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Generative adversarial networks (GANs) can synthesize high-contrast MRI from lower-
contrast input. Targeted translation of parenchymal lesions in multiple sclerosis (MS),
as well as visualization of model confidence further augment their utility, provided
that the GAN generalizes reliably across different scanners. We here investigate the
generalizability of a refined GAN for synthesizing high-contrast double inversion recovery
(DIR) images and propose the use of uncertainty maps to further enhance its clinical
utility and trustworthiness. A GAN was trained to synthesize DIR from input fluid-
attenuated inversion recovery (FLAIR) and T1w of 50 MS patients (training data).
In another 50 patients (test data), two blinded readers (R1 and R2) independently
quantified lesions in synthetic DIR (synthDIR), acquired DIR (trueDIR) and FLAIR. Of
the 50 test patients, 20 were acquired on the same scanner as training data (internal
data), while 30 were scanned at different scanners with heterogeneous field strengths
and protocols (external data). Lesion-to-Background ratios (LBR) for MS-lesions vs.
normal appearing white matter, as well as image quality parameters were calculated.
Uncertainty maps were generated to visualize model confidence. Significantly more
MS-specific lesions were found in synthDIR compared to FLAIR (R1: 26.7 ± 2.6 vs.
22.5 ± 2.2 p < 0.0001; R2: 22.8 ± 2.2 vs. 19.9 ± 2.0, p = 0.0005). While trueDIR
remained superior to synthDIR in R1 [28.6 ± 2.9 vs. 26.7 ± 2.6 (p = 0.0021)], both
sequences showed comparable lesion conspicuity in R2 [23.3 ± 2.4 vs. 22.8 ± 2.2
(p = 0.98)]. Importantly, improvements in lesion counts were similar in internal and
external data. Measurements of LBR confirmed that lesion-focused GAN training
significantly improved lesion conspicuity. The use of uncertainty maps furthermore
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helped discriminate between MS lesions and artifacts. In conclusion, this multicentric
study confirms the external validity of a lesion-focused Deep-Learning tool aimed at
MS imaging. When implemented, uncertainty maps are promising to increase the
trustworthiness of synthetic MRI.

Keywords: magnetic resonance imaging, neuroradiology, multiple sclerosis, deep learning – artificial neural
network (DL-ANN), double inversion recovery (DIR), synthetic MRI, artificial intelligence (AI)

INTRODUCTION

Magnetic resonance imaging (MRI) plays a central role
in the management of patients with multiple sclerosis
(MS), a neuroinflammatory disease with rising incidence
that remains the most common cause of non-traumatic
disability in the young (GBD 2016 Multiple Sclerosis
Collaborators, 2019). MRI techniques have been developed
to detect specific aspects of MS pathophysiology; double
inversion recovery (DIR) imaging is exemplary of a
sequence that improves lesion detection, in particular
within the juxtacortical region. Through numerous studies,
the superiority of DIR compared to established MRI
sequences such as T2w or fluid-attenuated inversion
recovery (FLAIR) sequences in depicting inflammatory
white matter lesions has been validated (Geurts et al.,
2005; Wattjes et al., 2007). Lengthy acquisition times and
high technical requirements have, however, hindered the
widespread use of DIR.

Recently, it has been shown that synthesizing DIR images
with generative adversarial networks (GANs), a deep learning
(DL) architecture with great potential for image synthesis, is
feasible and improves lesion detection compared to FLAIR
and T2w sequences (Finck et al., 2020; Bouman et al.,
2021). Nonetheless, and in particular as MS lesions typically
are small, GANs are at risk to synthesize images of high
morphologic similarity to the target image, while failing
to translate the clinically important MS lesions. Domain
knowledge, i.e., the ability of a GAN to learn about the
pathology-specific anomalies it should map, might open the
door for further customization and improvements in this
regard. Various classification tasks, from the categorization
of breast lesions to the detection of malignant thyroid
nodules have thus already been improved by complementing a
network’s training stage with domain knowledge (Feng et al.,
2020; Avola et al., 2021). The underlying study is to our
knowledge the first to investigate this knowledge-driven GAN
approach in MS imaging.

The value of machine learning (ML) tools generally hinges
on their ability to remain accurate when deployed to data

Abbreviations: MRI, magnetic resonance imaging; MS, multiple sclerosis; DIR,
double inversion recovery; FLAIR, fluid-attenuated inversion recovery; GAN,
generative adversarial network; DL, deep learning; ML, machine learning; AI,
artificial intelligence; synthDIR, synthetic double inversion recovery; trueDIR,
physically acquired double inversion recovery; SSIM, structural similarity index
measure; LST, lesion segmentation tool; JC, juxtacortical; PV, periventricular;
IT, infratentorial; SC, subcortical; LBR, lesion-to-background ratios; LFL, lesion-
focused loss; NAWM, normal appearing white matter; PSNR, peak signal-to-noise
ratio; ICC, intraclass correlation coefficient.

that is of different structure from the training data, making
multicentric validation a mandatory prerequisite. Also, building
trust in artificial intelligence (AI) is oftentimes hindered because
the decision-making process is concealed to the user who
can only accept or discard a binary output (Asan et al.,
2020). Hence, providing visibility into how an ML system
makes predictions has become a major concern, especially
in the medical domain (Quinn et al., 2022). This can be
achieved either by providing insights into the “black-box”
problem of DL systems that are inherently uninterpretable
by the human operator or by designing networks that are
inherently interpretable but generally less potent (i.e., linear
regression, decision-trees). Neural networks are a hallmark
of the “black-box” problem as decisions are made through
nonlinear associations between input and output, thus remaining
opaque to the human reader. Improved interpretability can
be achieved by decreasing the complexity of such networks
(i.e., reducing the amount of neural connections), at the
potential cost of performance loss, or through uncertainty
measurements of the decision-making process (Le et al., 2020).
By providing uncertainty maps that quantify the decision-
making confidence of a GAN, the acceptance of synthetic
MRI by the medical community might be improved while
also offering clearer insights into potential causes for a
system’s malfunctioning. Uncertainty maps can be estimated
by analysis of the variance across iterations during image
synthesis, which has of late become an area of increasing
interest (Gal and Ghahramani, 2015; Watson et al., 2019).
Visualization of model confidence in GAN-mediated synthesis
of MRI has been done before in tasks such as artificial
motion-artifact inclusion or age prediction in fetal MRI (Shaw
et al., 2020; Shi et al., 2020). In contrast to these works,
we aim to quantify model confidence in translating areas
of pathology that only constitute a small fraction of the
generated data volume.

This study presents a refined GAN framework with
an architecture that includes a task-specific training
objective for MS lesion translation. We hypothesize
that this GAN-based approach can provide synthetic,
high-contrast DIR images from routinely acquired
input FLAIR and T1w data, thereby removing the
need for time-intensive acquisition of DIR. A special
focus of this study is to evaluate this task-specific
network for external validity in a multicenter dataset
with scanners from different vendors and different
acquisition details. To further provide an insight into
the decision-making process of the GAN and guide
the reviewing clinician toward potential artifacts, we
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calculated uncertainty maps that reflect the variance in
image-to-image translation.

MATERIALS AND METHODS

Patients
The study design was approved by the local IRBs and informed
consent was obtained from all patients at their respective centers
prior to scan acquisition.

Training Data
Data for model training were retrospectively retrieved from
50 patients with diagnosed MS and included T1w (2:28 min),
FLAIR (3:55 min), and DIR (6:31 min). All scans originated
from the same scanner (Ingenia 3.0T, Philips Healthcare, Best,
Netherlands). Sequence parameters were identical in all patients
for T1w (TR of 9.0 ms, TE of 4.0 ms, flip angle of 8◦, acquired in
the sagittal plane with an isotropic voxel size of 1 mm3), FLAIR
(TR of 4,800 ms, TE of 331 ms, TI of 1,650 ms, flip angle of
90◦, acquired in the sagittal plane with an isotropic voxel size of
1 mm3), and DIR (TR of 5,500 ms, TE of 355.9 ms, TI of 2,550 ms
and 2,990 ms, flip angle of 90◦, acquired in the sagittal plane with
an isotropic voxel size of 1.1 mm3).

Testing Data
Sixty MRI scans from 50 consecutive patients (20:20:10 for
centers 1:2:3, respectively) with diagnosed MS were included. For
centers 1 and 2, 1 scan/patient was sampled, while baseline and
follow-up exams for 10 patients from center 3 were considered.
MRI data included T1w, FLAIR, and DIR and were acquired
on both, 3.0T and 1.5T scanners. In detail, testing data from
center 1 was acquired on the same hardware and using the same
protocol as the training data (Ingenia 3.0T, Philips Healthcare,
Best, Netherlands), testing data from center 2 originated from
a different 3.0T scanner from the same manufacturer (Achieva
3.0T, Philips Healthcare, Best, Netherlands), and testing data
from center 3 was acquired on 1.5T and 3.0T scanners from a
different manufacturer (Skyra 3.0T, Avanto_fit 1.5T, and Aera
1.5T, Siemens Healthineers, Erlangen, Germany).

Sequence parameters for T1w, FLAIR, and DIR sequences
were chosen according to the site-specific parameters optimized
for routine clinical imaging and not modified during the retrieval
period (Supplementary Table 1). Dichotomization of data from
centers 1–3 was made to acknowledge the fact that data structure
from (1) corresponded to the training data (prospectively
referred to as “internal data”), while the data structure from (2)
and (3) was unknown to the network (prospectively referred
to as “external data”). Table 1 illustrates how the data was
categorized for evaluation.

Double Inversion Recovery Image
Synthesis
Network Architecture
Our GAN extends the existing “pix2pix” method (Isola et al.,
2017) and is trained to synthesize a target image y (resembling

TABLE 1 | Data from center 1 was acquired on the same hardware as training
data and thus considered to be of known structure (= internal data).

Data class (number of image sets) Classes for study evaluation

Training data (n = 50)

Test data from (1) (n = 20) Internal data (Known data structure)

Test data from (2) (n = 20) External data (Unknown data structure)

Test data from (3) (n = 20) External data (Unknown data structure)

In analogy, data from centers 2 and 3 were acquired on different hardware and
considered to be of unknown structure (= external data).

the true target image Y) given a set of input images X and
a lesion segmentation mask S. In this setting, two networks
compete with each other: The generator G is based on a U-Net
architecture and synthesizes the target DIR images (synthDIR)
from two input images (T1w and FLAIR), while the discriminator
D tries to determine if a given DIR image is synthetic (synthDIR)
or physically acquired (trueDIR). The network architecture and
training process of the GAN are given in Figure 1. Importantly,
the input of T1 and FLAIR images are fed to U-Net to generate
DIR images while the lesion mask is only used to compute
additional lesion-specific loss during the training stage (see
below). Thus the lesion segmentation mask S is not required
during inference.

Loss Functions
The discriminator gives the judgment about how realistic the
local structures are (called “Patch GAN”), and is patch-based
and driven by a least-square error (L2) loss function (Mao et al.,
2019). The generator is trained on a composite loss function
based on (a) the reconstruction error between the synthesized
image and the target image using SSIM and (b) the output
of the discriminator when judging if a given image is either
ground truth or synthetic. In addition to an SSIM, a peculiarity
of our model is that an additional loss focusing on the successful
translation of MS lesions was developed. In order to focus the
model on MS lesions (which only make up a minority of voxels
in an image), an additional L1 loss term is calculated between
the true and synthetic DIR images after multiplying both images
with the lesion segmentation mask S, thus only considering the
translation of MS lesions for this part of the loss. The image
reconstruction loss for the generator G, the loss function for the
discriminator D, and the total loss function were formulated as
follows, respectively:

Lrecons = 1− SSIM (Y, G (X))+ λ1 ∗ ||(Y − G(X))� S1||

(1)

L D = EX {||1− D(X)||2} (2)

Ltotal = λ2 ∗ Lrecons + LD (3)

Here, λ1 and λ2 are hyper-parameters and set to 1 and 10,
respectively, which balances the two loss components.

Optimization
The input and output images were co-registered, skull-stripped,
linearly transformed into the MNI152 space, and resampled
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FIGURE 1 | Architecture, training process, and inference of the image synthesis task. The image Generator G uses the combination of FLAIR and T1w as input to
generate synthDIR. The additional supervision from the lesion maps in the training stage drives an enhanced translation of MS-specific lesions (lesion attention). The
feedback on the similarity between synthDIR and trueDIR is given by the Discriminator D and a structure similarity loss function and it updates the network weights
until the loss function to discern both image pairs is minimal. During the inference stage, the trained generator G can generate the synthDIR and an uncertainty map
showing the confidence of the output relating to each voxel. Uncertainty maps are calculated from the voxel-wise variances in signal intensities, as explained in the
section “Materials and Methods”.

to 1 mm isotropic resolution. As excellent correlation between
automated and manual segmentation performance has been
shown before, lesion segmentation maps were created using
the Lesion Segmentation Tool (LST) (Schmidt et al., 2012). By
including domain knowledge (in the form of lesion segmentation
on FLAIR images) into the image translation during training,
we enforced the model to pay attention to the lesion area by
minimizing the difference between ground-truth images and
synthetic images. In practice, such segmentation maps can be
also provided by manual segmentation or other automated
lesion segmentation tools (Schmidt et al., 2012; Li et al., 2018).
Exemplary cases of all investigated sequences are shown in
Figure 2. Training was carried out with a batch size of 1
for a total of 150 epochs, using the Adam optimizer with a
learning rate of 0.001. During training, random intensity (gamma
correction and gaussian blurring) and spatial (shifting and
flipping) augmentations were performed. The best-performing
model was selected using an internal validation set consisting of
10% of the training images.

The generated model is publicly available at https://figshare.
com/articles/software/synthDIR/16607831.

Expert Readings
A dataset of 180 scans, comprising 60 sets each for FLAIR,
synthDIR, and trueDIR, was investigated for lesion counts
by two neuroradiologists (R1 with 5 years of experience in
neuroradiological imaging, R2 with 3 years of experience
in neuroradiological imaging) in a random order. Readers
were blinded to scanner types and sequence labels. The
number of juxtacortical (JC), periventricular (PV), infratentorial
(IT), and subcortical (SC) lesions, in accordance with the
2017 McDonald criteria, were counted (Thompson et al.,
2018). JC, PV, and IT lesions were considered to be MS-
specific (Thompson et al., 2018). Albeit known to constitute

different pathophysiological entities, we did not differentiate
between cortical and juxtacortical lesions as this approach best
reflects current guidelines (Bo et al., 2003; Thompson et al.,
2018).

Quantitative Lesion Analysis and
Uncertainty Maps
To quantitatively assess lesion translation, we calculated lesion-
to-background ratios (LBR). Therefore, lesions on FLAIR
and T1w images were segmented using LST, and tissue
segmentation of T1w images was performed using ANTs
Atropos (Avants et al., 2011). For comparison of LBR, GAN
iterations with and without the above-stated lesion-specific loss
function were computed.

From the segmentation maps, the lesion-to-background ratio
was calculated as:

LBR =
MeanSignallesion
MeanSignalNAWM

(4)

Here, NAWM refers to “normal appearing white matter,”
i.e., non-lesioned white matter. From lesion segmentation maps
and corresponding annotations in the NAWM, the mean signal
intensity was extracted from DIR, FLAIR, and synthDIR images.

To estimate the GAN’s uncertainty in generating
synthDIR images, we performed variational inference
during the test time by using dropout sampling. We
added a dropout layer (dropout rate of 0.3) to the second-
last layer of the U-Net and calculated 100 synthDIR
images per input (Gal and Ghahramani, 2015). From
these 100 iterations, we calculated the variance of voxel-
wise intensities, resulting in the uncertainty map for
visual inspection.
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FIGURE 2 | Exemplary images of FLAIR, trueDIR, and synthDIR for all centers and scanners.

Statistical Analysis
Lesion counts were compared with a Wilcoxon signed-
rank test to account for non-Gaussian distribution and
paired data. LBR was compared with a paired t-test.
Similarity of synthDIR and trueDIR was furthermore
quantitatively assessed by the SSIM (Wang et al., 2004).
For pixelwise comparisons, peak signal-to-noise ratio
(PSNR) was calculated. Interrater agreement was assessed
with the intraclass correlation coefficient (ICC; use of
single measurements for absolute agreement in a two-way
random model) and the related 95% confidence interval
(95% CI). Statistical computations were performed with SPSS
software (SPSS Statistics for Windows, version 25.0; IBM,
Armonk, NY, United States). A p-value < 0.05 was considered
statistically significant.

RESULTS

Interrater Agreement
Consistency between both readers was excellent with ICCs for all
specific (JC + PV + IT) lesions ranging from 0.91 (95% CI: 0.85;
0.94) in FLAIR to 0.90 (95% CI: 0.84; 0.94) in synthDIR and 0.89
(95% CI: 0.83; 0.94) in trueDIR.

Lesion Counts
The study endpoint to improve depiction of MS specific
lesions in synthDIR compared to FLAIR was met by both
readers [26.7 ± 2.6 vs. 22.5 ± 2.2 (p < 0.0001) in R1

and 22.8 ± 2.2 vs. 19.9 ± 2.0 (p = 0.0005) in R2].
TrueDIR outperformed FLAIR in counts of MS-specific lesions
[28.6 ± 2.9 vs. 22.5 ± 2.2 (p < 0.0001) in R1 and
23.3 ± 2.4 vs. 19.9 ± 2.0 (p < 0.0001) in R2]. While
trueDIR remained superior to synthDIR in the depiction
of MS-specific lesions in R1 [28.6 ± 2.9 vs. 26.7 ± 2.6
(p = 0.0021)], both image sets were of comparable diagnostic
value in R2 [23.3 ± 2.4 vs. 22.8 ± 2.2 (p = 0.98)]. Table 2
provides details on total and region-specific lesion counts for
the study cohort.

Analysis of lesion counts as a function of scanner types
revealed comparable effects independent of the structure of input
data (internal or external). Hence, significant improvements in
lesion counts were noted in synthDIR vs. FLAIR for both readers
in external data [27.1 ± 3.4 vs. 22.6 ± 2.8 (p < 0.0001) in R1;
25.1 ± 2.9 vs. 21.5 ± 2.6 (p = 0.0007) in R2] and for R1 in
internal data [26.6 ± 4.3 vs. 22.2 ± 3.6 (p = 0.0029) in R1;
18.1 ± 2.6 vs. 16.6 ± 2.6 (p = 0.27) in R2]. In external data, a
slight improvement in lesion conspicuity was noted in trueDIR
vs. synthDIR for R1 [28.9 ± 3.7 vs. 27.1 ± 3.4 (p = 0.011)] but
not for R2 [25.6± 3.3 vs. 25.1± 2.9 (p = 0.90)]. Table 3 provides
lesion counts as a function of data source.

To increase the clinical reliability of synthDIR images, voxel-
wise uncertainty maps from 100 forward runs using test-time
dropout for Bayesian approximation were evaluated. For the
majority of lesions, a high model confidence was observed,
i.e., lesions were not highlighted in the uncertainty maps. On
the other hand, artificial hyperintensities in synthetic images
were readily identified by the high model uncertainty on
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TABLE 2 | Lesion counts for all locations and both readers.

All specific P PV lesions P JC lesions P IT lesions P SC lesions P

Reader 1

FLAIR vs. synthDIR 22.5 ± 2.2
vs.

26.7 ± 2.6

< 0.0001 12.0 ± 1.2
vs.

13.9 ± 1.4

< 0.0001 8.7 ± 1.2
vs.

10.8 ± 1.5

< 0.0001 1.9 ± 0.4
vs.

2.2 ± 0.4

0.043 10.6 ± 1.3
vs.

10.4 ± 1.2

0.82

FLAIR vs. trueDIR 22.5 ± 2.2
vs.

28.6 ± 2.9

< 0.0001 12.0 ± 1.2
vs.

13.9 ± 1.4

< 0.0001 8.7 ± 1.2
vs.

12.3 ± 1.7

< 0.0001 1.9 ± 0.4
vs.

2.4 ± 0.4

0.0002 10.6 ± 1.3
vs.

10.9 ± 1.4

0.36

SynthDIR vs. trueDIR 26.7 ± 2.6
vs.

28.6 ± 2.9

0.0021 13.9 ± 1.4
vs.

13.9 ± 1.4

0.91 10.8 ± 1.5
vs.

12.3 ± 1.7

< 0.0001 2.2 ± 0.4
vs.

2.4 ± 0.4

0.33 10.4 ± 1.2
vs.

10.9 ± 1.4

0.66

Reader 2

FLAIR vs. synthDIR 19.9 ± 2.0
vs.

22.8 ± 2.2

0.0005 10.5 ± 1.0
vs.

12.4 ± 1.1

0.0004 7.8 ± 1.2
vs.

8.5 ± 1.3

0.18 1.5 ± 0.3
vs.

1.9 ± 0.3

0.024 13.5 ± 1.9
vs.

10.5 ± 1.5

< 0.0001

FLAIR vs. trueDIR 19.9 ± 2.0
vs.

23.3 ± 2.4

< 0.0001 10.5 ± 1.0
vs.

12.2 ± 1.2

0.0014 7.8 ± 1.2
vs.

9.7 ± 1.5

0.0028 1.5 ± 0.3
vs.

1.5 ± 0.3

0.99 13.5 ± 1.9
vs.

10.5 ± 1.6

< 0.0001

SynthDIR vs. trueDIR 22.8 ± 2.2
vs.

23.3 ± 2.4

0.98 12.4 ± 1.1
vs.

12.2 ± 1.2

0.26 8.5 ± 1.3
vs.

9.7 ± 1.5

0.068 1.9 ± 0.3
vs.

1.5 ± 0.3

0.03 10.5 ± 1.5
vs.

10.5 ± 1.6

0.70

PV, periventricular; JC, juxtacortical; IT, infratentorial; SC, subcortical; FLAIR, fluid-attenuated inversion recovery; trueDIR, real double inversion recovery; synthDIR,
synthetic double inversion recovery.

TABLE 3 | Counts of MS-specific lesions for FLAIR, trueDIR, and synthDIR as a function of data source.

All P Internal data P External data P

Reader 1

FLAIR vs. synthDIR 22.5 ± 2.2 vs. 26.7 ± 2.6 < 0.0001 22.2 ± 3.6 vs. 26.6 ± 4.3 0.0029 22.6 ± 2.8 vs. 27.1 ± 3.4 < 0.0001

FLAIR vs. trueDIR 22.5 ± 2.2 vs. 28.6 ± 2.9 < 0.0001 22.2 ± 3.6 vs. 27.9 ± 4.6 0.0001 22.6 ± 2.8 vs. 28.9 ± 3.7 < 0.0001

SynthDIR vs. trueDIR 26.7 ± 2.6 vs. 28.6 ± 2.9 0.0021 26.6 ± 4.3 vs. 27.9 ± 4.6 0.086 27.1 ± 3.4 vs. 28.9 ± 3.7 0.011

Reader 2

FLAIR vs. synthDIR 19.9 ± 2.0 vs. 22.8 ± 2.2 0.0005 16.6 ± 2.6 vs. 18.1 ± 2.6 0.27 21.5 ± 2.6 vs. 25.1 ± 2.9 0.0007

FLAIR vs. trueDIR 19.9 ± 2.0 vs. 23.3 ± 2.4 < 0.0001 16.6 ± 2.6 vs. 18.6 ± 2.7 0.027 21.5 ± 2.6 vs. 25.6 ± 3.3 0.0001

SynthDIR vs. trueDIR 22.8 ± 2.2 vs. 23.3 ± 2.4 0.98 18.1 ± 2.6 vs. 18.6 ± 2.7 0.87 25.1 ± 2.9 vs. 25.6 ± 3.3 0.90

FLAIR, fluid-attenuated inversion recovery; trueDIR, real double inversion recovery; synthDIR, synthetic double inversion recovery.

these maps. Figure 3 provides examples on how uncertainty
maps allow to discern true-positive lesions from false-positive
hyperintensities in synthDIR.

Quantitative Image Analysis
Similarity between trueDIR and synthDIR was highest in internal
data, as shown by an SSIM of 0.967 ± 0.012, closely followed
by external data (3) and (2) with still excellent SSIM-values of
0.950 ± 0.012 and 0.941 ± 0.010, respectively. For synthDIR,
PSNR was highest in internal data at 29.2± 1.6 dB and decreased
to 25.6 ± 1.1 dB in external data (3). Table 4 provides detailed
values for quantitative image metrics.

Effects of Lesion-Focused Loss Function
To assess the benefit of the lesion-specific loss function during
image synthesis, LBR were compared between FLAIR, trueDIR,
synthDIR, as well as synthDIR generated by a network iteration
without the lesion-specific loss. Both versions of synthDIR,
irrespective if additional loss was included or not, exceeded input
FLAIR in LBR (data given in Table 4).

Of note, LBR was significantly lower in synthDIR generated by
the version without lesion-focused loss compared to the version
of synthDIR benefiting from lesion-focused loss (2.69 ± 0.66 vs.
2.80 ± 0.67, p < 0.001). While synthDIR achieved a comparable
LBR to trueDIR (2.80 ± 0.67 vs. 2.86 ± 0.65, p = 0.41), this
effect faded if synthDIR was generated without lesion-focused
loss (2.69± 0.66 vs. 2.86± 0.65, p= 0.032) (as shown in Figure 4).

DISCUSSION

Medical imaging has benefited greatly from DL advances that
gave birth to a panoply of systems aimed at tasks ranging
from disease detection to image synthesis and artifact reduction
(Emami et al., 2018; Rajpurkar et al., 2018; Liang et al., 2019).
We here validated a GAN that has been fine-tuned to the
translation of MS-specific white matter lesions while aiming
to remain generalizable to external data. We further explored
the concept of uncertainty maps to illustrate how trustworthy
the network is in image-to-image translation. Such maps can
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TABLE 4 | Image-wise (SSIM) and voxel-wise (PSNR) comparative metrics for synthDIR and trueDIR.

SSIM (trueDIR –
synthDIR)

PSNR (dB) (trueDIR –
synthDIR)

LBR FLAIR LBR trueDIR LBR synthDIR LBR synthDIR w/o
LFL

All 0.954 ± 0.016 27.2 ± 2.2 1.52 ± 0.49 2.86 ± 0.65 2.80 ± 0.67 2.69 ± 0.66

Internal data 0.967 ± 0.012 29.2 ± 1.64 1.45 ± 0.06 2.80 ± 0.33 2.86 ± 0.34 2.68 ± 0.30

External data (2) 0.941 ± 0.010 25.8 ± 1.12 1.65 ± 0.12 3.01 ± 0.41 3.35 ± 0.50 3.31 ± 0.45

External data (3) 0.950 ± 0.012 25.6 ± 1.08 1.46 ± 0.86 2.78 ± 1.00 2.19 ± 0.56 2.07 ± 0.50

LBR are given for FLAIR, trueDIR, synthDIR, as well as for synthDIR generated by a GAN iteration without the lesion-focused loss function (synthDIR w/o LFL). Results are
given for internal data, as well as external data (2) and (3). SSIM, structural similarity index measure; PSNR, peak signal-to-noise ratio; LBR, lesion-to-background ratio;
LFL, lesion-focused loss; trueDIR, real double inversion recovery; synthDIR, synthetic double inversion recovery.

FIGURE 3 | Uncertainty maps provide relevant information regarding the validity of voxel-to-voxel translation; increases in uncertainty are scaled from blue to green.
Circled in red (Patients 1–4) are hyperintensities in synthDIR without correlation in trueDIR and easily recognized as areas of high variance in the corresponding
uncertainty maps, allowing for their identification as artifacts from the synthesis task. On the other hand, true-positive lesions are readily identified as regions with
either no (patient 1 – green circle in synthDIR) or low (patient 4 – green circle in synthDIR) values of uncertainty. Hence, interpretation of synthDIR and
decision-making on the veracity of lesions is facilitated through uncertainty maps.

provide important support to decide on the veracity of findings
in synthetic images and help the radiologist to detect artifacts
resulting from the synthesis task.

Comparison of the network’s performance in internal and
external data showed that significantly more MS-specific
lesions could be found in synthDIR compared to the FLAIR
sequence that was used as input, irrespective of the data

origin. Approximately 20% more MS-specific lesions were thus
depictable in synthDIR, a magnitude of difference that is of
obvious clinical interest, especially in patients with low lesion
counts. While other surrogates of MS activity have been explored,
depiction of new inflammatory plaques is still considered the
hallmark of disease monitoring in MS (Filippi et al., 2001;
Chard et al., 2003; Wattjes et al., 2015). Also, lesion load has
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FIGURE 4 | Lesion-to-background ratios for FLAIR, trueDIR, and synthDIR.
Additionally, LBR was calculated for synthDIR generated by a GAN-iteration
without the lesion-focused loss (synthDIR no LFL). Of note, LBR was
significantly higher in synthDIR compared to synthDIR without LFL, confirming
the hypothesis that domain knowledge can be improved through LFL. While
there was no significant difference in LBR between synthDIR and trueDIR
(p = 0.41), LBR of synthDIR without LFL remained inferior to the LBR of
trueDIR (p = 0.032). LBR, lesion-to-background ratio; LFL, lesion-focused
loss.

been shown to directly correlate with future disability and, if
properly detected and reliably quantified, might therefore prompt
escalation of disease-modifying therapy (Calabrese et al., 2010;
Popescu et al., 2011).

Domain knowledge, i.e., the ability to learn about pathology-
specific image findings, is promising to further augment the
clinical utility of DL tools (Yuan et al., 2019). The improved
lesion translation that our GAN achieved by including a lesion-
focused loss function hints at the potential of domain knowledge
to further customize synthetic imaging. To highlight this, we
showed that LBR in synthDIR was non-inferior to LBR in
trueDIR only if the GAN was complemented by a lesion-
focused loss.

The ability of synthDIR to outperform FLAIR, a sequence still
considered gold-standard in MS imaging, has been shown for
a multi-modal input (T1w, T2w, and FLAIR) in a monocentric
setting (Finck et al., 2020; Bouman et al., 2021). In doing so,
relevant reductions in scan times are feasible as the physical
acquisition of 3D and isotropic DIR may take up to 7 min
(Eichinger et al., 2019). While other methods, such as sparse
sampling, have previously achieved scan time reductions for DIR,

a GAN-based approach might be advantageous as it works on
existing data and thus does not need to be prospectively deployed
(Eichinger et al., 2019). This offers the potential advantage to
augment the diagnostic value of existing studies and, hence, to
render longitudinal follow-up exams more conclusive.

Albeit accurate in their output, neural networks generally
fail to provide insight into the decision-making process, the
so-called “black-box problem.” Rendering this process more
transparent is crucial for the acceptance of said networks and
can, in theory, be achieved by providing methods to interpret
the “black-box,” or by designing models that are inherently more
transparent in their functioning (Rudin, 2019; Arun et al., 2020).
In GANs specifically, one potential bias in trying to match
the (lesion) distribution in the target domain (trueDIR) is that
features (lesions) with no correlation in source data might be
erroneously mapped, a phenomenon commonly referred to as
“hallucination.” To verify lesion veracity we therefore introduced
the concept of uncertainty maps that highlight the voxel-wise
aleatoric variance taking place during image translation. Hence,
the ability to compare hyperintensities in synthDIR to their
respective uncertainty mappings can reduce the risk of false-
positive findings, i.e., misinterpretation of constructed lesions in
the synthetic image data. Figure 3 illustrates how MS lesions can
thus be separated from artifacts according to their voxel-wise
intensity variance. As erroneous mappings remain an intrinsic
limitation of GANs, their future deployment might benefit greatly
from the calculation of uncertainty maps that are displayed in
parallel to synthetic images.

A limitation of this approach is that having to reference
synthDIR, along with the uncertainty maps adds complexity
to the longitudinal interpretation of clinical MRI. Furthermore,
comparison of synthDIR and trueDIR via autosegmentation
techniques might have provided more objective lesion counts
in this study. However, as our GAN was designed to provide
synthetic data for clinical use, we opted for manual lesion
counts as this best reflects the clinical reality. Future iterations
of synthDIR might furthermore mitigate the wide disparities
in lesion counts that we noticed especially in SC lesions.
Also, prospective investigations should explore the feasibility
to generate a GAN targeted to create synthDIR while using
even fewer, potentially only one input modality. At last, we
tested for generalizability by including three centers with
differing hardware. Future investigations would benefit from the
inclusion of more centers and readers, as our results demonstrate
equivalence of synthDIR to trueDIR for only one of the two
neuroradiologists.

CONCLUSION

Our findings confirm the use-case and external validity of a
DL tool targeted at improving MRI in patients with MS. Our
study demonstrates both, the utility of lesion-focused learning
to improve domain adaption, as well as the potential benefit of
uncertainty maps to help gain trust in GANs and make informed
medical decisions. Presumably, wider deployment of these tools
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could prove beneficial in MS where treatment decisions are
heavily relying on MRI findings.
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