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Simultaneous mapping of multiple behavioral domains into brain networks remains

a major challenge. Here, we shed some light on this problem by employing a

combination of machine learning, structural and functional brain networks at different

spatial resolutions (also known as scales), together with performance scores across

multiple neurobehavioral domains, including sensation, motor skills, and cognition.

Provided by the Human Connectome Project, we make use of three cohorts: 640

participants for model training, 160 subjects for validation, and 200 subjects for model

performance testing thus enhancing prediction generalization. Our modeling consists of

two main stages, namely dimensionality reduction in brain network features at multiple

scales, followed by canonical correlation analysis, which determines an optimal linear

combination of connectivity features to predict multiple behavioral performance scores.

To assess the differences in the predictive power of each modality, we separately applied

three different strategies: structural unimodal, functional unimodal, and multimodal, that

is, structural in combination with functional features of the brain network. Our results

show that the multimodal association outperforms any of the unimodal analyses. Then,

to answer which human brain structures were most involved in predicting multiple

behavioral scores, we simulated different synthetic scenarios in which in each case

we completely deleted a brain structure or a complete resting state network, and

recalculated performance in its absence. In deletions, we found critical structures to affect

performance when predicting single behavioral domains, but this occurred in a lesser

manner for prediction of multi-domain behavior. Overall, our results confirm that although

there are synergistic contributions between brain structure and function that enhance

behavioral prediction, brain networks may also be mutually redundant in predicting

multidomain behavior, such that even after deletion of a structure, the connectivity of

the others can compensate for its lack in predicting behavior.

Keywords: brain network mapping, multi-scale networks, functional MRI, diffusion MRI, behavior, machine

learning, canonical correlation analysis
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1. INTRODUCTION

Simultaneous mapping of multiple behavioral domains onto

brain networks is a major challenge for modern neuroscience.

While it is true that the neuroscience community often assumes
that different behavioral domains are encoded in distinct brain
networks, the precise mapping between multidomain behavior
and brain networks is largely unknown. Here, we use brain
images and neurobehavioral scores from N = 1,000 healthy
participants and perform state-of-the-art machine learning
analyses combining structural and functional brain networks
at different spatial resolutions with comprehensive behavioral
assessments within the domains of sensation, motor skills, and
cognition. Previous studies addressed correlative relationships
between brain network connectivity and neurobehavioral
measures, such as motor function (Raichlen et al., 2016; Lo et al.,
2017; Boyne et al., 2018), cognitive tasks (Zimmermann et al.,
2018; Yu et al., 2020; Rasero et al., 2021), and sensory experiences
(Yeung et al., 2016; Spisak et al., 2020; Park et al., 2020). Some
relevant questions arise from these studies:Whichmodality is the
one that dominates the association across behavioral domains?
In other words, is the association performance higher when we
use features extracted exclusively from structural brain networks
or when we do it from functional ones? Is it rather greater when
combining the two structural and functional modalities? Does
this answer depend in any way on which particular behavioral
domain we are referring to?

Many previous studies have advanced in these directions.
Some authors have used resting prediction capabilities to
understand general cognition (Song et al., 2008; Moeller et al.,
2015; Hearne et al., 2016; Smith, 2016; Ferguson et al., 2017),
while others incorporated prediction power by adding features
of structural networks (Matejko et al., 2013; Klein et al., 2016;
Lin et al., 2020; Dhamala et al., 2021). In addition to the
modality from which the brain network is built, the spatial
scale at which network nodes interact is critical in systems
neuroscience (Churchland and Sejnowski, 1992). Although
synaptic connectivity networks account for interactions at the
cellular scale, and therefore, they are inaccessible networks from
magnetic resonance imaging, on a macroscale brain networks
represent interactions between different populations (Craddock
et al., 2013; Diez et al., 2015). These interactions appear to be
organized hierarchically, where nodes are progressively merged
together into modules following a nested hierarchy (Bassett et al.,
2008, 2011; Betzel et al., 2013, 2014; Petersen and Sporns, 2015;
Bassett and Sporns, 2017; Diez et al., 2017; Bonifazi et al., 2018;
Ashourvan et al., 2019; Suárez et al., 2020). For such a class of
hierarchical networks, one could define different levels deep in
the hierarchy and build a different brain network at any fixed
level. When we combine different network metrics at different
scales, we refer to multiscale computing.

In the present study and motivated by previous works (Smith
et al., 2015; Salvan et al., 2021; Taquet et al., 2021), we have
performed a machine learning analysis based on canonical
correlation analysis in combination with dimensionality
reduction and cross-validation techniques to overcome
overfitting, to perform brain network mapping of multiple

neurobehavioral domains. The characteristics of the network
are multimodal, extracted from a combination of functional and
structural networks, and multiscale, using the hierarchical atlas
of the brain (Diez et al., 2015), used in other previous studies
(Rasero et al., 2017; Bonifazi et al., 2018; Camino-Pontes et al.,
2018; beimGraben et al., 2019; He et al., 2020; Fernandez-Iriondo
et al., 2021; Gatica et al., 2021).

2. MATERIALS AND METHODS

2.1. Participants
In this work we have used open access data from the Human
Connectome Project (HCP). In particular, raw images and
neurobehavioral scores were taken from N = 1,000 healthy adult
subjects (ages between 22 and 37 years, mean = 28.68, SD =

3.69), of whom 536 were women and 464 men.
HCP ensures confidentiality through rigorous deletion of

personal data followed by alphanumeric coding of all data
modalities, so that the patient’s name or personal data will not
appear in any publication or communication from these results.

Participants were divided into three cohorts: 640 participants
for model training, 200 subjects for model performance testing,
and 160 subjects for validation.

2.2. Neuro-Behavioral Measurements
Behavioral scores resulted from the NIH Toolbox for Assessment
of Neurological and Behavioral Function1, a set of brief
psychometrically sound measures to assess motor, emotional,
sensory, and cognitive function valid in people aged 3–85. In
particular for this study, we made use of tests scores from
the domains of sensation, cognition, and motor skills. Table 1
summarizes the different domains, the name of the tests and the
score statistics for each test.

In total, there were 23 missing values in the neurobehavioral
scores. In the cognitive domain, 1 participant had no value in
Picture Sequence Memory and two participants in Dimensional
Shift Card Sorting. In the sensory domain, two subjects lacked
scores in Smell Identification, four participants in Pain Intensity,
five participants in Taste Intensity, and eight participants in
Words in Noise . Finally, in the motor domain, only one
participant had a missing value on the 2 min walk test. All
these missing values were imputed using a k-nearest neighbors
strategy, which is a distance-based multivariate imputation
strategy that has shown good convergence between observed and
imputed data (Llera et al., 2022).

2.3. Image Acquisition
For each HCP subject, MRI acquisition was performed using a
3T Siemens Connectome Skyra with a 100 mT/m and 32-channel
receive coils.

2.3.1. Anatomical Data
High-resolution T1-weighted images were acquired with a
3D magnetization prepared rapid acquisition gradient echo
(MPRAGE) and the following scanning parameters: repetition

1NIH Toolbox available at www.nihtoolbox.org.
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TABLE 1 | Brief description of neuro-behavioral measures from the NIH Toolbox.

Domain Subdomain Measurement Raw value (µ ± σ )

Cognition Attention

executive

functioning

Flanker task 111.92 ±10.04

Language Picture vocabulary 117.31 ±9.49

Processing speed Pattern completion

processing speed

115.35 ±15.36

Episodic memory Picture sequence

memory

112.44 ±13.21

Executive function Dimensional change

card sort

115.34 ±10.18

Working memory List sorting 111.58 ±11.15

Language Oral reading

recognition

117.27 ±10.45

Motor Dexterity 9-hole Pegboard 112.67 ±10.72

Locomotion 4 m walk test 1.31 ±0.19

Endurance 2 min walk test 110.61 ±11.87

Sensation Olfaction Odor identification test 110.66 ±9.02

Pain Pain intensity and

interference surveys

1.35 ±1.67

Taste Taste intensity test 94.88 ±14.36

Audition Words in noise 4.32 ±1.48

time (TR)= 2, 400 ms, echo time (TE)= 2.14 ms, voxel size
= 0.7 × 0.7 × 0.7 mm3, slice thickness = 5.0 mm, flip-angle =
8 deg, field of view (FOV) = 224× 224mm2 and acquisition-time
= 7 min and 40 s.

2.3.2. Resting State Functional Data
An EPI sequence was applied with a duration of 14 min 33 s and
the following parameters: 1,200 brain volumes, TR= 720 ms, TE
= 33.1 ms, FOV = 208 × 180 mm2, flip-angle = 52 deg, voxel
size = 2×2×2 mm3, matrix = 104 × 90, slice thickness = 2.0
mm, and 72 slices per volume.

2.3.3. Diffusion Data
An EPI diffusion sequence was applied with the following
parameters: TR = 5,520 ms, TE = 89.5 ms, voxel size = 1.25 ×

1.25 × 1.25 mm3, slice thickness = 1.25 mm, FOV = 210 × 180
mm2, 111 slices per volume, matrix = 168 × 144, flip-angle =

78 deg, 90 diffusion weighting directions (b 6= 0), and six b = 0
acquisitions, three shells of b= 1,000, 2,000 and 3,000 s/mm2 and
acquisition time= 9 min 50 s.

For more details on MRI acquisition parameters, please refer
to the documentation on the HCP official website2.

2.4. Image Preprocessing
2.4.1. Functional Images
Resting-state functional magnetic resonance imaging of N =

1,000 healthy HCP controls were used for this study. First, the
images were corrected for gradient distortions and normalized to

2Human Connectome Project official website: https://www.humanconnectome.

org/.

the standard MNI152 template of voxel size equal to 2 × 2 × 2
mm3 using the HCP pipelines fMRIVolume and fMRISurface.
After image normalization, we eliminated nuisances with a
procedure that combines a volume censoring strategy and
motion-related time course regression, along with physiological
signal regression. For this, the volumes were marked as censored
when the frame displacement (FD) was greater than 0.2 or
the root mean square derivative of the variance was >0.75%,
following previous recommendations (Power et al., 2013, 2014;
Parkes et al., 2018). In addition, the volume before the censored
one and the two after it were also marked as censored. Next,
the entire time series was divided into segments of five volumes
in length, to finally eliminate all the segments that contained at
least one contaminated volume, as well as the first segment. After
that, nuisances were removed while simultaneously applying a
bandpass filter between 0.01 and 0.08 Hz. Nuisance signals were
the first five principal components of the CSF and WM signals;
linear and quadratic trends; and the 24-parametermotion-related
time series. Finally, each filtered image was spatially smoothed
with a 6 mm FWHMGaussian kernel.

2.4.2. Diffusion Images
We first made use of bedpostx (Jbabdi et al., 2012) images
obtained after applying the HCP pipeline and used Camino
software (Cook et al., 2005) to perform deterministic
tractography with fiber assignment using the continuous
tracking algorithm (Mori et al., 1999), using a maximum
curvature of 60◦ and a fractional anisotropy threshold of 0.15.

2.5. Brain Partition for Multimodal and
Multi-Scale Networks
First, we identified the 50 participants with the lowest number of
motion-censored frames in the functional sequence (the number
of 50 was chosen simply to reduce computational cost and
maintain a sufficient number of participants to define population
matrices). Next, and similar to Diez et al. (2015), we performed
an unsupervised clustering voxel-level functional data to define a
large number of microregions, following Craddock et al. (2012),
which will define the highest spatial resolution scale used for
subsequent analyses. In contrast to Diez et al. (2015), where all
the voxels were used for clustering, here we applied eight distinct
clustering calculations, in each one we only considered the voxels
contained in the following macroregions: frontal lobe, parietal
lobe, occipital pole, temporal pole, insula, cingulate cortex,
cerebellum, and subcortical structures (pooling together the
thalamus, caudate, putamen, pallidum, amygdala, hippocampus,
and brainstem). In this way, although we used a functional
partition, the final regions had the anatomical restrictions defined
by these macroregions. After pooling all the microregions from
the eight different partitions, we had a whole-brain partition of
2,308 microregions with a mean size of 76 voxels (range 20–131).

2.6. Calculation of SC and FC Matrices for
Definition of Brain Connectivity Features
Both SC and FC were connectivity matrices of 2,308 nodes
equal to the number of microregions obtained in the previous
section. Each SC matrix element was obtained by counting the
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number of whitematter streamlines connecting a given node pair,
while FC elements were calculated by evaluating the pairwise
Pearson correlation coefficient between node time series. To
obtain connectivity features, and similar to Diez et al. (2015),
we performed a hierarchical agglomerative clustering applied
to the spatial concatenation of the FC and SC matrices. This
approach provided a hierarchical tree or dendrogram in which
nodes were progressively merged intomodules following a nested
“neighborhood” hierarchy. Cutting this tree at any arbitrary
level leads to a combination of the initial 2,308 microregions
into a finite number of modules (M) that can be specifically
tuned by varying the depth of the cut. Although many modules
appeared repeatedly along the tree, we only considered one
instance of the repeated modules for the computation of the
machine learning connectivity features, which we will call unique
modules from here on. The combination of different scales (here
obtained from matrices ranging from M = 20 to M = 1, 000
modules), provided different multiscale connectivity features.
Here, following Bonifazi et al. (2018), we computed for each
module at a given dendrogram level, four feature classes:

• Functional Internal Connectivity (FIC): Mean absolute value of
the functional weights of all links within the given module.

• Functional External Connectivity (FEC): Mean absolute value
of the functional weights of all the links that connect the
regions within that module with other regions of the brain.

• Structural Internal Connectivity (SIC): Average value of the
structural weights of all links within the given module.

• Structural External Connectivity (SEC): Average value of the
structural weights of all the links that connect the regions
within that module with other regions of the brain.

Modules with a single microregion were discarded for all
analyses. Furthermore, and because each of the 2,308
microregions is constructed with the same (on average) number
of voxels, and because we take the average interaction intra- and
inter-module, the connectivity features that we have used in our
machine learning analysis accounts for the variability that arises
from differences in size of both microregions and modules.

2.7. Neuro-Behavioral Scores and Brain
Connectivity Association Through
Canonical Correlation Analysis
Principal component analysis (PCA) is a widely used statistical
method to reduce the dimensionality of data. From the raw data
matrix X ∈ R

N×F where N is the number of subjects and F the
number of features, PCA aims to project the original data in a
new space N × D such that D ≪ F and where the variance of
the projected data is almost equal to the variance of the original.
In this way, the new projected data has a lower dimension
than the original data. We first applied PCA to the connectivity
feature matrix. We then applied canonical correlation analysis
(CCA) to find an optimal linear combination of the previously
obtained principal components (PC ∈ R

N×D) that maximizes
the correlation with a linear combination of Q different behavior
scores (represented in the variable Y ∈ R

N×Q). Thus, given the
components PC and the behavior scores Y , the CCA finds for the

linear combinations U ≡ PC · A and V ≡ Y · B, and where
the coefficients A ∈ R

D×D and B ∈ R
Q×Q are obtained after

maximizing the canonical correlation coefficient, defined as:

R =

∑

(

−→
U1− U1

) (

−→
V1 − V1

)

√

∑

(

−→
U1 − U1

)2
∑

(

−→
V1 − V1

)2
.

Here,
−→
U1 and

−→
V1 represent the vector representation of the first

canonicalmode in CCA, andU1 andV1 represent respectively the

mean values of
−→
U1 and

−→
V1. The maximum value of R is denoted

by T.
The statistical significance of the canonical correlation

coefficient R was tested by constructing the null hypothesis
distribution of surrogates by performing 2,000 random
permutations on the Y-labels and calculating the significance
(p-value) of the actual R within the surrogate distribution.

2.8. Machine Learning Strategy With
Training, Validation, and Test Datasets
We randomly divided all participants into three groups to avoid
overfitting problems and achieve a better generalization of our
predictions: training set (64%), validation set (16%), and test
set (20%). We first started with the training set and applied
PCA to all the connectivity features and this provided a set
of principal components. PCs are a linear combination of the
original variables, so we applied this resulting combination to the
validation set. To decide the number of PCs ultimately used for
the model, also known as model order selection, we constructed
two different CCA performance curves as a function of the
number of PCs. The first was constructed from the PCs and
neurobehavioral scores in the training dataset; the second one
in the validation set, but in this case the canonical variables U
and V were derived from the mixed matrices A and B learned in
the training data set, respectively, Atrain and Btrain. The number
of PCs that maximized CCA performance on the validation
curve defined the model order for our analysis, which was then
used on the test data set. In particular, after dimensionality
reduction on the test dataset by the given number of components
(model order), a CCA was applied to search for the underlying
associations by maximizing the correlation coefficient between
U ≡ PCtest · Atrain and V ≡ Ytest · Btrain.

2.9. Brain Maps Representation of
Maximum Association Solutions
PCs from the original matrix of brain connectivity features
were used as independent variables for the CCA to find the
maximum association with behavioral scores. Therefore, the
resulting variables of CCA can be written as the dot product:

W = WPCA ·WCCA,

where WPCA ∈ R
F×D is the rotation matrix composed of

columns of eigenvectors PCA and WCCA ∈ R
D×1 is the vector

of coefficients corresponding to the first canonical variable (U1).
Since the vectorW has dimension F, each component represents
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the weight of each of the original features. After calculating the
absolute values of W, brain maps were constructed by coloring
the different connectivity features associated with each module.

2.10. Synthetic Complete Deletion of Brain
Macroregions
To quantify the impact that the connectivity of each macroregion
i had on the prediction of the behavior, we simulated synthetic
deletions of macroregions and recalculated new connectivity
matrices in their absence. For the first part of this study, the
brain macroregions were the same eight used to construct the
multiscale brain partition, namely frontal lobe, parietal lobe,
occipital pole, temporal pole, insula, cingulate cortex, cerebellum,
and the junction of various subcortical structures; for the
second part, macroregions were defined as the number of
microregions overlapping at least 50% with each of the seven
resting-state networks proposed by Yeo et al., including cortex
(Thomas Yeo et al., 2011), cerebellum (Buckner et al., 2011),
and striatum (Choi et al., 2012). Next, we computed an index
ρ as the performance ratio between each synthetic network
with macroregion i absent and the actual network (where all
macroregions were present), i.e.,

ρi ≡
R2i (i absent)

R2 (all present)
.

The index i represents a given deletedmacroregion. Two different
scenarios occurred:

• ρi < 1 :Constructive role of themacroregion i. The connectivity
matrix with deleted i performed worse compared to when it
was not deleted, therefore, the connectivity of the macroregion
i to the rest of the brain had a constructive role in predicting
the behavior.

• ρi ≈ 1 : Irrelevant role of macroregion i. The connectivity
matrix with deleted i had almost the same performance
compared to when it was not deleted, therefore the
connectivity of the i macroregion had an irrelevant role in
predicting the behavior.

3. RESULTS

A population of healthy young participants (N = 1, 000)
was studied and, in particular, their anatomical, diffusion and
functional images were used, as well as their neurobehavioral
scores (Figure 1). We first calculated the SC and FC matrices
for the brain partition of 2,308 microregions. Next, we computed
from the module-level connectivity matrices the features of FIC,
FEC, SIC, and SEC for each of the unique modules along the
hierarchical tree. In particular, using 50 different levels, from
M = 20 to M = 1, 000 with a step 1M = 20, this procedure
yielded a total number of 5,208 multiscale connectivity features
for each participant, 2,587 structural and 2,621 functional, which
were used for the following analyses.

Before starting machine learning analyzes to predict behavior,
we first applied the Z-score to all neurobehavioral scores and
connectivity features. Using the three training, validation and

test cohorts, and following the strategy depicted in Figure 1,
a preliminary analysis showed that for the strength behavioral
score the corresponding CCA coefficient was extremely high as
compared to the rest (Supplementary Figure 1), so we decided
to omit that score for further analyses.

Three different strategies were applied: structural unimodal,
considering only SIC and SEC features, functional unimodal
(based on FIC and FEC), and multimodal, combining all
feature classes. For all three strategies, we predicted multidomain
behavioral performance by combining sensation, motor skills,
and cognition scores. Regarding the association performance
(Figure 2), the maximum canonical correlation coefficient (T)
was higher in the multimodal analysis compared to the unimodal
one, that is, T = 0.49 (p < 0.001) vs. T = 0.40 (functional
unimodal, p < 0.001) or T = 0.43 (structural unimodal, p <

0.001). Furthermore, related to PCA dimensionality reduction,
we were able to reduce in all three strategies the initial multiscale
connectivity features of 5,208 to the order of one hundred
principal components (see #comp varying between 70 and 116
in Figure 2) keeping the explained variance relatively high (Ve
ranging in 69 and 71%).

Looking at which circuits were responsible for association
between brain connectivity and behavior, the purely structural
contributions, and thus not appearing in the functional form,
were the medial orbitofrontal, superior temporal, lateral
occipital, and transverse temporal. Similarly, there were
purely functional contributions for the entorhinal, amygdala,
hippocampus, bankssts and lateral-orbitofrontal, while the
areas that participated in both structural and functional
representations were the superior-parietal and the lingual.

To assess the functional characterization of these maps, we
overlaid them with known resting-state networks (Thomas Yeo
et al., 2011). Supplementary Table 1 shows that the unimodal
structural maps had a higher overlap with the somatomotor
network (with a total overlap of 4.56%), while the unimodal
functional maps were better characterized by the frontoparietal
network (6.88%). However, for the multimodal association
(Supplementary Table 2), the structural map had a higher
representation in the default mode network (4.96%), while the
functionalmapsmostly overlappedwith dorsal attention network
(10.23%). For comparison purposes, Supplementary Tables 1, 2
also provide the overlap between brain maps and resting-state
networks for the unidomain behavioral association along with
Supplementary Figure 2 showing the domain-by-domain results
with the CCA weights of each behavioral score and the associated
brain circuits as maps.

Our CCA analysis was used to maximize the association
between brain connectivity features and multiple behavioral
domains. Looking at the CCA behavioral weights corresponding
to the maximal association solution (right panel plots in
Figure 2), we observe higher weights for the motor domain, and
in particular for resistance and skill scores. Furthermore, it is
important to note that the three solutions provided a very similar
pattern in scores and domains. Therefore, although at the level of
brain maps there were differences between the different strategies
(structural unimodal, functional unimodal, and multimodal), the
distribution of behavioral weights remained almost invariant,
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FIGURE 1 | Brain mapping of neuro-behavioral scores using multimodal and multiscale networks through canonical correlation analysis. Subject level: FC and SC

brain networks were built respectively from two data modalities: resting functional imaging (rs-fMRI) and diffusion tensor imaging (DTI). An initial functional brain

partition of 2,308 microregions (ROIs) was built, which represents the lowest level (with highest spatial resolution) of our hierarchical partitioning. For the different M

levels in the hierarchical tree (here, we varied M from 20 to 1,000), we built for each module in the M level four classes of connectivity features: FIC, FEC, SIC and SEC.

This procedure provided a total number of 5,208 multi-scale connectivity features for each subject, 2,587 structural and 2,621 functional, which were used for the

following analyses. Group level: Three different cohorts have been used, Training, Validation and Testing. The training and validation datasets were used for selecting

the number of principal components (PCs) to reduce the original X dimensionality, containing all connectivity-features. Such a number, considered here as the model

order, will be finally used to predict the neuro-behavioral scores (Y) by means of CCA in the test dataset, which provides the final performance (measured by Rtest) in

the association between connectivity and behavior.

which shows that the connectivity characteristics of the
different circuits can associate with certain invariance towards
multivariate behavioral repertoires.

In order to answer the connectivity of which structures
were most important in predicting behavioral performance,
we simulated complete macroregion deletions, represented by
the index i, and recomputed new connectivity matrices in

their absence. The comparison between the synthetic complete
deletion of i and the real performance (where all the macro-
regions were present) allowed us to define the ratio ρi (the
lower it is, the greater the contribution of the connectivity of
the i macroregion). Indeed, this index provided very useful
information –interventionist– about the contribution that i had
in predicting behavior. Surprisingly, Figure 3 shows that by
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FIGURE 2 | Brain maps and CCA weights for unimodal and multimodal associations. Final maps built from the multidomain CCA solution with the highest correlation

coefficient (T) correlation between the X variables (the PCA components from each modality) and the Y variables (neuro-behavioral metrics from multiple domains).

From top to bottom, (A) SC unimodal, (B) FC unimodal, and (C,D) SC+FC multimodal, plotting separately the SC and FC contributions. (A–D) Number of PCs used in

the model (#PC), maximum correlation in the association achieved by the first canonical mode (T), p-value statistical significance (p), and the amount of variance

explained after PCA (Ve). For visualization, all maps were threshold to values such Z > 2. The right panels provide the CCA weights for each neuro-behavioral domain

at the maximum association between connectivity and behavior.

deleting the subcortical and parietalmacroregions, the prediction
performance of the cognitive domain was drastically reduced.
Similarly, for sensation performance prediction, deletion of the
cingulate and occipital regions provided the largest decrease.
In contrast, for the ρi ≈ 1 situations, we conclude that the

connectivity of those macroregions played an irrelevant role in
predicting behavior, since with and without the deletion of i
it provided equivalent performance. This indeed occurred for
motor performance (M), where none of the deletions affected
drastically its prediction.
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FIGURE 3 | Synthetic complete deletions of brain macroregions and their impact in predicting neuro-behavioral scores. (A–H) Eight different macroregions were

completely deleted (separately one by one) to quantify the impact that each macroregion connectivity has in predicting behavior. In particular, after a macroregion

deletion, we recalculated new connectivity matrices in its absence and re-calculated the association with behavior for this novel situation. All panels show the

macroregion deleted and the performance ratio ρ between the synthetic deletion as compared to the situation where all regions were present (spider plot). While

values of ρ close to 1 (red line in the spider plot) show regions such that their deletions do not greatly impact the behavior prediction, values smaller than 1 show the

regions with highest contribution in predicting behavior (for each spider plot, the minimum value is highlighted).

We also found that although there were critical structures that
played a crucial role in predicting cognition (C) and sensation
(S) domains, however, those structures were no longer relevant
when predicting multidomain C+M+S behavior. Therefore, for
this situation, regardless of which structure we deleted, the
connectivity of other regions compensated for their predicting
participation with similar performance.

Finally, to further advance and test other scenarios, we also
simulated the complete elimination of well-known resting-state
networks. As a result, Figure 4 shows that by deleting the salience,
somatomotor and visual networks, the prediction performance
of the cognitive domain was strongly reduced. In a like manner,
for sensation performance prediction, the deletion of the dorsal
attention, default mode network (DMN), limbic, and somatomotor
networks revealed the largest decrease. For the motor domain,

the salience was the only network contributing to reduction in
prediction performance, somehow, indicating that the motor
skills encoded in our scores are not specific to any of the other
networks. For the multidomain C+M+S situation, all networks
(except the DMN) had an effect on prediction performance and
major decreases occurred for visual, salience, and somatomotor
network removal.

4. DISCUSSION

Mapping behavior in brain networks across multiple discrete
domains remains a major challenge. Here, we have developed
a multi-scale, multi-modal, multi-domain strategy to assess
this problem. Multiscale because the connectivity features were
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FIGURE 4 | Synthetic complete deletions of functional resting state networks and their impact in predicting neuro-behavioral scores. (A–G) Seven different functional

networks were completely deleted (separately one by one) to quantify the impact that each specific network has in predicting behavior. In particular, after a network

deletion, we recalculated new connectivity matrices in its absence and re-calculated the association with behavior for this novel situation. All panels show the network

deleted and the performance ratio ρ between the synthetic deletion as compared to the situation where all regions were present (spider plot). While values of ρ close

to 1 (red line in the spider plot) show regions such that their deletions do not greatly impact the behavior prediction, values smaller than 1 show the networks that had

the highest contribution in predicting behavior (for each spider plot, the minimum value is highlighted).

built from networks of different sizes, and multimodal because
we built them from both functional and structural networks.
Rather, multidomain refers to the point at which behavioral
performance takes into account multiple scores that assess
cognitive, sensory, and motor skills. Our modeling approach
first applied dimensionality reduction on the ensemble of brain
connectivity features, followed by regression-like associations
using canonical correlation analysis.

Our results have shown that, in general, multimodal structure-
function connectivity features outperformed the prediction
achieved by any of the unimodal forms (either structural or
functional), suggesting synergistic contributions between them
to improve behavioral prediction. It is important to highlight
that the contribution between the twomodalities is systematically
balanced in all the scales, since there is no specific scale where one

modality predominates over the other, in a statistically significant
way (Supplementary Figure 3). This fact reinforces the use of
multimodal and multiscale computation to predict behavior,
because the proportion of weights coming from structural
networks with respect to functional ones is balanced, and all
scales are needed as there are no fixed dominant ones.

In the first part of the study, our analysis based on
synthetic deletions of anatomical macroregions have shown that
the connectivity of some specific brain structures played an
important role in predicting domains of cognition and sensation
separately, but this was not the case for the motor domain.
Thus, we found that connectivity to the parietal lobe made a key
contribution to predicting cognition, in agreement with previous
research highlighting parietal localization while performing
cognition tasks (Culham and Kanwisher, 2001). Indeed, the
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parietal lobe has been shown to mediate different connectivity
projections, reflecting its role as a central hub for perception,
action, and cognition (Gottlieb, 2007). Furthermore, also for
the prediction of cognition, our results showed the relevance
of subcortical-cortical connections in agreement with previous
work (Münte et al., 2008; Zonneveld et al., 2019). Of note, the
authors in Riveros et al. (2019) also reported the importance of
the fronto-subcortical pathway for cognitive abilities, which is
also in agreement with our results showing that after deletion
of the frontal lobe, the connectivity performance for predicting
cognition was also strongly reduced. Remarkably, we also found
that for predicting sensation behavior, removal of the cingulum
and occipital lobe had a large impact on performance. The role
of the anterior cingulate cortex within the salience network in
relation to pain processing is well-known (Seeley, 2019) and
also in age-related affective pain (Vogt, 2005; Lieberman and
Eisenberger, 2015; Terrasa et al., 2021). On the role of occipital
connectivity in predicting sensation performance, a recent study
showed the involvement of the occipital gyrus in tasks related
to those assessed in our cohort within the sensations domain
(Hwang et al., 2019), but also under conditions related to pain
such as migraine (Miller et al., 2016).

Of great interest is the fact that although for cognition
and sensation domains separately there were structures whose
connectivity critically affected performance, however, these
structures were not relevant in the prediction of multidomain
behavior. This fact could indicate in a certain way that the
participation of specific networks can be compensated by others,
thus maintaining a balance to preserve performance in the
different domains. This is also consistent with another of our
findings, namely that when looking at the distribution of CCA
weights across behavioral scores and domains, all three strategies
(structural unimodal, functional unimodal, and multimodal)
provided a very similar pattern of CCA weights, indicating
the possibility that different brain networks are capable to fit
multivariate- and multidomain-behavioral performance.

In the second part of our study, we also removed complete
resting-state networks one by one and evaluated the variation in
prediction performance across domains. The deletion of DMN,
limbic, dorsal attention and somatomotor networks had a large
impact on sensation prediction, in our scores encompassing
pain, taste, smell and hearing assessments. This is in agreement
with previous studies, showing the key role that the limbic
system plays in pain perception and motivational responses
(Yang and Chang, 2019), that taste is encoded by changes in
sensorimotor states (Di Lorenzo, 2021), that dorsal attention
and sensorimotor participated in pain processing (Lee et al.,
2021), and that the variations in DMN affected chronic pain
conditions (Fomberstein et al., 2013; Alshelh et al., 2017). Similar
to our findings, previous work identified the key role of salience
network connectivity in predicting motor performance, affecting
almost all voluntary motor actions, while its damage contributed
significantly to the essential motor deficits after stroke (Rinne
et al., 2018). For the prediction of cognition, our results showed
the relevance of the salience network, in agreement with previous
findings showing its role as a hub for integration of cognition
and attention (Menon and Uddin, 2010; La Corte et al., 2016).

We also found that somatomotor and visual networks affected
cognition, in full agreement with recent work showing that the
majority of the cognitive decline occurring in the aging brain
was related to visual and sensorimotor age-related deterioration
(Stumme et al., 2020).

Future work should combine synthetic macroregion
deletions with brain mapping of other cognitive domains,
in both task-fMRI or resting, to reveal the contributions of
brain structures that affect performance. In addition, it is
worth exploring in the presence of acquired brain damage
the decrease in performance in behavioral prediction,
characterizing in some way more disabling lesions at the
behavioral level.
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