats,
Experiment 1 evaluated a range of doses of drospirenone to
determine an optimal dosing regimen that impacted cognition.
Experiment 2 incorporated the optimal dose determined from
Experiment 1 and combined this dose with EE to investigate
cumulative effects of the drugs on cognitive performance. Brains
from both experiments were analyzed for GAD65, GAD67, and
IGF1-R protein expression.

MATERIALS AND METHODS

Experimental procedures and statistical analyses were identical
for Experiment 1 and Experiment 2.

Subjects
One hundred sexually inexperienced 3-month-old female F344-
CDF rats were obtained from Charles-River Laboratories
(Raleigh, NC, United States). Forty subjects were included in
Experiment 1 and 60 subjects were included in Experiment 2.
Upon arrival to the animal facility, all rats were pair-housed,
provided with free access to food and water for the duration of
the experiment, and were maintained on a 12-h light/dark cycle
for the entirety of the experiment. Procedures were approved
by the Arizona State University Institutional Animal Care and
Use Committee and adhered to National Institutes of Health
standards.

Ovariectomy
After 9± 1 day of acclimation to the vivarium, all rats underwent
Ovx in order to initiate a “blank ovarian hormone slate,” which
permits the evaluation of specific treatment effects without
interactions with endogenously circulating hormones. Rats were
anesthetized via inhaled isoflurane anesthesia. Five mg/kg/mL
of the NSAID carprofen (Rimadyl R©; Pfizer Pharmaceutical,
Hospira Inc., Lake Forest, IL, United States) was administered
to prevent post-surgical discomfort. Following sterilization of
the surgical area, all rats received bilateral dorsolateral incisions
through the skin and muscle. Ovaries and tips of the uterine
horns were ligated and excised on each side. Muscle was
sutured with dissolvable Vicryl suture and a local anesthetic,
bupivacaine (Marcaine R©; Pfizer Pharmaceutical, Hospira Inc.,
Lake Forest, IL, United States), was applied topically to the
incision site. Skin was sutured with dissolvable Vicryl suture. All
rats received two mL of sterile saline subcutaneously to prevent
post-surgical dehydration.

Hormone Treatment: Experiment 1
Drospirenone is abbreviated as DRSP in reference to treatment
groups. Rats were randomly assigned to one of the following
treatment groups (n = 10/group): Vehicle (sesame oil, control),
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DRSP-Low (12.5 µg/day), DRSP-Medium (30 µg/day), or DRSP-
High (300 µg/day). Two ± one days after Ovx surgery, daily
subcutaneous treatment injections began. Each treatment was
administered in 0.1 mL of sesame oil in the scruff of the neck,
and continued throughout the entirety of the experiment until
euthanasia. The low DRSP dose was based on the most common
dose prescribed to women in a combined oral contraceptive
(3 mg/day), adjusted for an average weight (250 g) Ovx rat.
Clinically, the ratio of DRSP to EE in a typical combined oral
contraceptive is 100:1, so the medium DRSP dose reflected this
ratio when considering the range of EE doses used in Experiment
2. The high DRSP dose was a replication of the dose used in
a prior study from another laboratory (Muhn et al., 1995) that
resulted in ovulation inhibition in ovary-intact adult rats.

Hormone Treatment: Experiment 2
Rats were randomly assigned to one of the following treatment
groups (n = 10/group): Vehicle (sesame oil, control); DRSP
(30 µg DRSP/day); EE-Low (0.125 µg EE/day), EE-High (0.3 µg
EE/day), DRSP + EE-Low (30 µg DRSP/day + 0.125 µg EE), or
DRSP+ EE-High (30 µg DRSP/day+ 0.3 µg EE). All treatments
were administered in the same fashion as Experiment 1, in 0.1 mL
of sesame oil in the scruff of the neck beginning 2 ± 1 days
after Ovx and continued daily throughout the experiment until
euthanasia. The EE doses utilized were based on prior research
from our laboratory; the Low-EE dose represented a typical dose
of EE in a modern-day oral contraceptive (30–35 µg/day), and
the High-EE dose represented the higher doses of EE prescribed
in earlier generations of oral contraceptives (75–80 µg/day), each
adjusted for rat body weight (Mennenga et al., 2015a). The DRSP-
Medium dose (30 µg/day) was chosen for use in Experiment 2
based on Experiment 1 results.

Vaginal Cytology
Eighteen days after the first hormone injection, vaginal smears
were performed for three consecutive days to confirm successful
Ovx in Vehicle-treated rats and evaluate how DRSP and/or EE
treatment impacted vaginal epithelial cells after Ovx. Cytology
was characterized based on specifications in Goldman et al.
(2007) and Koebele and Bimonte-Nelson (2016), whereby:
diestrus smears contained leukocytes with or without the
presence of cornified cells; proestrus smears contained round,
nucleated epithelial cells and cornified cells present in clusters;
estrus was defined by the presence of cornified cells; and
metestrus contained a combination of cornified cells, leukocytes,
round cells, and keratinized, needle-like cells (Goldman et al.,
2007; Koebele and Bimonte-Nelson, 2016).

Body Weights
Beginning at Ovx surgery (baseline), weekly weights (grams) were
recorded for all rats until the end of each experiment.

Behavioral Battery
One month after daily hormone treatment initiation, rats were
assessed on the water radial-arm maze (WRAM) and Morris
water maze (MM) to evaluate spatial working and reference

memory (RM). Following water maze tasks, rats were tested
on the open field task (OFT) to assess locomotor activity and
anxiety-like behavior.

Water Radial-Arm Maze
The WRAM was an eight arm apparatus used to test spatial
working and RM in rodents, as previously described (Bimonte
and Denenberg, 1999; Bimonte et al., 2000; Bimonte-Nelson et al.,
2015). Working memory required updating within a session. RM
remained constant through the entirety of the task across days.
Each arm was identical in size (29.7 cm long × 12.7 cm wide)
and evenly spaced, radiating out from the circular center of the
maze. Black non-toxic powdered paint was used to make the
water (18–20◦C) opaque. Four out of the eight arms contained
hidden platforms placed 2 cm below the water’s surface at the
beginning of each daily testing session. The specific locations
of the platforms were constant within a rat for all testing
days, but platform location combinations varied among rats and
combinations were counterbalanced across treatment groups.
Salient spatial cues were present on the walls around the maze
to assist with spatial navigation.

Rats underwent baseline WRAM testing for 12 consecutive
days, with four trials administered per daily testing session
(one trial per hidden platform). The trial began when the
experimenter placed the rat in the non-platformed start arm. Rats
had 3 min per trial to locate a hidden platform. If the rat did
not locate a platform in the maximum allotted time of 3 min,
the experimenter led the rat to the nearest hidden platform.
Once a platform was located, the rat was permitted to stay on
it for 15 s, and then the experimenter removed the rat from the
maze and placed it back into a heated testing cage for a 30 s
inter-trial-interval. During those 30 s, the experimenter removed
the just-found platform from the maze for the remainder of
the daily testing session and gently stirred the water with a
net to obscure potential olfactory cues and remove any debris
from the water. The rat was placed back into the maze for the
remaining three trials in an identical manner. Following 12 days
of baseline testing, on day 13, a 6-h delay was implemented
between trials two and three to test delayed working memory
retention. Cognitive performance on the WRAM was quantified
by the number of non-platformed arm entries—called errors—
committed prior to locating a platform on each trial. An arm
entry was quantified when the rat’s nose passed a designation
mark 11 cm into the arm that was visible to the experimenter
but not visible to the rat. Errors were defined in one of three
categories: working memory correct (WMC) errors were entries
into a previously platformed arm (which may occur on trials
2–4), RM errors were entries into a never-platformed arm for
the first time within a daily testing session (capped at four
errors), and working memory incorrect (WMI) errors were
defined as repeat entries into never-platformed arms within a
daily testing session.

Morris Water Maze
The MM was a large round tub (diameter = 188 cm) filled with
18–20◦C black-painted water used to assess spatial RM (Morris
et al., 1982; Bimonte-Nelson et al., 2015; Morris, 2015). One
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hidden platform was submerged within the northeast quadrant
of the maze, where it remained for all days and trials. Spatial
cues were placed on the walls in the testing room to aid in spatial
navigation. Each rat received four trials per day for five days. On
each trial, a rat was dropped off from a cardinal direction (north,
east, south, or west). The order of drop-off locations was the same
for all rats within a day, but changed across days. The maximum
trial time was 60 s. If a rat did not locate the hidden platform
within the maximum allotted time, the experimenter led the rat
to the platform. Once the rat found the platform, it remained
on the platform for 15 s prior to being returned to its heated
testing cage for an inter-trial-interval of approximately 15 min.
The rats’ swim paths were recorded using Ethovision software
(Noldus Instruments, Wageningen, Netherlands). On the fifth
testing day, an additional trial was implemented following the
four baseline trials. During this trial, called the probe trial,
the platform was removed from the maze and the rats were
allowed to swim freely for 60 s to assess spatial localization
to the platform.

Open Field Task
The OFT measured locomotor activity and anxiety-like behavior.
This task has been shown to be sensitive to the presence and
absence of ovarian hormones (Hiroi and Neumaier, 2006). The
OFT was a 100 cm × 100 cm × 30 cm black plexiglass arena.
Although some paradigms use a bright light in the center of the
maze, this assay was completed in red light (i.e., darkness for
rats), as we have previously published (Koebele et al., 2021a).
This is because rats with significant anxiety-like phenotypes
tend not to move at all if the center of the arena is lit. One
day prior to the OFT, the arena was cleaned with an enzyme
cleaner to remove any odors in and on the box. Rats were
acclimated to the anteroom of the testing area for at least
30 min. Each rat was placed in the arena along the north wall.
The experimenter quietly exited the room while the rat was
allowed to explore the arena freely for a 10-min trial. The rat
was then placed back in its testing cage and removed from the
room. The experimenter counted and removed any fecal boli
from the arena, cleaned the arena with water, and dried it with
paper towel prior to the next subject’s trial. Dependent variables
assessed in the OFT were total distance moved, as well as distance
moved and time spent in the arena center (inner nine squares),
small center (inner-most square), and arena corners. Twenty-
five evenly spaced squares were digitally overlaid on the OFT
tracks, and distance moved and time spent were recorded using
Ethovision tracking software.

Euthanasia
One day following OFT completion, rats were deeply
anesthetized with inhaled isoflurane anesthesia. Brains were
removed and the dorsal hippocampus, entorhinal cortex, and
perirhinal cortex of the right hemisphere were rapidly raw
dissected, weighed, and frozen at −70◦C until western blot
analysis. Ovx status was verified at necropsy and the uterine
horns were removed from the body cavity, trimmed of visible fat,
and wet weight was recorded.

Western Blot Protein Analysis
Right hemisphere dorsal hippocampus, entorhinal cortex, and
perirhinal cortex from each experiment were analyzed for GAD65
expression, GAD67 expression, and IGF1-R expression via
western blots. Frozen raw tissue samples were suspended in a 1:25
weight-to-volume RIPA buffer solution [150 mM NaCl, 1%Triton
X-100, 0.1% SDS, 0.5% sodium deoxycholate, 50-mM Tris–HCl,
protease inhibitor (Millipore-Sigma, CAT#5892791001)], and
phosphatase inhibitor (Millipore-Sigma, CAT#524625). Tissues
were kept on ice at all times and homogenized using a probe
sonicator (Ultrasonic Processor, Cole Parmer, IL, United States),
and then centrifuged at 10,000 rpm for 10 min at 4◦C. Cleared
supernatants were collected, aliquoted, and frozen at −70◦C
until analysis. Bicinchoninic acid protein assays (Thermo-Fisher
Scientific, Pittsburgh, PA, United States) were used to determine
sample protein concentrations.

Within an experiment, treatment groups were
counterbalanced and equally represented on each gel run.
The NuPAGE PowerEase electrophoresis system was utilized for
tissue processing. Tissue samples for each region were loaded
at an equal protein concentration and were run on a 4–12%
NuPAGE Bis-Tris gel in an XCell SureLock Mini-Cell with
MOPS running buffer (Invitrogen, Carlsbad, CA, United States)
and transferred to an Immobilon polyvinylidene difluoride
membrane. The membrane was washed in 1× Tris-buffered
saline with 0.1% Tween (TBST) and blocked in 5% non-fat milk
for 1 h at room temperature. Following blocking, the membrane
was washed in 1× TBST and incubated overnight on a shaker
at 4◦C with anti-GAD65 (1:5000; Abcam, ab26113; 65 kDa),
anti-GAD67 (1:10,000; Abcam, ab 26116; 67 kDa), anti-IGF1-R
(1:1000; Cell Signaling, #9750S; 95 kDa), and loading control
anti-beta-actin (1:20,000; Cell Signaling, #4970S; 45 kDa) in 5%
non-fat milk. The following day, the membrane was washed in
1× TBST and incubated with secondary antibodies anti-mouse
horseradish peroxidase (HRP; 1:2000; Cell Signaling #7076S)
for GAD65 and GAD67, and anti-rabbit HRP (1:2000; Cell
Signaling #7074) for IGF1-R and beta-actin for 1 h at room
temperature in 5% non-fat milk. The membrane was washed in
1× TBST, and developed using chemiluminescence (Lumiglo
and peroxide, Cell Signaling #7003S) in a film developer (Konica
SRX-101A Film Processor, Tokyo, Japan). Films were scanned
to the computer as JPEG files at 600 dpi. Densitometry analyses
were completed using ImageJ software (Gallo-Oller et al.,
2018). GAD65, GAD67, and IGF1-R bands were normalized to
corresponding beta-actin for each blot.

Statistical Analyses
A priori two-group comparisons between each DRSP group and
Vehicle were completed using repeated measures analysis of
variance (ANOVA) for Experiment 1. For Experiment 2, each
DRSP, EE, and DRSP+ EE group was compared to Vehicle using
two-group comparisons. Additionally, we compared EE-Low and
EE-High groups to each other to assess dose-dependent effects,
as well as compared EE-Low, EE-High, and DRSP groups to the
combinations of DRSP + EE to assess effects of the hormones
alone vs in combination with one another to evaluate differential
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cognitive effects when hormone treatments are co-administered
(Prakapenka et al., 2018; Koebele et al., 2021a). Alpha level
was set to 0.05 for all analyses. Generalized eta squared (ηG

2)
was calculated for repeated measures ANOVA as a measure of
effect size (Olejnik and Algina, 2003; Bakeman, 2005). For all
non-repeated measures ANOVA, eta squared (η2) was reported.
Standard effect size guidelines were applied to interpretations of
ηG

2 and η2, with 0.02 as a small effect, 0.13 as a medium effect,
and 0.26 as a large effect (Olejnik and Algina, 2003; Bakeman,
2005).

Water radial-arm maze data were separated into three phases
based on error-making patterns in the learning curve, as we have
previously published (Mennenga et al., 2015b; Braden et al., 2017;
Prakapenka et al., 2018; Koebele et al., 2019, 2021a). Day 1 was
considered training and was excluded from the analysis. Days 2–
5 were the Early Acquisition Phase when rats are exploring the
maze and learning the rules of the task. Days 6–9 were the Late
Acquisition Phase, when error scores begin to decrease but there
is still variability in performance as rats consolidate the win-shift
rules, such that they have to shift spatial locations to be rewarded
(i.e., removed from the maze) on each trial. Days 10–12 were
the Asymptotic Phase, when rats are reaching peak performance
and approaching asymptotic error scores. WMC, RM, and WMI
errors were the dependent measure analyzed separately for the
Early Acquisition Phase, Late Acquisition Phase, and Asymptotic
Phase. Trials (three trials for WMC, four trials for RM and WMI)
were nested within days as repeated measures. Treatment was the
independent variable. Based on prior findings indicating working
memory load-dependent hormone effects, we also analyzed the
moderate (Trial 3) and maximum (Trial 4) working memory
load trials separately, as previously done (Braden et al., 2010;
Mennenga et al., 2015a; Koebele et al., 2017, 2019, 2021b;
Prakapenka et al., 2018).

Morris water maze data were analyzed using repeated
measures ANOVA, with Treatment as the independent variable
and Swim Distance to Platform (cm) as the dependent variable,
with four trials nested within the five days as repeated
measures for each two-group comparison. Groups were evaluated
separately for probe trial performance [percent of total swim
distance in the northeast (previously platformed) Quadrant vs the
southwest (opposite) Quadrant].

Open field task data were analyzed using ANOVA, with
Treatment as the independent variable, and Total Distance
Moved (cm), Center Distance, Center Time, Small Center
Distance, Small Center Time, Corner Distance, and Corner Time
as dependent variables for each two-group comparison.

Western blot protein analyses were completed using ANOVA,
with Treatment as the independent variable and GAD65, GAD67,
and IGF1-R expression normalized to beta-actin (arbitrary units;
AU) in the dorsal hippocampus, entorhinal cortex, and perirhinal
cortex as the dependent variable for each two-group comparison.
Body weight and uterine weight were also analyzed using
ANOVA, with Treatment as the independent variable and Weight
(g) as a dependent variable for each two-group comparison.

Pearson’s r correlations were completed between IGF1-R
expression, GAD65 expression, and GAD67 expression in the
dorsal hippocampus, entorhinal cortex, and perirhinal cortex

with WMC and WMI errors on the WRAM for each phase
across all trials, as well as for Trial 3 only and Trial 4 only.
The False Discovery Rate (FDR) correction using the Benjamini-
Hochberg procedure was applied with an FDR = 0.25 (Benjamini
and Hochberg, 1995; McDonald, 2014).

RESULTS

Experiment 1
Water Radial-Arm Maze
Early Acquisition Phase
Across all days and trials of the Early Acquisition Phase, there
was a main effect of Treatment for the Vehicle vs DRSP-Low
comparison [F(1,18) = 5.71, p < 0.05, ηG

2 = 0.02] where rats
treated with DRSP-Low made fewer WMC errors on Trials 2–4
compared to Ovx rats without hormone treatment. All DRSP-
treated groups made fewer errors than Vehicle-treated rats on
the moderate working memory load trial (Vehicle vs DRSP-Low:
[F(1,18) = 5.69, p < 0.05, ηG

2 = 0.06]; Vehicle vs DRSP-Medium:
[F(1,18) = 10.50, p< 0.01, ηG

2 = 0.10]; and Vehicle vs DRSP-High:
[F(1,18) = 7.57, p < 0.05, ηG

2 = 0.07]; Figure 1A). A Treatment
main effect was also present for WMI errors on the moderate
memory load trial for the Vehicle group vs the DRSP-Low group
[F(1,18) = 7.83, p < 0.05, ηG

2 = 0.08] and vs the DRSP-Medium
group [F(1,18) = 5.13, p < 0.05, ηG

2 = 0.05], where each DRSP-
treated group made fewer WMI errors compared to Vehicle-
treated rats (Figure 1B). There were no differences in working
memory performance on the maximum working memory load
trial during early acquisition, nor were there RM effects in the
Early Acquisition Phase.

Late Acquisition Phase
There were no main effects of Treatment during the Late
Acquisition Phase for WMC, WMI, or RM errors for any two-
group comparison.

Asymptotic Phase
There was a main effect of Treatment for WMI errors for the
Vehicle vs DRSP-Medium comparison [F(1,18) = 4.47, p < 0.05,
ηG

2 = 0.02] and a Trial × Treatment interaction for this
comparison [F(3,54) = 4.47, p < 0.01, ηG

2 = 0.06] across all trials
and days of the Asymptotic Phase. On the maximum working
memory load trial, DRSP-Medium rats made fewer WMI errors
compared to Vehicle treated rats ([F(1,18) = 4.47, p < 0.05,
ηG

2 = 0.07], Figure 1C). There were no significant effects for
WMC or RM errors in the Asymptotic Phase.

Delayed Memory Retention
Working memory correct errors on Trial 3 from the final day
of baseline testing (day 12) were compared to WMC errors on
Trial 3 after the 6-h delay (the first post-delay trial on day 13) for
each treatment group. Post-delay errors on Trial 3 were increased
for Vehicle rats [F(9,1) = 5.44, p < 0.05, ηG

2 = 0.52] and DRSP-
Low rats [F(9,1) = 10.79, p < 0.01, ηG

2 = 0.33] compared to the
previous day’s performance in each group (Figures 1D,E). DRSP-
Medium and DRSP-High groups did not show a delay-induced
impairment (Figures 1F,G).
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FIGURE 1 | Experiment 1 Water radial-arm maze. (A) During Early Acquisition, all groups treated with drospirenone had improved WMC performance compared to
rats without hormone treatment when working memory load was moderately taxed. (B) This working memory benefit was extended to WMI errors on the moderate
working memory load trial for DRSP-Low and DRSP-Medium groups compared to rats without hormone treatment. (C) During the Asymptotic Phase,
DRSP-Medium continued to enhance WMI performance compared to rats without hormone treatment on Trial 4, the maximum working memory load trial. Rats
treated with Vehicle (D) or DRSP-Low (E) showed impaired delayed memory retention on Trial 3 following a 6-h delay compared to the previous day’s baseline
performance. Rats treated with (F) DRSP-Medium and (G) DRSP-High treatment did not exhibit a statistically significant delay-related impairment. ∗p < 0.05 and
∗∗p < 0.01. Vehicle n = 10, DRSP-Low n = 10, DRSP-Medium n = 10, and DRSP-High n = 10.

Morris Water Maze
Across all days and trials, there was a main effect of Treatment
for the Vehicle vs DRSP-Medium comparison [F(1,18) = 7.37,
p < 0.05, ηG

2 = 0.02], and for the Vehicle vs DRSP-High
comparison [F(1,18) = 7.21, p < 0.05, ηG

2 = 0.03] where rats
treated with the medium or high dose of drospirenone swam
less distance to the platform compared to Vehicle-treated rats
(Figures 2A–D). Each group was analyzed separately on the
probe trial. There was a Quadrant main effect for each group
(Vehicle: [F(9,1) = 60.17, p < 0.0001, ηG

2 = 0.23]; DRSP-Low:
[F(9,1) = 174.65, p < 0.0001, ηG

2 = 0.27]; DRSP-Medium:
[F(9,1) = 78.85, p < 0.0001, ηG

2 = 0.18]; and DRSP-High:
[F(9,1) = 56.32, p < 0.0001, ηG

2 = 0.15]). This indicated
that all rats, regardless of treatment, swam a greater percent
of total distance in the target, compared to the opposite,
quadrant (Figure 2E).

Open Field Task
DRSP administration at any dose had no impact on overall
locomotor activity or measures of anxiety-like behavior in Ovx
rats as measured in the OFT.

Peripheral Markers of Hormone Stimulation
Vaginal Smears
All groups displayed diestrus-like or blank cytology, indicating
that Ovx was successful and that daily drospirenone
treatment at all doses evaluated did not stimulate the vaginal
epithelium following Ovx.

Body Weight and Uterine Weights
There were no main effects of Treatment on body or uterine
weights at euthanasia for any two-group comparison, indicating
that drospirenone administration at any assessed dose did not
influence body or uterine weight after Ovx.

Western Blot Protein Analysis
Representative blots for each protein within all assessed brain
regions are pictured in Figure 3A. There were no effects of
Treatment for GAD65 expression, GAD67 expression, or IGF1-
R expression in the dorsal hippocampus, entorhinal cortex, or
perirhinal cortex for any two-group comparison (Figures 3B–D),
indicating the drospirenone treatment after Ovx did not impact
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FIGURE 2 | Experiment 1 Morris water maze. Across all days of testing (A), rats treated with the DRSP-Medium dose (C) and the DRSP-High dose (D) swam less
distance to reach the platform compared to rats without hormone treatment, while the DRSP-Low group (B) performed similarly to the Vehicle group. (E) On the
probe trial, all groups localized to the previously platformed target quadrant. ∗p < 0.05 and ∗∗∗∗p < 0.0001. Vehicle n = 10, DRSP-Low n = 10, DRSP-Medium
n = 10, and DRSP-High n = 10.

GAD or IGF1-R protein expression in brain regions important
for spatial learning and memory.

Correlations
After correcting for multiple comparisons using the FDR method,
there were no significant correlations between western blot
results and WRAM performance in Experiment 1.

Experiment 2
Water Radial-Arm Maze
Early Acquisition Phase
There was a Trial × Treatment interaction for WMI errors
for the Vehicle vs EE-Low group [F(3,54) = 3.03, p < 0.05,
ηG

2 = 0.01]. Rats treated with DRSP + EE-Low made fewer
RM errors during early acquisition compared to Vehicle-treated

rats [F(1,18) = 5.17, p < 0.05, ηG
2 = 0.01]. DRSP-treated rats

made fewer WMI errors than Vehicle-treated counterparts on
the moderate working memory load trial alone [F(1,18) = 7.03,
p < 0.05, ηG

2 = 0.08], replicating findings from Experiment 1
(Figure 4A). Furthermore, rats treated with DRSP alone made
fewer WMI errors on the moderate working memory load trial
compared to DRSP + EE-Low rats [F(1,18) = 7.79, p < 0.05,
ηG

2 = 0.07] and DRSP+ EE-High rats [F(1,18) = 10.23, p < 0.01,
ηG

2 = 0.09], indicating that the addition of EE at either dose
impaired working memory compared to drospirenone alone
during the Early Acquisition Phase (Figure 4A).

Late Acquisition Phase
Across all days and trials in the Late Acquisition Phase, the EE-
Low vs DRSP + EE-Low comparison revealed a main effect
of Treatment [F(1,18) = 5.09, p < 0.05, ηG

2 = 0.04] as well
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FIGURE 3 | Experiment 1 Western blot protein analysis. (A) Representative images of IGF1-R, GAD65, and GAD67 western blot analysis within the dorsal
hippocampus, entorhinal cortex, and perirhinal cortex. There were no Treatment differences in IGF1-R expression (B), GAD67 expression (C), or GAD65 expression
(D) for any brain region evaluated. Vehicle n = 10, DRSP-Low n = 10, DRSP-Medium n = 10, and DRSP-High n = 10.

as a Trial × Treatment interaction [F(2,36) = 3.79, p < 0.05,
ηG

2 = 0.03] for WMC errors. A Trial× Treatment interaction for
WMI errors was present for the Vehicle vs EE-High comparison
[F(3,54) = 4.54, p < 0.01, ηG

2 = 0.05] and for the EE-High
vs DRSP + EE-High comparison [F(3,54) = 4.28, p < 0.01,
ηG

2 = 0.07]. The DRSP + EE-High group made fewer WMI
errors on the moderate working memory load trial compared
to EE-High alone [F(1,18) = 5.65, p < 0.05, ηG

2 = 0.09],
suggesting that after initial learning takes place, the addition of
drospirenone to a high dose of EE may prevent working memory
impairments compared to a high dose of EE alone when working
memory is moderately taxed (Figure 4B). On the maximum
working memory load trial, the DRSP + EE-Low-treated group
made more WMC errors compared to the EE-Low alone group
[F(1,18) = 5.17, p < 0.05, ηG

2 = 0.07; Figure 4C].

Asymptotic Phase
Across all days and trials on the Asymptotic Phase, there was
a Trial × Treatment interaction for RM errors for the EE-Low

vs EE-High comparison [F(3,54) = 3.17, p < 0.05, ηG
2 = 0.05].

When the moderate and maximum working memory load trials
were evaluated separately, no statistically significant effects were
revealed for working memory during the Asymptotic Phase for
any planned comparison.

Delayed Memory Retention
Working memory correct errors on Trial 3 from the last
day of regular WRAM testing (day 12) were compared
to Trial 3 after the 6-h delay (first post-delay trial) for
each treatment group. Post-delay errors on Trial 3 were
increased for the EE-Low group [F(9,1) = 19.29, p < 0.01,
ηG

2 = 0.44; Figure 4E], the EE-High group [F(9,1) = 16.20,
p < 0.01, ηG

2 = 0.36; Figure 4F], and the DRSP + EE-
Low group [F(9,1) = 12.52, p < 0.01, ηG

2 = 0.50; Figure 4H]
compared to the previous day performance of each respective
group. Rats treated with Vehicle, DRSP, or DRSP + EE-
High did not exhibit a significant delay-induced impairment
(Figures 4D,G,I).
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FIGURE 4 | Experiment 2 Water radial-arm maze. (A) During early acquisition, rats treated with drospirenone only showed enhanced WMI performance on the
moderate working memory load trial compared to rats without hormone treatment, or rats given a combination of drospirenone plus a low or high dose of EE.
(B) During the Late Acquisition Phase, rats treated with a combination of drospirenone and high EE had enhanced WMI performance on the moderate working
memory load trial compared to rats treated with a high dose of EE only. (C) Rats treated with a combination of drospirenone and low EE showed impaired
performance on the maximum working memory load trial compared to a low dose of EE alone during Late Acquisition. (D) Rats without hormone treatment did not
exhibit a delay-induced memory impairment, (E,F,H) while rats treated with EE-Low, EE-High, and DRSP + EE-Low were significantly impaired following a 6-h delay.
(G,I) The DRSP group and the DRSP + EE-High group were not significantly impaired following a 6-h delay. ∗p < 0.05 and ∗∗p < 0.01. Vehicle n = 10, DRSP n = 10,
EE-Low n = 10, EE-High n = 10, DRSP + EE-Low n = 10, and DRSP + EE-High n = 10.

Morris Water Maze
There were no Treatment effects for any two-group comparisons,
nor any Day × Treatment interactions (Figure 5A). There was a
main effect of Quadrant for each group (Vehicle: [F(9,1) = 63.43,
p < 0.0001, ηG

2 = 0.13]; DRSP: [F(9,1) = 40.74, p < 0.0001,
ηG

2 = 0.21]; EE-Low: [F(9,1) = 191.53, p < 0.0001, ηG
2 = 0.50];

EE-High: [F(9,1) = 76.74, p < 0.0001, ηG
2 = 0.32]; DRSP + EE-

Low: [F(9,1) = 92.29, p < 0.0001, ηG
2 = 0.17]; and DRSP + EE-

High: [F(9,1) = 63.36, p < 0.0001, ηG
2 = 0.14]), with each

treatment group swimming a greater percent of total distance
in the previously platformed quadrant compared to the opposite
quadrant (Figure 5B).

Open Field Task
Total Distance Moved (cm) in the arena was a marker of
locomotor activity (Figure 6A); a main effect of Treatment was
observed for the EE-Low vs EE-High comparison [F(1,18) = 10.77,
p < 0.01, η2 = 0.60], with EE-High rats having a greater distance
covered in the 10 min trial. Additionally, DRSP + EE-High rats
covered a greater distance compared to the DRSP only group
[F(1,18) = 4.96, p < 0.05, η2 = 0.28] and compared to the

DRSP + EE-Low group [F(1,18) = 8.41, p < 0.01, η2 = 0.47]. EE-
High rats covered more distance in the center of the arena, an
indicator of anxiolytic behavior, compared to Ovx rats without
hormone treatment [F(1,18) = 5.92, p < 0.05, η2 = 0.33] and
Ovx rats treated with a lower dose of EE [F(1,18) = 9.14,
p < 0.01, η2 = 0.51] (Figure 6B). The DRSP + EE-High
group moved more than the DRSP + EE-Low group in the
center of the arena [F(1,18) = 11.28, p < 0.01, η2 = 0.63].
Small Center Distance (cm) was the distance traveled in the
immediate center of the arena, and is an additional marker of
anxiolytic behavior (Figure 6C). EE-High treated rats traveled
more distance in the Small Center compared to EE-Low rats
[F(1,18) = 4.71, p < 0.05, η2 = 0.26]. DRSP + EE-High-treated
rats traveled more distance in the Small Center compared to
DRSP + EE-Low rats [F(1,18) = 4.56, p < 0.05, η2 = 0.25].
Corner Distance analyses, a measure of anxiety-like behavior
(Figure 6D), revealed the Vehicle group traveled more distance
in the corners compared to the EE-Low group [F(1,18) = 5.41,
p < 0.05, η2 = 0.30], as well as the DRSP + EE-Low group
[F(1,18) = 6.99, p < 0.05, η2 = 0.39]. The DRSP + EE-
High group moved more distance in the Corners compared
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FIGURE 5 | Experiment 2 Morris water maze. (A) There were no Treatment differences across MM Days 1–5. (B) All groups localized to the target quadrant during
the probe trial. ∗∗∗∗p < 0.0001. Vehicle n = 10, DRSP n = 10, EE-Low n = 10, EE-High n = 10, DRSP + EE-Low n = 10, and DRSP + EE-High n = 10.

to the DRSP + EE-Low group [F(1,18) = 8.04, p < 0.05,
η2 = 0.45].

For Time analyses in the OFT (Figure 6E), the EE-High
group spent more time in the Center compared to the Vehicle
group [F(1,18) = 7.02, p < 0.05, η2 = 0.39], the EE-Low group
[F(1,18) = 8.40, p < 0.01, η2 = 0.47], and the DRSP + EE-
High group [F(1,18) = 4.69, p < 0.05, η2 = 0.26], indicating
that EE-High treatment decreased anxiety-like behavior. Small
Center time did not differ for any comparison (Figure 6F). For
Corner Time (Figure 6G), Ovx rats without hormone treatment
spent more time in the corners compared to the EE-High group
[F(1,18) = 9.05, p < 0.01, η2 = 0.50] and compared to the
DRSP + EE-Low group [F(1,18) = 10.42, p < 0.01, η2 = 0.58].
EE-Low rats spent more time in the corners than rats receiving
the combination of DRSP + EE-Low treatment [F(1,18) = 5.21,
p < 0.05, η2 = 0.29]. Overall, Vehicle treatment was associated
with increased anxiety-like behaviors, and EE-High treatment
was associated with decreased anxiety-like behaviors.

Peripheral Markers of Hormone Stimulation
Vaginal Smears
The Vehicle group and the DRSP group exhibited blank or
diestrus-like smears for all three days evaluated, indicating
successful Ovx and a lack of stimulation from daily drospirenone
treatment alone, replicating results from Experiment 1.
Rats treated with EE-Low, EE-High, DRSP + EE-Low,
and DRSP + EE-High exhibited cornified cells across

all days, indicating EE-induced stimulation of the vaginal
epithelium that was not qualitatively altered by concomitant
drospirenone administration.

Body Weights and Uterine Weights
Two-group comparisons were completed for body weight at the
end of the experiment (Figure 7A). The Vehicle group weighed
more than the EE-Low group [F(1,18) = 36.26, p < 0.0001,
η2 = 2.01], EE-High group [F(1,18) = 26.24, p< 0.0001, η2 = 1.46],
DRSP + EE-Low group [F(1,18) = 40.02, p < 0.0001, η2 = 2.22],
and DRSP + EE-High group [F(1,18) = 36.61, p < 0.0001,
η2 = 2.03]. The DRSP group weighed more than the DRSP+ EE-
Low group [F(1,18) = 53.94, p < 0.0001, η2 = 3.00] and the
DRSP + EE-High group [F(1,18) = 51.22, p < 0.0001, η2 = 2.85].
Collectively, EE-treated groups, with and without concomitant
drospirenone administration, did not differ from one another,
suggesting that EE administration prevents weight gain in Ovx
rats, and drospirenone treatment does not further alter body
weight when combined with EE, at least with the current
experimental parameters.

Wet uterine weight (g) was lower in the Vehicle group
compared to the EE-Low group [F(1,18) = 246.14, p < 0.0001,
η2 = 13.56], EE-High group [F(1,18) = 153.73, p < 0.0001,
η2 = 8.62], DRSP+ EE-Low group [F(1,18) = 351.73, p < 0.0001,
η2 = 19.4], and DRSP + EE-High group [F(1,18) = 114.6,
p < 0.0001, η2 = 6.45] (Figure 7B). Uterine weights in the
Vehicle group and DRSP group did not differ from one another,
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FIGURE 6 | Experiment 2 Open field task performance. Performance varied across: (A) Total Distance Moved, (B) Center Distance, (C) Small Center Distance,
(D) Corner Distance, (E) Center Time, (F) Small Center Time, and (G) Corner Time, in the OFT. In general, the EE-High group exhibited decreased anxiety-like
behavior in the Open Field. ∗p < 0.05 and ∗∗p < 0.01. Vehicle n = 10, DRSP n = 10, EE-Low n = 10, EE-High n = 10, DRSP + EE-Low n = 10, and DRSP + EE-High
n = 10.

replicating findings from Experiment 1. The DRSP group
also had significantly lower uterine weights compared to the
DRSP+ EE-Low group [F(1,18) = 386.84, p < 0.0001, η2 = 22.25]
and DRSP + EE-High group [F(1,18) = 118.16, p < 0.0001,
η2 = 6.53]. Uteri from the EE-High group weighed more than
the EE-Low group [F(1,18) = 7.60, p < 0.01, η2 = 0.43]. Overall,
the data indicate that unopposed EE-High treatment significantly
increases uterine weights, while drospirenone treatment at the
administered dose does not have a significant influence on uterine
weights when given alone or combined with EE.

Western Blot Protein Analysis
Representative blots for each protein within all brain regions
analyzed are pictured in Figure 8A. There were no differences
in IGF1-R expression, GAD65 expression, or GAD67 expression
for any comparison in the right dorsal hippocampus or
right entorhinal cortex (Figures 8B–D). EE-Low treated-rats
had increased GAD67 expression [F(1,18) = 10.62, p < 0.01,

η2 = 0.59; Figure 8C] and GAD65 expression [F(1,18) = 5.96,
p < 0.05, η2 = 0.33; Figure 8D] in the right perirhinal cortex
compared to Vehicle-treated rats. DRSP + EE-High treated
rats [F(1,18) = 5.26, p < 0.05, η2 = 0.29] also exhibited
increased GAD67 expression in the right perirhinal cortex
compared to Vehicle-treated rats (Figure 8C). There were
no differences in IGF-1R expression in the right perirhinal
cortex (Figure 8B).

Correlations
After correction for multiple comparisons using the FDR
method, results revealed a negative correlation for GAD65
expression in the right entorhinal cortex and WMC errors
committed on Trial 3 during the Asymptotic Phase for the EE-
High group, such that greater GAD65 expression was associated
with fewer WMC errors on the moderate working memory load
trial (R2 = 0.78, p < 0.001, Benjamini-Hochberg p value = 0.243,
Figure 9A). Within the perirhinal cortex, the DRSP + EE-Low
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FIGURE 7 | Experiment 2 Body weight and uterine weight. All subjects were ovariectomized. (A) Rats treated with EE alone and in combination with drospirenone
weighed significantly less than rats without hormone treatment. Rats treated with drospirenone weighed more than those that received drospirenone plus EE at a low
or high dose. (B) Uterine weights from rats treated with EE weighed significantly more at euthanasia compared to rats without hormone treatment. Rats treated with
drospirenone had lower uterine weights compared to rats treated with a combination of drospirenone and EE, but did not differ from rats without hormone treatment.
∗∗∗∗p < 0.0001. Vehicle n = 10, DRSP n = 10, EE-Low n = 10, EE-High n = 10, DRSP + EE-Low n = 10, and DRSP + EE-High n = 10.

group showed a positive correlation between IGF1-R expression
and WMC errors on Trial 3 during the Early Acquisition Phase,
where greater IGF1-R expression was associated with more
WMC errors (R2 = 0.73, p < 0.001, Benjamini-Hochberg p
value = 0.243, Figure 9B). Furthermore, within the perirhinal
cortex, the DRSP + EE High group had a positive correlation
between GAD67 expression and WMC errors on Trial 4 during
the Early Acquisition Phase (R2 = 0.72, p < 0.001, Benjamini-
Hochberg p value = 0.243, Figure 9C), whereby higher perirhinal
cortex GAD67 expression was associated with more WMC errors
on the maximum working memory load trial. Interestingly, the
DRSP + EE-High group had a negative correlation between
GAD65 expression and WMI errors on Trial 3 during the Early
Acquisition Phase, with greater GAD65 expression levels in the
perirhinal cortex were associated with fewer WMI errors on the
moderate working memory load trial (R2 = 0.72, p < 0.001,
Benjamini-Hochberg p value = 0.243, Figure 9D).

DISCUSSION

Drospirenone’s unique pharmacological properties (Fuhrmann
et al., 1996; Schindler et al., 2003; Kuhl, 2005; Bitzer and Paoletti,
2009) and its continued popularity in the clinic (The Medical
Letter on Drugs Therapeutics, 2020) merited investigation into
its impact on the brain and behavior. Collectively, we showed
dose-dependent cognitive benefits of drospirenone in young
Ovx rats, which were modified by the addition of the synthetic
estrogen EE. Brain assessments indicated that while drospirenone

alone did not impact GAD65, GAD67, or IGF1-R expression
within the parameters tested, EE modified GAD65 and GAD67
expression, providing a putative mechanism through which this
synthetic estrogen impacts cognition, in a similar fashion to
the interplay between endogenous E2 and GABAergic activity
(Moura and Petersen, 2010). Relationships between protein
expression and working memory performance were evident,
although they were dependent upon WRAM phase, brain region,
and hormone treatment.

Water Radial-Arm Maze: Spatial Working
Memory
In Experiment 1, the Medium dose of drospirenone, which
most closely models the typical ratio of drospirenone to EE
used in combined oral contraceptive formulations, had beneficial
effects on spatial working memory when memory load was taxed
compared to Ovx-Vehicle-treated rats. The Low and High doses
of drospirenone showed working memory benefits during the
Early Acquisition Phase, but only the Medium drospirenone
dose continued to elicit benefits for spatial working memory
when working memory was maximally taxed in the Asymptotic
Phase. A 6-h delay on the WRAM significantly impaired working
memory performance for Vehicle and DRSP-Low treated groups,
but not the DRSP-Medium and DRSP-High groups, on the post-
delay trial, suggesting the potential of a dose-dependent effect
for delayed memory retention. Drospirenone’s dose-dependent
effects may follow a U-shaped pattern, where too little or too high
of a dose negatively impacted performance, while the medium
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FIGURE 8 | Experiment 2 Western blot protein analysis. (A) Representative images of IGF1-R, GAD65, and GAD67 western blot analysis within the dorsal
hippocampus, entorhinal cortex, and perirhinal cortex. (B) There were no differences in IGF1-R expression between groups in any brain region evaluated. (C) Rats
treated with a low dose of EE or drospirenone plus a high dose of EE showed increased GAD67 expression in the perirhinal cortex compared to rats without
hormone treatment. No differences in GAD67 were detected between groups in the dorsal hippocampus or entorhinal cortex. (D) Rats treated with a low dose of EE
had increased GAD65 expression in the perirhinal cortex compared to rats without hormone treatment. No differences in GAD65 were detected between groups in
the dorsal hippocampus or entorhinal cortex. ∗p < 0.05 and ∗∗p < 0.01. Vehicle n = 10, DRSP n = 10, EE-Low n = 10, EE-High n = 10, DRSP + EE-Low n = 10,
and DRSP + EE-High n = 10.

dose provided an optimal range to exert meaningful positive
effects on memory performance. Prior research in women
has demonstrated similar GABA-mediated U-shaped effects of
allopregnanolone on mood (Andréen et al., 2009; Bäckström
et al., 2015); animal models have also shown U-shape effects
of reproductive hormones on cognition, including rapid effects
mediated by membrane-bound receptors (Acosta et al., 2009;
Foster, 2012).

In Experiment 2, drospirenone was administered alone
and in combination with two doses of EE that reflected
commonly prescribed doses in combined oral contraceptives.
We replicated the finding from Experiment 1 that drospirenone
alone enhanced spatial working memory when memory load
was taxed compared to Ovx rats without hormone treatment
during the Early Acquisition Phase. Drospirenone-treated rats
also had enhanced performance compared to both combinations
of DRSP + EE in the Early Acquisition Phase, suggesting that
concomitant EE administration attenuated the beneficial effects
of drospirenone alone. These results support and extend prior

findings from our laboratory with levonorgestrel, wherein this
progestin was beneficial when administered alone, but resulted
in spatial working memory impairments when administered in
combination with E2 in middle-aged Ovx rats (Prakapenka et al.,
2018). During Late Acquisition, EE-High treatment impaired
working memory compared to DRSP + EE-High treatment,
indicating a potential mnemonic benefit of combined hormone
treatment in relation to EE-only treatment, at least at a high
dose. However, Low-EE treated rats made fewer working memory
errors than combined DRSP + Low-EE-treated rats during Late
Acquisition, suggesting that working memory outcomes could be
dependent on both dose and combination of hormones in this
young adult Ovx model.

During the delayed memory retention evaluation, EE-Low,
EE-High, and DRSP + EE-Low groups were impaired, but the
Ovx-Vehicle group did not show a significant delay-induced
impairment. Similar to the first experiment, both the DRSP
group and the DRSP + EE-High group did not exhibit poorer
performance following the delay. These findings point to a
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potential protective effect of drospirenone on delayed memory
retention alone and in combination with EE-High treatment.

Morris Water Maze: Spatial Reference
Memory
In Experiment 1, the DRSP-Medium and DRSP-High doses
showed benefits for RM performance compared to Ovx Vehicle-
treated rats across all days of MM. This effect of the Medium
drospirenone dose was not found in Experiment 2. In fact, there
were no differences in performance for any comparison on the
MM task in Experiment 2; thus, drospirenone may have a more
consistent beneficial effect in the working memory domain. In
both experiments, all groups spatially localized to the platform
location by the end of testing.

Open Field Task: Locomotor and
Anxiety-Like Behavior
In Experiment 1, drospirenone administration alone at any
dose did not impact locomotor or anxiety-like behavior. In
Experiment 2, rats treated with a high dose of EE alone and in
combination with drospirenone exhibited increased locomotor
activity. Rats treated with a high dose of EE also had increased
center distance and time, indicative of decreased anxiety-like
behavior. These group differences may have been due, in part, to
an overall change in locomotor activity induced by the high EE
dose; as such, these findings should be interpreted with caution
in the context of being solely related to anxiety-like alleviation by
the high dose of EE alone and in combination with drospirenone,
specifically. E2 levels are known to impact locomotor and
anxiety-like behavior, and thus this finding is concordant with
prior research in surgical and transitional menopause models
(Blizard et al., 1975; Lund et al., 2005; Hiroi et al., 2006; Hiroi and
Neumaier, 2006; McLaughlin et al., 2008; Koebele et al., 2021a).
The investigation of effects of EE on anxiety assessments are
currently limited, although dose-dependent beneficial effects of
EE have been reported in ovary-intact rats (Simone et al., 2015).
While drospirenone has beneficial impacts on PMDD symptoms
and mood in the clinical setting (Paoletti et al., 2004; Foidart,
2005; Pearlstein et al., 2005; Yonkers et al., 2005; Fenton et al.,
2007; Nappi et al., 2009; Archer et al., 2015; Hofmeister and
Bodden, 2016), it is possible that the detrimental effect of Ovx on
anxiety-like behavior (Blizard et al., 1975; Hiroi and Neumaier,
2006; Diz-Chaves et al., 2012; Hiroi et al., 2016) overrode any
potential benefit of drospirenone alone in this assessment. Future
studies should evaluate ovary-intact animals as well as implement
additional tasks that measure more nuanced aspects of anxiety-
like behavior to further investigate the role of drospirenone on
specific symptoms of anxiety, mood, depression, and affect in a
preclinical model.

Peripheral Measures of Hormone
Treatment
Drospirenone alone did not alter body weight, uterine weight, or
induce vaginal cytology changes compared to vehicle treatment
in Ovx rats in Experiment 1. In Experiment 2, all rats treated
with EE, alone or in combination with drospirenone, weighed

less than Vehicle-treated rats. In addition, rats treated with
drospirenone weighed more than rats treated with a combination
of drospirenone and EE at both doses. This was somewhat
surprising, given the anti-mineralocorticoid receptor properties
of drospirenone as it pertains to water retention and metabolic
effects (Muhn et al., 1995; Fuhrmann et al., 1996; Sitruk-Ware,
2004, 2006; Foidart, 2005). However, it is important to note that
all rats were surgically menopausal and did not have ovaries;
therefore, it is possible that the detrimental metabolic effects
of Ovx impacted body weight over and above any potential
effect that drospirenone could have had on body weight. To this
end, an evaluation of drospirenone administration on weight
maintenance or gain in ovary-intact rats would be informative
in the future. All rats treated with EE, alone and in combination
with drospirenone, exhibited vaginal cytology indicative of
vaginal epithelium stimulation. Furthermore, uterine weight was
increased for all EE-treated rats at the end of the experiment,
supporting the idea that EE stimulates uterine tissue growth, a
finding we have previously reported (Mennenga et al., 2015a).
The dose of drospirenone given in combination with EE
treatments did not attenuate uterine weight at the end of the
experiment, suggesting the dose given was insufficient to counter
EE-induced uterine stimulation, an effect previously observed
in intact rats, but not widely studied (Adeyanju and Olatunji,
2019). Different ratios of drospirenone to EE will be important
to investigate in future studies.

Brain Assessment and Correlations With
Behavior
Drospirenone alone did not alter proteins of interest associated
with spatial learning and memory, including GAD65, GAD67,
and IGF1-R in the dorsal hippocampus, entorhinal cortex, or
perirhinal cortex. The observed beneficial cognitive impact of
drospirenone may be regulated by different neural systems, or
there may be region-dependent effects of drospirenone in brain
areas that we did not assess herein. Alternatively, the chronic
nature of Ovx and daily hormone administration could have led
to reorganizational processes in the systems of interest by the time
brains were evaluated. Another possibility is that drospirenone-
induced alterations are not evident at the level of protein
expression for the selected markers, at least at the time point and
hormone modulation experimental parameters assessed.

In Experiment 2, the EE-Low group had increased GAD65 and
GAD67 protein expression in the perirhinal cortex compared to
Ovx rats without hormone treatment. Although the perirhinal
cortex is traditionally associated with visual recognition memory,
Schulz-Klaus and colleagues reported a reduction in anxiety-
like behaviors by temporarily inactivating the perirhinal cortex
through intracranial infusions of the GABAA receptor agonist
muscimol (Schulz-Klaus et al., 2005). Furthermore, infusion of
E2 into the perirhinal and entorhinal cortices, as well as systemic
E2 administration, impaired performance on a delayed non-
match-to-sample object recognition test, but enhanced novelty
preference (Gervais et al., 2013, 2016), suggesting a broader
role for the perirhinal and entorhinal cortices in complex
cognitive tasks. Interestingly, the EE-Low group had enhanced
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FIGURE 9 | Experiment 2 Correlations between proteins of interest and WRAM performance. (A) Within the EE-High group, greater GAD65 expression in the
entorhinal cortex was associated with fewer WMC errors when working memory was moderately taxed during the Early Acquisition Phase of WRAM. (B) Within the
DRSP + EE-Low group, greater IGF1-R expression in the perirhinal cortex was associated with more WMC errors when working memory was moderately taxed
during the Early Acquisition Phase of WRAM. (C) Within the DRSP + EE-High group, greater GAD67 expression in the perirhinal cortex was associated with
increased WMC errors on the maximum working memory load trial during Early Acquisition. (D) Within the DRSP + EE-High group, greater GAD65 expression in the
perirhinal cortex was associated with decreased WMI errors on the moderate working memory load trial during Early Acquisition. Vehicle n = 10, DRSP n = 10,
EE-Low n = 10, EE-High n = 10, DRSP + EE-Low n = 10, and DRSP + EE-High n = 10.

working memory compared to the DRSP + EE-Low group, yet
exhibited greater anxiety-like behaviors compared to the EE-
High group in the OFT. Thus, the outcomes associated with
changes in perirhinal cortex GAD expression following synthetic
EE administration may be dose- and task- dependent, and should
be further explored.

Within the perirhinal cortex, greater GAD67 and IGF1-R
expression was correlated with increased WMC errors during the
Early Acquisition Phase of the WRAM in DRSP + EE-High and
DRSP + EE-Low groups, respectively. Although endogenous E2
has been associated with increased IGF1-R expression and long-
term cognitive benefits (Witty et al., 2013), poorer performance
associated with higher levels of IGF1-R suggests that either the
synthetic E2 analog EE plays a unique role in IGF1-R expression,
or that the addition of the synthetic progestin drospirenone alters

the relationship between IGF1-R and enhanced cognition. Within
the DRSP + EE-High group, greater GAD65 expression was
associated with fewer WMI errors, indicating that the perirhinal
cortex has a more complex role in spatial working memory than
previously noted. In the entorhinal cortex, which is a gateway
for information transfer between the hippocampus and other
cortical regions in the context of learning (Kitamura et al., 2015),
greater GAD65 expression was associated with fewer errors in the
EE-High group. Just as endogenous E2 is a known regulator of
GABAergic activity in the hippocampal complex (Wójtowicz and
Mozrzymas, 2010), synthetic EE may also modulate aspects of the
GABAergic system in the context of learning and memory in a
similar fashion.

Preclinical research on synthetic ovarian hormones in the
context of cognition and neurobiological correlates is generally

Frontiers in Neuroscience | www.frontiersin.org 16 May 2022 | Volume 16 | Article 885321

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-885321 May 19, 2022 Time: 14:27 # 17

Koebele et al. Drospirenone, Ethinyl Estradiol, and Cognition

limited; yet, findings from work on endogenous ovarian
hormones have helped our understanding. For example, as EE
impacted memory and GAD expression herein, E2 has also
been shown to increase GAD mRNA levels in the hippocampus,
regulate GABAergic activity, initiate IGF1-R signaling (Weiland,
1992; Murphy et al., 1998; Nakamura et al., 2004; Garcia-
Segura et al., 2007), increase hippocampal IGF1-R expression
(Witty et al., 2013), improve working memory, and decrease
anxiety-like behavior following Ovx (Bimonte and Denenberg,
1999; Hiroi et al., 2006, 2016; Hiroi and Neumaier, 2006).
Concomitant natural progesterone treatment has been shown to
reverse the effect of E2 on hippocampal GAD mRNA expression
(Weiland, 1992) and on neurotrophin expression (Bimonte-
Nelson et al., 2004a), as well as attenuate E2’s cognitive benefits
in surgical and transitional menopause models (Bimonte-Nelson
et al., 2004b, 2006; Koebele et al., 2021a). Yet, progesterone
has acute beneficial neuroprotective effects following ischemic
injury (Singh and Su, 2013), an outcome which has recently been
extended to synthetic progestins including drospirenone acting
through a GABA-mediated mechanism (El Amki et al., 2019).
The timing of hormone treatment after surgical menopause may
also be key to interpreting findings related to neurobiological
correlates. For example, Nakamura and colleagues demonstrated
that GAD65 immunoreactive cells in the hippocampus decreased
10 days after Ovx compared to three days after Ovx, and
E2 increased GAD65 immunoreactive cells 10 days, but not
three days, after Ovx (Nakamura et al., 2004). Treatment
in the current experiment began 48 h after surgery; thus,
GAD-mediated effects may not be evident in all groups as a
result of immediate hormone treatment. In the current report,
the synthetic estrogen EE modulated memory performance,
anxiety-like behaviors, and GAD expression in unique ways
compared to reports of endogenous analogs. Thus, while
EE and drospirenone are molecularly similar to natural E2
(Kuhl, 2005; Sitruk-Ware and Nath, 2011) and progesterone
(Muhn et al., 1995; Fuhrmann et al., 1996; Schindler et al.,
2003; Kuhl, 2005), respectively, careful consideration must be
given to the dose and treatment regimen if the goal is to
mimic or improve the effects of endogenous hormones. In the
future, it will be important to further investigate additional
parameters to parse the distinct effects of synthetic vs natural
hormones on outcomes of interest. It is important to note that
all major neurotransmitter systems are impacted by ovarian
hormone loss and treatment (Barth et al., 2015); thus, other
proteins and cellular signaling cascades, as well as a broad
range of brain regions involved in spatial working memory
and attention (e.g., frontal cortex), should be investigated
to establish a mechanism for the cognitive effects observed
with drospirenone.

CONCLUSION

A growing body of research supports the tenet that oral
contraceptives impact cognition and alter brain function in
task- and composition- dependent manners (e.g., Gogos,
2013; Egan and Gleason, 2012; Beltz et al., 2015, 2022;

Porcu et al., 2019; Taylor et al., 2020; Ycaza Herrera et al.,
2020; Gravelsins et al., 2021; Lewis et al., 2022; Menting-Henry
et al., 2022). Overall, the current series of experiments found
that the spironolactone-derived progestin drospirenone has
beneficial effects for spatial working memory performance in
a young adult Ovx rat model, and that the synthetic estrogen
EE has variable effects on behavior that depend on dose and
combination with drospirenone. Future investigations using
an ovary-intact rat model with these combination therapies
would be beneficial to understand how clinically-prescribed
treatments impact cognitive function in a normally-cycling
reproductive system, as the majority of women prescribed
combined oral contraceptives have an intact uterus and ovaries.
The primary endpoint for behavior in this series of experiments
focused on cognitive domains involving working memory
and anxiety-like behaviors, as these domains are known to be
impacted by changes in endogenous sex steroid hormones.
Future studies would benefit from an expansion of cognitive
domains and related brain areas evaluated, particularly given
the changes observed with EE in the perirhinal cortex herein,
which has a crucial role in recognition memory that is modulated
by E2 (Petrulis and Eichenbaum, 2003; Gervais et al., 2013,
2016). Moreover, further investigations into the mechanistic
mediators of how different synthetic estrogens and progestins
affect brain functions, including probing a greater breadth of
protein markers, dendritic spine density, and cellular signaling,
all of which are known to be impacted by E2, will likely
yield new breakthroughs and pathways of insight for future
clinical treatments (Nelson et al., 2014; Gervais et al., 2015;
Smith et al., 2016; Batallán Burrowes et al., 2021). While
drospirenone has promise for beneficial cognitive effects, the
search continues for an estrogen-progestin combination therapy
that results in beneficial, or even null, cognitive outcomes in
addition to its contraceptive and non-contraceptive peripheral
benefits.
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