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In this study, an asynchronous artifact-enhanced electroencephalogram

(EEG)-based control paradigm assisted by slight-facial expressions (sFE-

paradigm) was developed. The brain connectivity analysis was conducted to

reveal the dynamic directional interactions among brain regions under sFE-

paradigm. The component analysis was applied to estimate the dominant

components of sFE-EEG and guide the signal processing. Enhanced by

the artifact within the detected electroencephalogram (EEG), the sFE-

paradigm focused on the mainstream defect as the insufficiency of real-

time capability, asynchronous logic, and robustness. The core algorithm

contained four steps, including “obvious non-sFE-EEGs exclusion,” “interface

‘ON’ detection,” “sFE-EEGs real-time decoding,” and “validity judgment.” It

provided the asynchronous function, decoded eight instructions from the

latest 100 ms signal, and greatly reduced the frequent misoperation. In the

offline assessment, the sFE-paradigm achieved 96.46% ± 1.07 accuracy for

interface “ON” detection and 92.68% ± 1.21 for sFE-EEGs real-time decoding,

with the theoretical output timespan less than 200 ms. This sFE-paradigm

was applied to two online manipulations for evaluating stability and agility.

In “object-moving with a robotic arm,” the averaged intersection-over-union

was 60.03 ± 11.53%. In “water-pouring with a prosthetic hand,” the average

water volume was 202.5 ± 7.0 ml. During online, the sFE-paradigm performed

no significant difference (P = 0.6521 and P = 0.7931) with commercial

control methods (i.e., FlexPendant and Joystick), indicating a similar level

of controllability and agility. This study demonstrated the capability of sFE-

paradigm, enabling a novel solution to the non-invasive EEG-based control in

real-world challenges.
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Introduction

To regulate human–machine interaction in a natural way,
electroencephalogram (EEG)-based control has been considered
as a promising form. Non-invasive EEGs with lower cost and
free surgery risk have higher universal application potentials
(Casson et al., 2010). To establish the direct pathway between
the brain and the peripherals, several paradigms have been
developed to arouse typical responses of the brain activity
(Abiri et al., 2019). The widely used paradigms include motor
imagery (MI; Jin et al., 2019), slow cortical potential (SCP),
P300, steady-state visual evoked potential (SSVEP; Jin et al.,
2021a) and so on (Hwang et al., 2013). Over the past decades,
research on the brain control interface (BCI) paradigms have
achieved significant progress, such as P300 and SSVEP in high-
speed screen spellers (Hoffmann et al., 2008; Chen et al., 2015),
SCP in thought translation device (Birbaumer et al., 1999),
and MI in the motor recovery after stroke (Sharma et al.,
2006). Progressively, the BCI focuses not only on restoring
communication and control in severely paralyzed patients, but
also proves its usage for healthy people (Nijholt and Tan, 2008).

In the aspect of EEG-based robotic control or
electromechanical system manipulation, several impressive
works, such as, SSVEP-based control of wheelchair (Muller
et al., 2011), robotic arm (Chen X. G. et al., 2018) and
quadcopter (Wang et al., 2018), MI-based operation of
wheelchair navigation (Carlson and Millan, 2013), robotic
arm in reach, and grasp tasks (Meng et al., 2016; Edelman
et al., 2019), the shared control of robotic grasping (Chen
et al., 2019), and the quadcopter control in three-dimensional
space (LaFleur et al., 2013), P300-based robotic guide (Chella
et al., 2009), wheelchair-mounted robotic ann system (Palankar
et al., 2009), have been proposed world-wide by researchers.
Besides the BCIs, different hybrid BCIs (hBCIs) are also
developed to enrich the function, including hBCI with SSVEP
and EOG in controlling the robotic arm (Zhu et al., 2020),
SSVEP, and MI in orthosis operation (Pfurtscheller et al.,
2010), MI and error related potential for position control
(Bhattacharyya et al., 2017), combination of MI, SSVEP, and
eye blink in quadcopter flight control (Duan et al., 2019), P300
and SSVEP in the application to wheelchair driving (Li et al.,
2013) and the ideogram and phonogram writing with robotic
arm (Han et al., 2020), MI and P300 in speed and direction
controlling (Long et al., 2012), SSVEP-MI-EMG-hBCI for
robotic arm in writing tasks (Gao et al., 2017), and so on. As
above, the mainstream paradigms adopted in the neuro-based
electromechanical system control include SSVEP, MI, P300, and
their combination and hybrid.

Considering more general cases and scenarios, the visual-
stimulated paradigm (i.e., SSVEP, P300) has its limitation for
an additional visual stimulator and period for visual evocation,
and the MI requires extra adaptation to paradigm-self and
high concentration. By viewing the neuro-based control as
a promising control method, it needs to satisfy the basic

requirements of real-time, precision, user-friendliness, and
easiness, similar to the traditional control approaches. Focusing
on the limitation of mainstream paradigms in electromechanical
system manipulation, in 2018, a BCI assisted by facial expression
(FE-BCI) had been proposed by our research group (Zhang
et al., 2016; Li R. et al., 2018; Lu Z. et al., 2018), which
has the characteristics of no additional user adaption, no
extra stimulators, and no nerve adaptability (Li R. et al.,
2018). From the aspect of neurophysiology, the mechanism
of facial expression had been studied (Li R. et al., 2018) and
the functional connectivity analysis was conducted (Lu Z. F.
et al., 2018), which revealed the separability of facial-expression
assisted brain signals and guided the signal processing. When
performing facial expressions, our previous study proved that
both the EEG component and the electromyogram (EMG)
component can be detected by the EEG electrodes at the same
time, and each component can be decoded to provide the
instruction for external device operation (Li R. et al., 2018;
Zhang et al., 2020). Benefiting from the coexistence of EEG
and EMG components, enhanced by the EMG artifacts within
EEG band, without separating these components, it enabled
the capability for real-time decoding and control (each output
generated from the latest 100 ms inputs) (Lu Z. F. et al., 2018),
and realized the semi-asynchronous logic (Lu et al., 2020).

In this study, as an update, an asynchronous artifact-
enhanced EEG-based control paradigm assisted by slight
facial-expression (sFE-paradigm) is proposed to improve its
practical performance for comprehensive and complex daily
situations. Both offline and online experiments were conducted.
The effective connectivity analysis of sFE-paradigm was
demonstrated to delineate the interaction among EEGs. The
methodology of sFE-paradigm, including computation logic,
asynchronous strategy, and detailed steps, was illustrated. The
offline performance and online controllability were assessed.
The novel aspects of this new paradigm are as follows: (1)
An integral asynchronous strategy is developed to enable
users to switch on/off the paradigm in their will; (2) The
sFE provides the possibility to distinguish the exaggerated
facial expressions in daily communication during EEG-based-
control, and also increases the aesthetics, which ensures the
suitability for patients who can hardly complete exaggerated
facial expressions; (3) The instruction sets are expanded with
the support of an improved core algorithm, combining the deep-
learning framework; and (4) A validity judgment step is added to
decrease the frequent misoperations exposed in the traditional
literal translation mode.

Materials

Electroencephalogram recording

The commercial EEG acquisition system (Neuracle
Technology Co., Ltd.) has 34 electrodes (including
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30 EEG channels, 1 reference, 1 ground, and 2
EOG channels) with 1,000 Hz sampling rate and
WiFi module (Figure 1). The reference was placed
at CPz, and the ground was placed at AFz (Yao,
2001). During the experiment, impedances were kept
below 5 k�.

Subjects

Sixteen healthy subjects (25–38 years of age, 13 men
and 3 women) participated in the experiments, without any
known cognitive deficits and prior experience (World Medical
Association, 2013). These sixteen subjects were divided into
two groups, where six subjects (S1-S6) participated only in the
offline experiment for offline algorithm assessment and software
development, while the other ten subjects (S7–S16) participated
directly in the online experiment to verify the practicability of
the sFE-paradigm. Before the experiment, an instruction video
was displayed to subjects to illustrate the experimental setup
and the difference between the sFE and facial expression in
regular amplitude.

Offline experiment

To develop an asynchronous sFE-paradigm, EEGs
under resting-state, aroused by sFE and under relaxing-
state were collected. A total of eight easy-to-execute sFEs
were adopted. EEGs with the same facial expressions but
in regular amplitude were also collected for comparison.
Figure 2 illustrates eight sFEs and their comparison with the
regular amplitude.

Section I: Slight facial expression
Eight sFEs were performed by each subject following

the on-screen prompts. Each sFE was conducted for five
sessions consisted of eight trials. In each trial, 3 s countdown,
4 s resting-state, 4 s sFE-state, and 4 s relaxing-state were
contained in turn (Figure 3). At the resting-state, the subjects
were asked to avoid extra movements. At the sFE-state,
the subjects followed the on-screen prompts to make the
designated sFE and hold it for 4 s. At the relaxing-state, the
subjects were free for any volunteered movement, including
but not limited to talking, drinking, reading, writing, physical
activity, and so on.

FIGURE 1

The Neuracle device and its electrode placement. By system default, the Afz is the ground, CPz is the reference, and A1 and A2 are EOGs.

FIGURE 2

Eight slight-facial expressions (sFEs) adopted in this research and their comparison with the regular amplitude.
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FIGURE 3

The timing diagram of one trial, where IC represents “in-control,” and NC represents “non-control”.

Section II: Facial expression (regular amplitude)
In the regular amplitude section, the same session settings

as the sFE phase were adopted. For comparison, each facial
expression was conducted for only 2 trials.

Section III: Relaxing-state
Three additional trials of EEGs under relaxing were

collected, including one trial for reading and talking, one trial
for drinking and eating, and one trial for physical moving. Each
trial lasted for 96 s.

Online experiment

To verify the feasibility and the practicality of an
sFE-paradigm for peripheral application, subjects S7–S16
participated in the online experiment without prior experience
with the offline experiment. Two specific external device
manipulation tasks, atypical versus daily, focused on stability
and agility, respectively, were conducted. In both tasks, EEGs
were sent wirelessly by Wi-Fi to the computer (Windows 10,
i5-6500 CPU, 3.20GHz, GTX 960 GPU). The stepping control
was adopted by both the devices. During the online experiment,
an sFE-paradigm software developed after the offline assessment

was used, operated manually by the subjects themselves.
Following the graphical user interface (GUI), subjects first
login to the software, and then completed the training data
collection work. One’s individual parameters and the classifiers
were automatically calculated by the software. Finally, the online
manipulation tasks were started by pressing the “Start”’ button
on the GUI by subjects themselves. Compared with the offline,
the training data acquisition process in the online is consistent
with the offline setup, but with fewer trials.

Task one: Object-moving with a robotic arm
In this task, subjects were required to use this proposed sFE-

paradigm to first switch on the system, then operate the robotic
arm to move a wooden block (4 cm × 4 cm × 4 cm) from
its initial position A to the position B (Figure 4A), and then
switch off the system. The robotic arm used was the assembly of
an AUBO-i5 collaborative industrial robot (six DoFs, provided
by AUBO Robotics China Co., Ltd.) equipped with an AG-95
servo-electric gripper (provided by DH-Robotics Technology
Co. Ltd.). Before each trial, the robotic arm restored its initial
state, with the block grabbed. To move the block, subjects need
to first lift it, then adjust its position, and finally lower it and
open the electric gripper to ensure a stable placement. Table 1
shows the instruction list. The experimental scene is graphed in
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FIGURE 4

The illustration for online experiment. (A) The initial state of the assembled robotic arm system in Task one (object-moving), and the plan view
of the position A and B. (B) Experiment scene layout and the 2-DoFs prosthetic hand of Task two (water-pouring). (C) Experimental scene graph
for Task one (object-moving). (D) Experimental scene graph for Task two (water-pouring).

Figure 4C. Before starting, subjects first had 5 min to get familiar
with the operation for sFE-paradigm-based robotic arm; then
this task was repeated for five trials. In each trial, subjects began
to complete the task after pressing the “Start” button on the GUI
by themselves. If the task was not finished within 5 mins or if
the block had fallen halfway, this trial would be deemed as a
failure. The deviation for the same task using FlexPendant was
recorded as a reference.

TABLE 1 The instruction list of AUBO-i5 system.

Instruction System Action Axis Stepping

“Right” Horizontally move right +X 30 mm

“Left” Horizontally move left –X 2 mm

“Forward” Horizontally move forward +Y 20 mm

“Backward” Horizontally move backward –Y 3 mm

“Up” Vertically rise up +Z 30 mm

“Down” Vertically lower down –Z

 10 mm (Z > 21 mm)

3 mm (Z ≤ 21 mm)

“Open” Electric gripper open – –

Task two: Water-pouring with a prosthetic
hand

In this task, the subjects were required to use the sFE-
paradigm to first switch on the system, then operate the
prosthetic hand to pour 200 ml water from cup C to beaker
D, and then switch off the system (Figure 4B). The prosthetic
hand used was customized by Danyang Artificial Limb Co., Ltd.
with 2-DoFs (wrist and finger joints) and Bluetooth module.
Before each trial, the prosthetic hand was kept in front of cup
C with the hand opened to the maximum (95 mm), and the
water initially stored in the cup C was nearly 250 ml. To pour the
water, the subjects need to grasp cup C first, then lift and whirl
it to transfer demanded amount of water, and finally slightly
lower it and open the palm. Table 2 lists the instruction of the 2-
DoFs prosthetic hand. Figure 4D shows the experimental scene.
Similarly, subjects had 5 min first to get familiar with the system,
then this task was repeated for five trials. Each trial started with
the ‘Start’ button being pressed by the subject-self and would
be viewed as a failure if not completed within 3 min or the cup
was dropped halfway. The deviation to perform water-pouring
with this prosthetic hand but controlled by Joystick was also
recorded as a reference.
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Method

Brain connectivity analysis
Brain connectivity assesses the integration of cerebral areas

by identifying variations in activation within and interactions
between brain areas (Friston, 2011; Sakkalis, 2011; Li Y. Q.
et al., 2018). As one major aspect, effective connectivity is
defined as the direct or indirect influence that one neural
system exerts over another (Horwitz, 2003). To obtain a better
insight into this sFE-paradigm, orthogonalized partial directed
coherence (OPDC) was used to measure the dynamic directional
interactions among brain regions under sFEs.

Orthogonalized partial directed coherence, as an
orthogonalized version of the classical partial directed
coherence (PDC; Sommerlade et al., 2009), focuses on reducing
the spurious co-variability resulted from the similarity in
several EEGs affected by volume conduction (Nolte et al., 2004),
which may be falsely perceived as connectivity (Gomezherrero,
2010). The OPDC developed out of the concept of Granger-
causality (Granger, 1969), investigating the information flow
within coupled dynamical networks based on multivariate
autoregressive (MVAR) models (Geweke, 1982), detecting
not only direct but also indirect pathways linking interacting
brain regions (Baccala and Sameshima, 2001). Based on the
dual extended Kalman filter-based time-varying PDC analysis
(Omidvarnia et al., 2011), by orthogonalizing the imaginary part
of the coherence (Nolte et al., 2004), the OPDC mitigates the
common result of volume conduction effects. The estimating
process of OPDC is as follows (Omidvarnia et al., 2014):

Multivariate autoregressive model
For time series y(n) ∈ Rcch with L samples (where

n = 1, . . . , L), the MVAR model is defined as (Hytti et al., 2006):


y1(n)

...

ych(n)

 = m∑
r=1


ar1,1 · · · a

r
1,ch

...
. . .

...

arch,1 · · · a
r
ch,ch




y1(n− r)
...

ych(n− r)

+


w1(n)
...

wch(n)


(1)

where
[

y1(n) · · · ych(n)
]T

is the current value of each time
series, ch denotes the number of channels, the real-valued
parameter arp,q (p = 1, . . . , ch; q = 1, . . . , ch) in matrices Ar

represents the predictor coefficient between the current value of
channel p and the past information of channel q at the delay r,
m is the model order indicating the number of previous data

TABLE 2 The instruction list of the prosthetic hand.

Instruction System action Stepping

“Open” Palm open 7.0 mm

“Close” Palm close 10.5 mm

“Extorsion” Wrist external rotation 11.0◦

“Intorsion” Wrist internal rotation 12.0◦

points used for modeling, and
[
w1(n) · · · wch(n)

]T
= w(n) is a

normally distributed real-valued zero-mean white noise vector
representing one-step prediction error. The instantaneous effect
among channels is explained by correlations among the off-
diagonal element within the covariance of w(n) (Faes and Nollo,
2010). The optimum order m was estimated using Akaike
information criterion (AIC) (Akaike, 1971).

Time-varying generalized orthogonalized partial
directed coherence

To detect the coherence between channels in discrete
frequency, Ar in the time-varying MVAR model is transformed
into frequency domain:

A(n, f ) = I −
m∑
r=1

Ar(n)z−r|z=ej2πf (2)

where I is the identity matrix and the frequency f varies from
0 to the Nyquist rate. To alleviate the effect of mutual sources
within surface EEGs affected by spatial smearing in the tissue
layer, the orthogonalization process is done at the level of
MVAR coefficients (Omidvarnia et al., 2012). The generalized
version of OPDC by taking the effect of time series scaling into
consideration is:

∼

9
p,q

(n, f ) =

1
λ2
p,p

|Real{Ap,q(n,f)}|√
aHq (n,f )6−1

w aq(n,f )

|Imag{Ap,q(n,f)}|√
aHq (n,f )6−1

w aq(n,f )
if p 6= q

(3)

where
∼

9
p,q

denotes the gOPDC from channel q to channel p, λ
p,p

are the diagonal elements of covariance matrix 6w = 〈wwT
〉

(where 〈·〉 is the expected value operator), the superscript H
denotes the Hermitian operator and aq(n, f ) is the qth column
of A(n, f ). For detailed mathematical derivation of gOPDC,
refer to Omidvarnia et al. (2014).

Component analysis of slight-facial
expressions-electroencephalogram

To better understand the sFE-EEG and form guidance on
the signal processing, the component analysis was conducted to
illustrate the dominate component in the sFE-EEG. To separate
the components in sFE-EEGs, both the fast independent
component analysis (FastICA) (Hyvarinen and Oja, 2000) and
the noise-assisted multivariate empirical mode decomposition
(NA-MEMD) (Chen X. et al., 2018) were taken, of which
FastICA focused on multi-channels combined and NA-MEMD
focused on every single channel.

After the components were separated, sample entropy
(SampEn) as one effective way to identify the complexity of
changes in biological signals was selected as the indicator
(Cuesta-Frau et al., 2017). Under the same circumstance, the
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randomness of the EMG component shall be much stronger
than that of the EEG component, leading to a much larger
entropy. Therefore, when exceeding the threshold of sample
entropy, it means that the component contains a lot of EMG
information. The SampEn can be calculated as follows:

SampEn(m, r,N) = − ln
[
Am(r)
Bm(r)

]
(4)

where m is a constant, r is the tolerance, N is the sequence
length, Bm(r) is the probability of matching m points with
tolerance r, and Am(r) is the probability of matching m+ 1
points. In this study, m = 2, r = 0.2∗std, where std represents
the standard deviation. Referring to the previous literature
and experimental experiences (Friesen et al., 1990; Liu et al.,
2017), the specific threshold of SampEn was set as 0.45. When
exceeding the threshold, the corresponding component would
be identified as containing more EMG information than EEG.

Asynchronous interface of slight-facial
expressions-paradigm

To meet the goal of practicality, the fundamental demands
for one control approach are stability, accuracy, real-time, and
user-friendliness. As for an EEG-based control paradigm, the
specific technical details can be listed as follows: (1) Using
fewer EEGs for each decoding, to improve the real-time ability;
(2) Providing asynchronous strategy, to ensure users start or
stop paradigm as needed; (3) Adopting a paradigm which
requires no additional stimulators and adaptation, and has no
strict requirement for high concentration; (4) Ensuring high
decoding accuracy with adequate instruction set; (5) Giving an
allowance to users’ unrelated movements, without affecting the
manipulation performance; (6) Reducing the common problem
of misoperation, thus enhancing the stability. In the real-time
aspect, Lauer et al. (2000) stated that any delay greater than
200 ms would degrade the performance of one neuro-based

FIGURE 5

The detailed algorithm of slight-facial expression-paradigm.
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task accomplishment. Evidenced by our previous study, the
separation of EMG component would largely increase the
system process time (Li R. et al., 2018), and the coexistence of
EMG artifact within EEG bands makes large contribution to
compress the decoding time and improve accuracy (Lu Z. F.
et al., 2018). Thus, to improve the real-time ability, in this sFE-
paradigm, artifact would be used as the enhancement for system
performance without separating it independently. Further,
considering the process of data acquisition, signal processing,
and instruction generation, the window length of EEGs used for
once decoding in sFE-paradigm is chosen as 100 ms.

The processing algorithm in sFE-paradigm is demonstrated
in Figure 5. The algorithm included four parts: (1) ‘Is this
probably sFE-EEGs or obvious “NON,” aiming at excluding
obvious non-sFE-EEGs at the beginning? (2) “Asynchronous
interface ON detection,” “turning on or off the paradigm
depends on users” will; (3) “sFE-EEGs real-time decoding,”
classifies the sFE-EEGs and keeps an extra “NON” to give
a respite for users (meanwhile a hold-on command for the
system); (4) “Validity judgment,” judging the validity of the label
first to reduce misoperation instead of directly converting it into
instruction. Such a step-by-step design is used to shorten the
processing time for inputs unrelated to current system status
(e.g., exaggerated facial expression EEGs would be rejected from
the very beginning; EEGs would not be complexly classified until
the asynchronous interface has been turned ON) meanwhile
offering an allowance for other slightly physical movements, and
improving the stability.

Step A: Obvious non-slight-facial
expressions-electroencephalogram exclusion

The first step aims at using a simple computation to exclude
inputs that are apparently non-sFE-EEGs, while not let go
of any probably sFE-EEGs. To save the computing time and
to improving the efficiency, Threshold Comparison, a junior
method was chosen:.

Due to the EMG artifact, when performing regular or
exaggerated facial expressions, channels placed closer to facial
muscles (Fp1, Fp2, F7, F8, T3, and T4) tend to show wider
amplitude range than sFEs, leading to larger temporal energy
in higher EEG frequency (55 Hz, 95 Hz), as shown in Figure 6.
These six channels were used as reference channels for obvious
“NON” exclusion. Instead of being uniformly larger than one
constant, the temporal energies are relatively larger only when
compared to each reference channel itself. Thus, a separate
threshold was set for each reference channel, as the 105% of
one’s highest temporal energy among eight sFEs. The Threshold
Comparison was designed as: When facing the latest unknown
100 ms inputs, if there exists one or more channels whose
temporal energy exceeds its own threshold, the current EEGs
would be judged as “NON” and be excluded. Those mistakenly
accepted EEGs, similar to but not sFE-EEGs, would be processed
by the next step.

Step B: Interface “ON” detection
This step enables the users to start the sFE-paradigm

whenever they need, which means the system would not reply
to any EEGs and keep a standby mode until the interface
has been turned on. Such design guarantees the users the
option of not controlling the peripherals and handling other
affairs with the EEG cap worn and all devices powered on.
To switch between the non-control (NC) state and the in-
control (IC) state, one of the eight sFEs was chosen as the
state-switching sFE: slight-raise-brow (sRB). The decoding for
asynchronous “ON” is realized by a binary classifier. Only
sRB-EEGs were labeled as “ON,” while other EEGs including
resting, relaxing, other sFEs, and regular or exaggerated facial
expressions, and EEGs mistakenly accepted by Step A were all
labeled as “else”. Instead of deep learning algorithms, traditional
machine learning algorithm support vector machine (SVM) was
adopted to speed up the process.

Considering the low frequency solution resulting from the
short time window, feature engineering was realized by a classic
spatial filtering method: common spatial pattern (CSP) (Lu Z.
F. et al., 2018; Zhang et al., 2019; Wang et al., 2020; Jin et al.,
2021b). The CSP features were calculated as:

fk =
log(var(Y j

i,k))∑2m
k=1 log(var(Y j

i,k))
, k = 1, ..., 2m (5)

where Yj
i, i ∈ {1, 2} is the new signal generated through the

spatial filters from raw data, in which i indicates the ith category
and j indicates the jth sample, k is the number of pairs of spatial
filters which was set to be 2 in this study.

Corresponding to pair number, a 4-dimensional feature
vector was formed. The kernel function in SVM was set to be
scaled Gaussian (Eq. 6), according to the F1 score (Derczynski,
2016). Refer to Results for a detailed comparison.{

G(xj, xk) = exp(−γ||xj − xk||2)
γ = 1

nfeature ∗ var(X)

(6)

where G(xj, xk) denotes elements in the Gram matrix, γ is the
hyperparameter for Gaussian kernel, X is the features sets and
nfeature is the dimension of feature channels. Every 100 ms EEGs
that passed through Step A was re-filtered into the typical EEG
band as (5 Hz, 50 Hz) with all 30 channels and processed by this
Step B.

Step C: Slight-facial
expressions-electroencephalograms real-time
decoding

After switching ON the sFE-paradigm, the algorithm enters
the second stage: sFE-paradigm based real-time control. In the
second stage, similarly, only those latest 100 ms EEGs accepted
by Step A can enter Step C. In this step, nine targets were
set in total, including seven sFEs corresponding to specified
control instructions, the state-switching sFE corresponding to
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FIGURE 6

The comparison boxplot of normalized temporal energy.

interface OFF, and a “NON” category as the hold-on command
for system. Instead of setting a separate asynchronous “OFF”
detection ahead, such a design with the control instruction and
interface OFF combined together, is to speed up the efficiency.
Otherwise, any sFE-EEGs intend for control have to pass
through two classifiers (Lu et al., 2020).

This multi-classification was realized by the deep-learning
framework. To take full advantage of the translation invariance
and the spatial hierarchy of the convolutional neural network
(CNN; Bengio and Lecun, 1997), meanwhile retaining the time
sequential characteristics of EEGs, the variant of recurrent
neural network (RNN; Rumelhart et al., 1986) and the
CNN were combined. The classifier structure (namely sFE-
Net) was summarized in Table 3. The input of sFE-
Net was 30-channel EEGs with 100 sample points, which
are judged by Step A ahead as “probably yes” and re-
filtered into (5 Hz, 50 Hz). The outputs of sFE-Net were
nine labels with one-hot code, which correspond to eight
sFEs and a “NON”.

Step D: Validity judgment
For realistic manipulation tasks, any misoperation shall

result in a huge impact on the execution. To improve
the robustness, instead of directly translating each decoded
label into instruction, a validity judgment was added. Labels
generated from Step B and Step C shall pass through Step D. Such
a judgment was simply realized by the consistency checking:
Among n decoded labels, if x% of them are consistent with the
current nth, then the nth will be regarded as valid and translated
into an instruction.

During processing, the timespan for each label’s decoding is
less than 100 ms (refer to Results); thus adjacent EEGs entering
the algorithm should have an overlap. Given that there exists
x% decoded labels consistent with the current nth, the timing
diagram for instruction generation is provided in Figure 7. The
theoretical timespan counting from the EEGs collection to the
instruction generation is as follows:

Ts =100+n× ts (ms) (7)
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TABLE 3 Summary of sFE-Net.

Layer (type) Method Parameter Value

Conv1D_1 Temporal dimension Kernel dize 3

Strides 1

Filters 64

Pooling1D_1 Max pooling Pool dize 3

Strides 3

Padding Valid

Conv1D_2 Temporal dimension Kernel size 3

Strides 1

Filters 128

GRU_1 Time domain Activation tanh

Recurrent activation Sigmoid

Dropout 0.1

Recurrent dropout 0.1

Return sequences False

Units 128

Dense – Units 64

Activation ReLU

Dense – Units 32

Activation ReLU

Dense One hot Units 9

Activation Softmax

Loss function Categorical
cross entropy

– –

Optimizer RMSprop Learning rate 0.001

Training acceleration Batch Batch size 128

where Ts is the timespan of one instruction, ts is the
timespan of one decoded label, and n is set to be 20 in
this study comprehensively considering both the robustness
and the rapidity.

Results

Effective connectivity of slight-facial
expressions-electroencephalograms

To assess the particularity of the brain connectivity under
sFEs, effective connectivity with the resting-state-EEGs was first
computed as a standard. Such a resting-state threshold was
calculated as the 99th percentile gOPDC to eliminate outliers
and form a connectivity baseline. By comparing the threshold,
only higher gOPDCs were retained to emphasize the stronger
connectives. To reduce the computation, EEGs were down-
sampled to 512 Hz.

Filtering algorithm based on NA-MEMD and SampEn was
used to remove artifacts, as detailed in our previous study (Li R.
et al., 2018). Focusing on the typical frequency range of EEGs,
gOPDCs were averaged into three representative bands as low
frequency (4 Hz, 12 Hz), medium frequency (12 Hz, 30 Hz), and
high frequency (30 Hz, 50 Hz) (Zavaglia et al., 2006). Figure 8
illustrates the normalized sFE-averaged connectivity of three
EEG bands. Among the three bands, high frequency shows the
strongest connectivity. Among all channels, electrodes arranged
on the motor cortex show relatively more information exchange
than others (where ID.12-14 Cz and C3 and C4 show more
information outflow and ID.19-20 CP5 and CP6 show more
information inflow).

Focusing on the dynamic process of sFEs, gOPDCs during
the first 0.5 s (from 7.00 s to 7.50 s in each trial), the middle
0.5 s (from 8.75 s to 9.25 s) and the last 0.5 s (from 10.50 s to
11.00 s) were assessed in detail to reveal the connectivity changes
from the very beginning to the end. Directed information
flows with gOPDCs higher than other 90th percentile were
marked in Figure 9, along with the channels performing more
information interactions.

FIGURE 7

The timing diagram for one valid instruction generation, supposed that all collected data were slight-facial expression (sFE)-
electroencephalograms (EEGs) intending for the same label.

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.892794
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-892794 August 12, 2022 Time: 8:23 # 11

Lu et al. 10.3389/fnins.2022.892794

10 20 30

Channel-ID

10

20

30

10 20 30

Channel-ID

10

20

30

10 20 30

Channel-ID

10

20

30

C
h
a
n
n
e
l-
ID

C
h
a
n
n
e
l-
ID

C
h
a
n
n
e
l-
ID

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A B C

FIGURE 8

The normalized slight-facial expression (sFEs)-averaged generalized orthogonalized partial directed coherence (gOPDC) over normal threshold
of (A) low frequency, (B) medium frequency, and (C) high frequency, where the value between the same channels were assigned as “NaN,” and
the Channel ID.1 to ID.30 were listed as: Fp1, Fp2, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, C4, T3, T4, CP1, CP2, CP5, CP6, Pz, P3, P4, T5,
T6, PO3, PO4, Oz, O1, and O2. The block in ith row and jth column represents the gOPDC from Channel ID.j to Channel ID.i.

Among all 30 channels, those present inside and
surrounding the motor cortex show more involvement and
interactions. Typically, in slight-Left-Smirk, more interactions
flow out of the right area into the left area of the brains; while in
slight-Right-Smirk, more interactions flow from the right to the
left. The participation of the visual cortex may result from the
UI prompt. Some small asymmetries between the channels on
the left and the right regions may be caused by the majority of
right-handedness.

Component analysis of slight-facial
expressions-electroencephalogram

To analyze the component of sFE-EEG and form the
guidance on signal processing, different passbands were selected
to clarify the variation of signal components along with the
frequency of sFE-EEG.

For the multi-channeled joint computing, FastICA was
conducted first. With FastICA, the collected 30-channeled sFE-
EEG were separated into 30 independent components (ICs). The
selected non-quadratic non-linear function in FastICA is tanh,
and the optimization function is Gauss. Figure 10 demonstrates
the SampEn of each IC separated from sFE-EEGs.

In Figure 10A, with pass-band as (5 Hz, 50 Hz), it is clear
that none SampEn of the 30 ICs among eight sFEs exceeds the
0.45 threshold, indicating the dominance of EEG information in
each IC. While in Figure 10B, with the pass-band increased into
(5 Hz, 95 Hz), the SampEn rises, with nearly all ICs exceeding
the threshold, indicating the presence of EMG information.
Such comparison demonstrated that, in the typical EEG bands
lower than 50 Hz, the EEG components dominate the sFE-EEGs;
while in the high-frequency bands above 50 Hz, more EMG
components are engaged and influence the signal.

For a more specifically single-channel analysis, the NA-
MEMD was applied to each channel to observe the SampEn of

each intrinsic mode function (IMF). With NA-MEMD, the sFE-
EEGs in each channel were decomposed into several IMFs, and
each IMF whose SampEn exceeds 0.45 would be identified as
the main carrier of EMG information. Figure 11 illustrates the
SampEn of IMFs decomposed from the sFE-EEGs.

Similarly, the comparison in Figure 11 demonstrates the
same result as Figure 10. In passband lower than 50 Hz,
none SampEn exceeded 0.45, indicating that EEG components
dominate the sFE-EEGs; while in the high-frequency bands, the
first IMF is the main carrier of EMG information, indicating
that more EMG components are evolved. For passband (5 Hz,
95 Hz), by discarding those IMF whose SampEn exceeds the
threshold and reconstructing the clean EEG, compared with
the original sFE-EEG in (5 Hz, 95 Hz), the reduction ratios in
temporal energy are shown in Figure 12.

After discarding the EMG component, compared to the
original sFE-EEG in (5 Hz, 95 Hz), the average decline rate of
temporal energy among all channels is 20.2% ± 5.7; in other
words, nearly 80% of sFE-EEG’s original temporal energy is
retained. The results above indicate that most of the energy
of sFE-EEG comes from the EEG component; meanwhile, the
EMG components mainly exist in a high frequency above 50 Hz.

Asynchronous slight-facial
expressions-paradigm interface

To determine the algorithm parameters and develop the
sFE-paradigm software, data collected from offline experiments
from six subjects were used in the offline assessment first. Then,
10 subjects participated in the online manipulation to evaluate
the practical ability of such EEG-based control paradigm.
During the offline assessment, the accuracy, precision, and
time cost are given more consideration. While in the online
evaluation, the controllability and the completion quality of
tasks are more emphasized.
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electromyogram (EMG) component.

Overlap = 0 Overlap = 97

nth

n+1th

100ms

Step B
NC

30 Channels

1
0

0
m

s L
e
n

g
th

Step B
IC

30 Channels

1
0

0
m

s L
e
n

g
th

Step C
NON

30 Channels
1

0
0

m
s L

e
n

g
th

Step C
Slight
FEs

30 Channels

1
0

0
m

s L
e
n

g
th

Overlap = 0 Overlap = 87

nth n+1th

100ms

FIGURE 13

The illustration for datasets in offline assessment.

Offline datasets
Data from the offline experiment were sliced into pieces and

stacked. The imbalance for training datasets (in Step B and Step
C) was solved by overlap, as illustrated in Figure 13.

Within Step B’s training, the NC dataset consists of EEGs
from the resting-state, relaxing-state, eight facial-expressions
with regular amplitude, and seven non-state-switching sFEs,
while the IC dataset was only generated from state-switching
sFE-EEGs. In Step C’s training, the dataset for “NON” was sliced
from the resting-state EEG.

Offline assessment
Step A: Obvious non-slight-facial
expressions-electroencephalograms exclusion

Compared to the former FE-BCI (Lu Z. F. et al., 2018),
by limiting the range of facial muscle movement, this sFE-
paradigm greatly reduces the proportion of EMG artifacts thus
ensuring the possibility to distinguish between daily FE and
sFE during control. Figure 14 shows the comparison between
regular FE-EEGs vs. sFE-EEGs. The amplitude range of sFE-
EEGs is much smaller than that under regular facial-expressions.
To exclude non-sFE-EEGs, several different methods for
threshold setting are compared in Table 4.

Throughout the three methods, the temporal energy
achieves the highest score. By setting the threshold as the
temporal energy, the correctly acceptance rates (ARs) of

different sFEs are listed in Table 5. ARs in Table 5 are
nearly 99% and show no typical imbalances. The extremely
short timespan, high AR, and high RR prove the feasibility of
threshold comparison as the first segment of the algorithm.

Step B: Interface “ON” detection

To select one sFE as the most suitable sFE for state-
switching, eight sFEs were first compared using SVMs with
four different kernel functions, as listed in Table 6. In Table 6,
the s-RB achieves the highest overall accuracy when it is set
as the state-switching sFE. The detailed performances of SVM
kernels are listed in Table 7, with the s-RB as the state-switching
sFE. Additionally, the time cost of CSP feature engineering is
0.1328 ms in average.

Among four SVM kernels, the linear polynomial, the
scaled Gaussian, and the medium Gaussian achieve higher
F1 scores (Derczynski, 2016). Comprehensively considering
the F1 score, prediction speed, and training duration, the
scaled Gaussian performs the best. The adaptability of
scaled Gaussian kernel to each subject is listed in Table 8.
The accuracy, precision, and recall in Table 8 show a
relatively small standard deviation (SD) among subjects.
Based on all the assessments above, the CSP combining
with scaled-Gaussian-SVM proves its best applicability,
which maintains a stable performance without obvious
individual differences.
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TABLE 4 Comparison among different threshold setting methods.

Method Formula Correctly
acceptance

rate
(AR)

Correctly
rejection

rate
(RR)

Timespan
(Ts)

Score*

Maximum
max{|xi|},

(i = 1, ..., 100)
99.48% 64.67% 0.0055ms 39.11

Temporal energy
∑i=100

i=1 x2
i 99.45% 68.66% 0.0055ms 40.53

Amplitude range
max{xi} −min{xi},

(i = 1, ..., 100)
99.48% 64.80% 0.0055ms 39.15

*The score is calculated as 1/ (1/AR+ 1/RR+ Ts).

TABLE 5 Correctly acceptance rate of eight slight-facial expression (sFEs) with threshold as temporal energy.

S s-RB* (%) s-FB* (%) s-LS* (%) s-RS* (%) s-OM* (%) s-S* (%) s-PM* (%) s-DM* (%)

S1 97.19 100 99.94 99.25 100 99.31 99.56 99.94

S2 98.38 98.88 99.75 100 99.94 99.06 99.94 99.25

S3 98.63 100 98.81 98.81 100 100 100 100

S4 98.06 99.94 98.88 99.75 100 99.06 99.94 100

S5 97.94 99.88 100 99.94 100 99.94 99.75 98.00

S6 97.75 100 99.00 99.13 99.88 100 99.94 100

*s-RB stands for slight-Raise-Brow; s-FB for slight-Furrow-Brow; s-LS for slight-Left-Smirk; s-RS for slight-Right-Smirk; s-OM for slight-Open-Mouth; s-S for slight-Smile; s-PM for
slight-Pout-Mouth; s-DM for slight-Duck-Mouth.

TABLE 6 The Accuracy for eight different state-switching- slight-facial expression (sFEs).

sFE SVM kernel

Linear
polynomial (%)

Quadratic
polynomial (%)

Scaled
gaussian (%)

Medium
gaussian (%)

s-RB 96.19 74.59 96.46 96.30

s-FB 80.90 50.36 84.07 83.28

s-LS 76.70 51.54 81.08 80.60

s-RS 80.23 52.85 83.33 82.75

s-OM 72.84 53.28 81.66 81.41

s-S 71.49 50.23 78.37 77.27

s-PM 68.95 49.55 75.32 74.68

s-DM 66.95 49.14 77.36 76.76
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TABLE 7 The detailed performance of different SVM kernels*.

SVM kernel Accuracy (%) Precision(%) Recall (%) F1 score Prediction
speed

Training
duration

Linear polynomial 96.19 94.58 98.02 48.14 490000obs/s >15min

Quadratic polynomial 74.59 75.62 73.23 37.20 96000obs/s >15min

Scaled gaussian 96.46 95.29 97.78 48.26 130000obs/s <3min

Medium gaussian 96.30 94.82 97.98 48.19 170000obs/s <2min

*Evaluation with Win10, i5-6500, 3.20GHz, without GPU accelerated.

Step C: Slight-facial
expressions-electroencephalograms real-time
decoding

As a multi-classification with nine targets based on deep-
learning, several mature structures are assessed to verify their
applicability first, such as VGG16 (Simonyan and Zisserman,
2014), DenseNet121 (Huang et al., 2017), and ResNet50 (He
et al., 2016). To match with this specified problem, all network
applications were imported without pretrained weights and
slightly modified, as shown in Table 9. Compared with the
sFE-Net, their accuracies under 10-fold validation are listed in
Table 10. Through comparison, DenseNet121 and ResNet50
both achieve not only higher training accuracy, but also
face serious overfitting problems (even would suddenly drop
to a 40% validation accuracy in the late-training-process).
Compared with three mature network applications, the sFE-
Net, although not the highest training accuracy, shows a more
balanced performance between training and validation.

In addition to the network structure, extra feature
engineering steps were combined to assess its effectiveness
(Table 11). Since the sFE-Net model is not designed to accept
4-dimensional input tensors, the classifier combined with the
filter bank common spatial pattern (FB-CSP) (Ang et al.,
2008) feature engineering was selected to be the DenseNet121.
In Table 11, the sFE-Net without any hand-made feature
engineering achieves the best performance. The iteration of sFE-
Net is shown in Figure 15. The detailed accuracy of sFE-Net
under 10-fold validation and its prediction speed are listed in
Table 12.

TABLE 8 The accuracy, precision and recall with scaled gaussian.

S Accuracy (%) Precision (%) Recall (%)

S1 97.79 96.14 99.57

S2 96.47 95.22 97.85

S3 96.62 97.09 96.13

S4 94.60 92.50 97.06

S5 97.11 95.65 98.70

S6 96.18 95.13 97.34

Mean 96.46 95.29 97.78

Std ±1.07 ±1.54 ±1.22

As demonstrated in Table 12, the sFE-Net achieves a
stable performance varying among subjects with a ±1.21%
Std; Meanwhile it maintains a precise accuracy and relatively
small overfitting (with the validation accuracy as 89.48% and
the training accuracy as 92.68%). The average time cost for
one prediction is nearly 0.235 ms. Figure 16 demonstrates the
contoured feature maps extracted by the CNN layer in sFE-Net.
The confusion matrix among eight sFEs (seven control targets
and one state-switching target) is listed in Table 13.

Among the eight sFEs, the s-RB (corresponding to state-
switching) achieves the highest prediction accuracy of 99.15%,
While the lowest of 90.20%is achieved by s–S. The averaged
prediction accuracy among such eight sFEs is 93.56%. In each
true label, the confusion with “NON” is especially higher than
the others, which decreases the averaged classification accuracy.
The high misrecognition rate between the true label and “NON”
must be caused by a small change between the sFEs and
the resting-state, which results in similar signal ingredients.

TABLE 9 Structure for network applications.

Layer (type) Method Parameter Value

Network applications – Pretrained weights None

Top layer Not include

Dense – Units 256

Activation ReLU

Dropout – – 0.5

Dense One hot Units 9

Activation Softmax

Loss function Categoricalcross entropy – –

Optimizer RMSprop Learning rate 0.001

Training acceleration Batch Batch size 128

TABLE 10 Performance comparison among deep-learning structures.

Deep learning network Training
accuracy (%)

Validation
accuracy (%)

VGG16 11.03 11.34

DenseNet121 98.91 88.94

ResNet50 98.52 87.27

sFE-Net 92.68 89.48
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TABLE 11 Performance comparison for extra feature engineering.

Method Feature
engineering

Classifier Training
accuracy (%)

Validation
accuracy (%)

A CSP
(One vs. Rest)

SVM
(Fine Gaussian)

74.24 71.45

B FB-CSP
(Three frequency

bands)

DenseNet121 89.87 36.63

C – sFE-Net 92.68 89.48
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FIGURE 15

The learning process of slight-facial expression (sFE)-Net.

Considering the advantage to retain the “NON” label as a hold-
on command, which provides the system a rest even after
entering the IC state, such “NON” label cannot be deleted and
is designed to be remained. The stability of the final instruction
is enhanced by Step D to improve accuracy.

Step D: Validity judgment

As has been assessed in detail above, the timespan (with
ample margin) of each step is summarized in Table 14. The
theoretical timespans for different instructions are all less
than 200 ms, which meet the specified requirement for real-
time control.

TABLE 12 Offline accuracy of slight-facial expression (sFE)-Net with
10-fold validation*.

S Training
accuracy (%)

Validation
accuracy (%)

Prediction speed

S1 92.58 89.59 256000obs/s

S2 92.45 89.06 256000obs/s

S3 91.21 88.00 257000obs/s

S4 92.25 89.34 254000obs/s

S5 94.89 91.69 254000obs/s

S6 92.69 89.17 256000obs/s

Mean 92.68 89.48 –

SD ±1.21 ±1.21 –

*Evaluation with Win10, i5-6500, 3.20GHz, accelerated with GTX 960.

According to the theoretical time cost for generating one
instruction in Eq. (7), the timespan for different instruction is
listed in Table 15.

Online evaluation
Based on the offline assessment, an sFE-paradigm software

has been developed to facilitate the easy application of the
online external device control. By using this software, the
subject-dependent classifiers and parameters were automatically
computed, and then the online sFE-paradigm controlling task
with AUBO-i5 robotic arm system and the 2-DoFs prosthetic
hand were conducted. Within the stepping control strategy
adopted by these two peripherals, the stepping distances are not
elaborately designed for tasks. Due to the visual perspective,
stepping distance, and some unavoidable random errors, these
tasks can hardly be completed with perfect zero deviation, even
by using the referred control method (i.e., FlexPendant and
Joystick). In the following online evaluation, the practicality
and the controllability of the sFE-paradigm are more concerned
(e.g., the floating range of the indicator) than the precision.
Compared between these two tasks, Task one requires higher
stability, while Task two emphasized more on agility and real-
time ability.

Task one: Object-moving with a robotic arm

To manipulate the AUBO-i5 robotic arm system, all eight
sFEs were enabled. Considering the different important levels of
instructions (e.g., a trial would be judged as a failure once the
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FIGURE 16

The contoured feature maps extracted by the convolutional neural network (CNN) layer in slight-facial expression (sFE)-Net.

TABLE 13 Confusion matrix among eight slight-facial expression (sFEs).

True label Predicted label

s-RB (%) s-FB (%) s-LS (%) s-RS (%) s-OM (%) s-S (%) s-PM (%) s-DM (%) NON (%)

s-RB 99.15 0.07 0.00 0.05 0.05 0.01 0.01 0.03 0.63

s-FB 0.08 94.91 0.63 0.48 0.44 0.27 0.21 0.05 2.93

s-LS 0.03 1.02 92.17 0.51 0.39 1.12 0.33 0.21 4.23

s-RS 0.05 0.22 0.78 94.05 0.20 1.38 0.20 0.27 2.85

s-OM 0.10 0.39 0.25 0.18 93.23 0.22 0.82 0.66 4.14

s-S 0.07 0.13 0.99 0.83 0.27 93.20 0.96 0.92 2.63

s-PM 0.09 0.23 0.43 0.16 1.07 1.24 91.61 0.90 4.27

s-DM 0.05 0.13 0.48 0.36 1.07 1.15 1.05 90.20 5.51

electric gripper is mistakenly opened halfway), the sFE with the
highest recognition accuracy (except for the s-RB) is assigned
to the most vital instruction. The correspondence between the
sFEs and the system instruction is listed in Table 16, where
s-RB is responsible for the state-switching as mentioned before.
Table 16 also lists the consistency checking criteria. Figure 17
demonstrates the time log of a successful online manipulation
for Task one performed by subject S7.

According to Figure 17, first the timestamp 0.000 s begins at
the ‘Start’ button being pressed by S7-self; second, at 2.186 s S7
switched on the sFE-paradigm successfully; third, after careful

TABLE 14 Timespan (with ample margin) of each step.

Step Timespan (ms)

Step A: Obvious non-sFE-EEGs exclusion ≈ 0.01

Step B: Interface ‘ON’ detection ≈ 0.15

Step C: sFE-EEGs real-time decoding ≈ 0.24

TABLE 15 Theoretical timespan for instruction generation.

Instruction Theoretical timespan (ms)

Asynchronous interface “ON” ≈103.2

Asynchronous interface “OFF” ≈105.0

sFE-paradigm based control instruction ≈105.0

movements, the S7 opened the electrical gripper to put down
the wooden block at 153.530 s; finally, the S7 switched off the
sFE-paradigm and finished the task at 155.479 s. During the
operation, unrelated EEGs were successfully rejected by sFE-
paradigm system. The final deviation of the wooden block
in the trial listed in Figure 17 is –4.5 mm on x-axis and
+3.1 mm on y-axis (Figure 18). The placement deviation
with the sFE-paradigm is shown in Figure 19, along with the
deviation by FlexPendant.

From bottom to top, the first axis is the timeline, and the
second axis is a counter which represents the processing of nth
100 ms EEGs. The five boxes in the lower area illustrate the
algorithm results along the timeline step-by-step, and the four
boxes in the upper area illustrate the systematic movement of
the AUBO-i5 robotic arm. The x, y, and z axes for the robotic
arm system of AUBO-i5 are consistent with Figure 4A, and the
timelines for all axes and all boxes remain aligned.

For a reliable control method, under one’s visual guidance,
the deviation shall cause certain random volatility within a small
range. Instead of perfect zero deviation, the variation range of
deviation under sFE-paradigm is of more concerned. Among
all online subjects (S7-S16), the averaged variation range (AVR)
of sFE-paradigm’s deviation is 11.14 ± 6.13 mm along x-axis
and 9.78 ± 3.83 mm along y-axis, and 10.46 ± 5.15 mm in
total (while the AVR of FlexPendant is 7.75 ± 7.67 mm in total
and shows no significant difference with P = 0.2089 > 0.05). As
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TABLE 16 The operational correspondence, along with the consistency checking criteria x% in Task one.

Item s-RB s-FB s-LS s-RS s-OM s-S s-PM s-DM

Instruction – Open Left Right Up Down Backward Forward

Criteria 0.95 0.95 0.45 0.45 0.45 0.95 0.55 0.80
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FIGURE 17

The time log of a successful online manipulation in Task one performed by subject S7. From bottom to top, the first axis is the timeline, and the
second axis is a counter which represents the processing of nth 100 ms EEGs. The five boxes in the lower area illustrate the algorithm results
along the timeline step-by-step, and the four boxes in the upper area illustrate the systematic movement of the AUBO-i5 robotic arm. The x, y,
and z axes for the robotic arm system of AUBO-i5 are consistent with Figure 4A, and the timelines for all axes and all boxes remain aligned.

FIGURE 18

The illustration for placement deviation in Task one.

in Figure 19, for most subjects, compared with FlexPendant,
deviation by sFE-paradigm achieves a comparable range
of variation, a similar averaged value, and a close Std,
which indicates an approximative level of controllability as
FlexPendant. But for few subjects, on one certain axis (i.e., the
x-axis of S11) where the median of sFE-paradigm’s boxplot
is marked far from the average, it indicates that there exists

uncontrollability during the position adjustment along that axis
by using the sFE-paradigm. Overall, the maximum deviation
with sFE-paradigm can largely be limited below 20 mm (S8),
from which the minimum deviation can sometimes be±0.1 mm
(S10, S11), and none of the subject deviations shows significant
difference compared between sFE-paradigm and FlexPedant.
The intersection over union (IoU) between the target location
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FIGURE 19

The boxplot of placement deviation in Task one with slight-facial expression (sFE)-paradigm and FlexPendant, where the short red line indicates
the median, and the number indicates the mean.
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FIGURE 20

The intersection over union (IoU) of placement deviation in Task one with slight-facial expression (sFE)-paradigm and FlexPendant, where the
short red line indicates the average.
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FIGURE 21

The time cost in Task one with slight-facial expression (sFE)-paradigm, where the timestamp A corresponds to “System Turn ON,” the timestamp
B corresponds to “Gripper Open” and the timestamp C corresponds to “System Turn OFF” (as demonstrated in Figure 17).

B and the block placement in Task one is demonstrated in
Figure 20.

Among all the 50 trials, 96% of trials succeed, only 2
trials by S8 failed halfway. The averaged IoU of sFE-paradigm
is 60.03 ± 11.53%, while 62.05 ± 6.01% of FlexPendant,
shows no significant difference with P = 0.6521 > 0.05. As
in Figure 20, the minimum IoU with sFE-paradigm among
all is 21.47% (S8) while the maximum is 82.62% (S13 and
S15). Compared with FlexPendant, the statistical test indicates
that the IoU of sFE-paradigm shows similar performance
overall. But for several subjects (e.g., S8, S9, S11, and S14),

the IoU of FlexPendant performed slightly better and scored
higher than sFE-paradigm, which indicates that during an
actual application process, the operation under sFE-paradigm is
more complicated.

In terms of time cost (Figure 21), affected by different levels
of tension and proficiency, the completion time varies from
less than 60 s to approximately 150 s. The average completion
time for Task one is 105.07 ± 13.50 s; in which, for “System
Turn ON” stage is 1.55 ± 0.67 s, for block moving and placing
stage is 100.19 ± 13.17 s and for “System Turn OFF” stage is
3.27± 1.64 s. The time-consuming of each stage starts from the
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TABLE 17 The operational correspondence and the consistency checking criteria in Task two.

Item s-RB s-FB s-LS s-RS s-OM s-S s-PM s-DM

Instruction – Open Extorsion Intorsion – Close – –

Criteria 0.95 0.95 0.35 0.40 1 0.95 1 1

end of the previous state (or valid instruction) to the beginning
of the next state (or valid instruction).

Task two: Water-pouring with a prosthetic hand

With a 2-DoFs prosthetic hand, only four sFEs that achieved
higher decoding accuracy were enabled. Apart from these four
sFEs, other valid instructions generated from the rest sFEs
would not be transmitted. Slightly differing from Task one, Task
two requires a higher real-time response, because a tiny change
in wrist angle will pour several milliliters or even dozens of
milliliters of water. Table 17 shows the correspondence between
the sFEs and the instruction (left-handed prosthesis), and the
consistency checking criteria. Figure 20 demonstrates the time
log of a successful online process in Task two.

In Figure 22, subject switched on the sFE-paradigm at
1.329 s, then completed the water-pouring task at 102.367 s, and
finally switched off the interface at 106.261 s; The final deviation
of water volume in the trial listed in Figure 22 is less than 1 ml.

Same as Task one, the deviation affected by the visual
perspective and the step distance can hardly be zero even
by Joystick. The water volume in Task two is demonstrated
in Figure 23. Among all 50 trials of Task two, 100% trials
successfully finished. The averaged water volume by sFE-
paradigm is 202.5 ± 2.5 ml, while 202.2 ± 2.7 ml similarly by
Joystick, between which shows no significant difference with
P = 0.7931 > 0.05. Compared with Joystick, with such simplified
4 instructions, the sFE-paradigm achieved almost the same
performance as Joystick in water pouring task. The average
completion time of Task two is shown in Figure 24.

The time spent varies from approximately 60 to 150 s. The
average completion time for online Task two is 68.41 ± 19.52 s,
while the averaged time spent for “System Turn ON” stage is
1.43± 0.45 s, for water pouring stage is 64.09± 19.06 s, and for
“System Turn OFF” stage is 2.88± 0.74 s.

Discussion

Potential influencers of online
performance

To explore the practicality of the developed sFE-paradigm,
attention was paid to its online application procedure. In the
online study, there were the following three factors that had been
noticed which would affect the performance, and for which our
research group planned to conduct a more in-depth study.

Long-term wearing of electroencephalogram
cap

Tightened by the EEG cap fabric, the subjects experienced
varying degrees of itching, leading to subconscious scratching,
which became more frequent over time. Meanwhile, in the
manipulation, under a relatively concentrated state, several
subjects sweated beneath the EEG cap. In the whole online
experiment, the subjects might eat (or even have dinner) with
the EEG cap worn, and some subjects would move the strap fixed
to their chin to facilitate chewing.

Reasons above caused the shift of EEG electrodes which
enlarges with the increase of wearing time. Such a shift resulted
in the difference between the EEG detected in online and
collected during acquisition. In terms of impedance, as the wear
duration lengthens, the impedance was reduced to lower than
1 k�; meanwhile, the conductive gel got solidified and dried up.
Noticing these, with the proceeding of the online procedure, we
have gradually reduced the amount of training data gathering to
compress the duration.

Mental state
Being more difficult than commercial control forms (i.e.,

FlexPendant and Joystick), the subjects were relatively more
concentrated in the process of sFE-paradigm-based control
tasks, resulting in varying nervousness depending on personal
psychology. In operation, subjects with higher levels of tension
were found to show greater degradation from the “debug” mode
(sFE- paradigm without peripherals connected) to the actual
sFE-paradigm-based electromechanics control; On the contrary,
the performance of tranquil subjects remained consistent. In
addition, by lessening the control instructions, Task two shows
a decrease in difficulty, the relief of nervousness, and the
improvement of proficiency. Thus, even Task two requires more
operation agility, and the overall performance is more excellent
than Task one.

In the whole online study, we have observed that the mental
state of subjects has a great impact on the completion quality of
control tasks, inspired by which we have also carried out a study
on the compensation method of manipulation quality affected
by mental state.

Physical movements
In the online procedure, the subjects were asked to sit

comfortably, but to avoid extra-large physical movements.
For most subjects, body movements were found that would
reduce the stability of sFE-paradigm during applications.
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FIGURE 24

The time spent in the online experiment for Task two with the slight-facial expression (sFE)-paradigm, where the timestamp A corresponds to
‘System Turn ON’, the timestamp B corresponds to ‘Palm Open,’ and the timestamp C corresponds to ‘System Turn OFF’ (as demonstrated in
Figure 22).

But for few subjects, such as subjects S11 and S14 who were
actively asked to stand up, pace, and softly communicate
in Task one, physical movements did not show much
influence on the stability of the sFE- paradigm. The
performance of these trials by subjects S11 and S14 were

listed in the result of this study. Encouraged by these two
subjects, we believe that the proposed sFE-paradigm is
promising of realistic applicability, thereby emphasizing a
future study on the stability under physical movements of
sFE-paradigm.
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The balance between robustness and
real-time

In the online tasks, the timer started at the “Start” button
(on the GUI) being pressed by the subjects and ended at the
sFE-paradigm being switched off by the subjects. All participants
were not well-skilled BCI users and had no prior experience with
the sFE-paradigm. Each time-spent as provided in Figures 21
and 24 can be regarded as the time-consuming of one stage
(instead of merely the signal procedure for 20 continuous
decoded targets). For the turn-on stage, since the GUI was
interacted with the mouse, from the timestamp 0.00 s to the
successful switch-on of the sFE-paradigm, it contained the time
of releasing the mouse, self-mental adjustment, and activity,
and slightly raising-brow to start the paradigm. Similarly, for
the turn-off stage, starting from sending the last equipment
operation instruction and ending up at successfully switching off
the system, it contained the time of completing the equipment’s
movement according to the instruction, self-mental adjustment,
and slightly raising-brow to switch off the paradigm.

In this study, based on the numerical criteria of real-time
ability, the time length for EEG inputs was selected; meanwhile,
to reduce the misoperation, the validity judgment (for
generating one valid instruction) depended on 20 continuous
decoded targets was designed, of which its theoretical time-
spent met the real-time requirements. However, in the online
manipulation, when interacting with the electrical equipment
in real work tasks, being affected by personal mental states
and levels of tension, the complexity of EEGs increased, and
the stability decreased. By taking the system robustness as the
priority, the consistency checking criteria were set at a risk-free
level. Thus, not each continuous 20 decoded targets can meet the
validity judgment and generate one instruction, hence resulting
in different levels of real-time ability which do not always reach
the theoretical ideal.

By presenting the whole operation procedure of the sFE-
paradigm-based real task operation, in this study, the online
performance emphasis was placed on the controllability and
agility (whether it reached the same level as other commercial
control methods). In further studies, to optimize the paradigm
capability, a reinforcement learning would be adopted to
adaptively adjust the validity judgment policy according to the
current working conditions, to find a better scheme in balancing
the real-time ability and robustness.

Conclusion

In this study, a novel asynchronous artifact-enhanced EEG-
based control paradigm assisted by slight-facial expressions
with eight valid control instructions was proposed and
implemented. Through the insight of brain connectivity

analysis, the high participation of the motor cortex under
sFE-paradigm was revealed, which was conformed to the
contralateral control fact and demonstrated the domination
of motor cortex. The component analysis with sFE-EEG
indicated the dominance of EEG components in sFE-EEG. The
sFE-paradigm proved its feasibility and practicality through
various online electromechanical manipulation tasks, focusing
especially on stability and agility. Both offline and online
results demonstrated the capability of sFE-paradigm. In the
offline procedure, it achieved accuracies of 96.46% ± 1.07 for
interface switching and 92.68% ± 1.21 for real-time control,
with a 105.5 ms theoretical timespan for sFE-paradigm -
based instruction generation. In online procedure, the sFE-
paradigm performed 60.03 ± 11.53% averaged IoU in Task
one and 202.5 ± 7.0 ml averaged water volume in Task
two. Results suggested that the sFE-paradigm showed the
similar level of controllability and agility as FlexPendant
(P = 0.6521 > 0.05) and Joystick (P = 0.7931 > 0.05).
During the study, more subtle factors that may affect online
performance have been noticed by us, on which we will
carry out more in-depth research. We sincerely look forward
to the realization of neuro-based control in real-world
applications in the future.
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