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Alzheimer’s disease (AD) is a progressive disease that leads to irreversible behavioral
changes, erratic emotions, and loss of motor skills. These conditions make people with
AD hard or almost impossible to take care of. Multiple internal and external pathological
factors may affect or even trigger the initiation and progression of AD. DNA methylation
is one of the most effective regulatory roles during AD pathogenesis, and pathological
methylation alterations may be potentially different in the various brain structures of
people with AD. Although multiple loci associated with AD initiation and progression
have been identified, the spatial distribution patterns of AD-associated DNA methylation
in the brain have not been clarified. According to the systematic methylation profiles
on different structural brain regions, we applied multiple machine learning algorithms
to investigate such profiles. First, the profile on each brain region was analyzed by the
Boruta feature filtering method. Some important methylation features were extracted
and further analyzed by the max-relevance and min-redundancy method, resulting
in a feature list. Then, the incremental feature selection method, incorporating some
classification algorithms, adopted such list to identify candidate AD-associated loci at
methylation with structural specificity, establish a group of quantitative rules for revealing
the effects of DNA methylation in various brain regions (i.e., four brain structures) on
AD pathogenesis. Furthermore, some efficient classifiers based on essential methylation
sites were proposed to identify AD samples. Results revealed that methylation alterations
in different brain structures have different contributions to AD pathogenesis. This study
further illustrates the complex pathological mechanisms of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive disease that initiates the
pathogenesis of dementia (Rogers et al., 1996; Karch and Goate,
2015). At the onset, AD symptoms are quite mild, something as
seemingly innocuous as mild and gradual memory loss. However,
AD can quickly progress to negatively affect not only cognitive
ability but also motor skills, thereby reducing the quality of
life of patients with this disease, especially the elderly (Reisberg
et al., 1987; Weller and Budson, 2018; Atri, 2019). Clinically and
by definition, the most common symptom of early-stage AD
is a reduction in memory capacity (Weller and Budson, 2018;
Atri, 2019). As AD progresses, it may also lead to irreversible
behavioral changes, erratic emotions, and loss of motor skills.
These conditions make people with AD difficult or almost
impossible to take care of.

In 2014, over 5 million people suffered from AD in the
United States (Murphy et al., 2015; Taylor et al., 2017). In
general, AD symptoms manifest after 65 years of age. Moreover,
the incidence of suffering from this disease increases with age,
indicating that the sooner the first AD symptoms appear, the
more severe the disease would be. Another study estimated that
over 200,000 people in the United States are already suffering
from advanced-stage AD (Matthews et al., 2019), suggesting that
the people who develop this disease are younger than 65 years old
and the symptoms are more severe than they should be. These
trends make AD one of the most serious public health concerns.

Multiple internal and external pathological factors may affect
or even trigger the initiation and progression of AD. DNA
methylation is one of the most effective regulatory roles during
AD pathogenesis (Mastroeni et al., 2010; De Jager et al., 2014;
Qazi et al., 2018). A systematic review summarized the specific
roles of epigenetic changes, including methylation alterations,
during AD pathogenesis (Mastroeni et al., 2010). Methylation
participates in the advancement of multiple progressive diseases,
such as cancer and AD (Mastroeni et al., 2010). Multiple
demethylation alterations further affect AD pathogenesis via
regulating downstream proteins, such as DNMT1, MBD2,
and p66-alpha, especially in specific brain structures, i.e., the
entorhinal cortex (ERC; Mastroeni et al., 2010). This review
indicated that methylation contributes to AD pathogenesis in
specific brain structures.

Other studies also explored potentially pathological
methylation alterations in the different brain structures of
people with AD. Methylation status seems to consistently
decrease in the hippocampus (HIPPO) during AD progression
(Chouliaras et al., 2013). Other researchers focused on the status
of methylation in the middle temporal gyrus (Coppieters et al.,
2014). Unlike in the HIPPO, DNA modifications as implied by
levels of 5-mc and 5-hmc continuously increase in the middle
temporal gyrus of patients with AD. Another team identified
specific methylation statuses at potentially effective genes, such
as ANK1, BIN1, and RHBDF2, which have a specific methylation
status during AD initiation (De Jager et al., 2014). Their results
implied that some unique genomic loci rather than the entire
genome may also be examined to effectively monitor and predict
AD progression. The methylation of various candidate genes
at specific brain structures may be strongly associated with AD

progression and can be potentially used in clinically predicting
AD pathogenesis and progression.

Although multiple loci associated with AD initiation and
progression have been identified, the spatial distribution patterns
of DNA methylation in the brain of people with AD have
not been clarified. A team systematically analyzed the status of
methylation in different brain structural regions from more than
60 samples (Semick et al., 2019). The said study provides us four
comprehensive datasets for exploring alterations in methylation
status in various brain regions at loci that are potentially
associated with AD. As the powerful machine learning algorithms
can deeply analyze hidden and complicated relationships in a big
dataset (Dai et al., 2016; Kong et al., 2020; Yang et al., 2020),
we adopted them to investigate above-mentioned comprehensive
datasets to identify a group of candidate loci potentially
associated with AD that regulate methylation and show structural
specificity. In our previous studies, we analyzed tissue-specific
methylation that is associated with the pathogenesis of complex
diseases, such as cancer (Pan et al., 2019) and viral infections
(Chen et al., 2019). Herein, we extend our understanding of
methylation in specific tissues by profiling the methylation
of brain diseases, which in this case is AD. The above-
mentioned four datasets were related to four major brain
structures: dorsolateral prefrontal cortex (DLPFC), HIPPO, ERC,
and cerebellum (CRB). Previous studies confirmed that these
structures are correlated with brain functions associated with
AD: decision making and working memory (DLPFC; Heekeren
et al., 2006), spatial memory and navigation (HIPPO; Broadbent
et al., 2004), neuron information processing and recording (ERC;
Keene et al., 2016), and learning (CRB; Raymond et al., 1996).
This study focused on these structures because of their functional
correlations with AD pathogenesis. On each dataset, we applied
several multiple machine learning algorithms to investigate it.
The Boruta feature filtering (Kursa and Rudnicki, 2010) and
max-relevance and min-redundancy (mRMR; Peng et al., 2005)
methods were performed one by one. Some essential methylation
features were extracted and ranked in a feature list. This list was
fed into the incremental feature selection (IFS; Liu and Setiono,
1998) method that integrated three classification algorithms:
random forest (RF; Breiman, 2001), support vector machine
(SVM; Cortes and Vapnik, 1995), partial decision tree (PART)
(Frank and Witten, 1998), to identify candidate AD-associated
methylation features with structural specificity, set up a group
of quantitative rules, which can reveal the effects of DNA
methylation in various brain regions (i.e., four brain structures)
on AD pathogenesis. In addition, on each brain region, some
efficient classifiers were built to identify AD samples. Our results
revealed that methylation alterations in different brain structures
have different contributions to AD pathogenesis. This study
further illustrates the complex pathological mechanisms of AD.

MATERIALS AND METHODS

Data
The DNA methylation profiles of AD and control samples from
postmortem brain donors’ four brain regions: CRB, DLPFC, ERC,
and HIPPO, were downloaded from Gene Expression Omnibus
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under accession number of GSE125895 (Semick et al., 2019). In
CRB dataset, there were 24 AD and 43 control samples. In DLPFC
dataset, there were 21 AD and 47 control samples. In ERC dataset,
there were 20 AD and 49 control samples. In HIPPO dataset,
there were 17 AD and 48 control samples. The DNA methylation
levels were measured with Illumina HumanMethylation450
BeadChip and represented with normalized beta values processed
with the R/Bioconductor package minfi1. The processed data
of 420,852 methylation probes in 269 samples were used for
further analysis.

Boruta Feature Filtering
As mentioned in section “Data,” all samples in four datasets were
represented by a large number of methylation features. Evidently,
not all of these features give contributions for identification of AD
samples. It is necessary to exclude irrelevant features first.

To quick complete this task, we employed the Boruta feature
filtering (Kursa and Rudnicki, 2010). It is a powerful feature
selection method based on RF. The Boruta method involves
several steps. First, shuffled data from copies of the original data
are created. Second, the RF is trained on the original and shuffled
data to obtain feature importance. Third, the Z score for each
feature is computed on the basis of this feature’s importance
score. Fourth, a feature is tagged as important if and only if its Z
score is greater than that of shadow features. Finally, these steps
are repeated for all features. The features tagged as important are
outputted as the outcome of this method, which are deemed to be
relevant features.

In this study, we adopted the Boruta program obtained from
https://github.com/scikit-learn-contrib/boruta_py, which was
performed on each dataset with its default parameters. Selected
features would be analyzed by the following mRMR method.

Max-Relevance and Min-Redundancy
Feature Selection
For the remaining methylation features, we further used mRMR
method (Peng et al., 2005) to analyze them. This method
calculates the mutual information (MI) between features and
class labels for evaluating feature relevance and MI between
features to assess the redundancy between features. Its original
purpose was to find out a feature subset that had maximum
relevance to class labels and minimum redundancies between
features in this set. However, such problem is NP-hard. In
view of this, it adopts a heuristic way. In this way, investigated
features are sorted in a feature list, where important features
are assigned high ranks. In the beginning, this list is empty.
The method repeatedly selects one features from the remaining
features such that it has maximum relevance to class labels
and minimum redundancies to features already in the list. Such
procedure stops until all features are in the list. This list is called
mRMR feature list.

The present study used the mRMR program retrieved from
http://penglab.janelia.org/proj/mRMR/. It was applied on each
dataset, in which samples were represented by features selected

1https://bioconductor.org/packages/minfi/

by Boruta. Accordingly, one mRMR feature list was obtained
on each dataset.

Incremental Feature Selection
Although mRMR method deeply analyzed the importance of each
methylation feature, it was still a problem which features can be
selected. Thus, we employed the IFS method (Liu and Setiono,
1998) to determine the optimal number of features according
to the integrating supervised classification algorithm. In brief, a
series of feature subsets are extracted from the mRMR feature
list yielded by the mRMR method at a step interval of 1. For
instance, the first feature subset has the top ranked feature, and
the second feature subset has the top 2 ranked features, and so
on. For each feature subset, a classifier is trained based on the
training data induced from this feature subset and the given
classification algorithm. All classifiers are evaluated by 10-fold
cross-validation (Kohavi, 1995). When all classifiers have been
assessed, the best one can be discovered. This classifier is called
the optimal classifier and the features used in such classifier are
termed as the optimal features.

Classification Algorithm
To execute the IFS method, one classification algorithm is
necessary. In this study, we used the following three classification
algorithms: RF (Breiman, 2001), SVM (Cortes and Vapnik, 1995),
and PART (Frank and Witten, 1998).

Random Forest
Random forest is widely applied in analyzing biological and
biomedical data. Several previous studies indicate the satisfactory
performance of RF (Pan et al., 2010; Zhao et al., 2018; Jia et al.,
2020; Chen et al., 2021, 2022; Ding et al., 2022; Li Z. et al., 2022;
Wu and Chen, 2022; Zhou et al., 2022). RF is a meta-classifier
because it consists of numerous decision trees. Each decision
tree in RF is learned from a bootstrap training data induced
from a randomly selected feature subset. For an input sample,
each decision tree provides its prediction. RF integrates these
predictions by majority voting. To quickly implement RF, the tool
“RandomForest” in Weka (Frank et al., 2004) was adopted. For
convenience, such tool was executed using default parameters.

Support Vector Machine
Support vector machine is a classic and powerful classification
algorithm. At present, it is always an important candidate for
constructing efficient classifiers (Chen et al., 2017; Zhou et al.,
2020a,b; Liu et al., 2021; Zhu et al., 2021; Li X. et al., 2022). In
mathematical terms, the main task of SVM is to transform non-
linear data from the original low-dimensional data space to a new
high-dimensional data space, where the new data would be linear
as guaranteed by a certain kernel trick. SVM then determines
support vectors on the data margin between samples from two
classes, which can represent a hyperplane in high-dimensional
data space to predict the class type of new samples. Likewise,
we also used the tool “SMO” in Weka (Frank et al., 2004)
to implement SVM. Such SVM is optimized by the sequence
minimization optimization algorithm (Platt, 1998).
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PART Rule Learning
Based on one of above two algorithms, investigators can
build efficient classifiers. However, they are absolute black-box
algorithms. Their classification principles are difficult to be
understood. Few clues can be extracted from them to uncover
differences between AD and control samples at the methylation
level. In view of this, a rule learning algorithm, PART (Frank and
Witten, 1998) was employed. Different from other rule learning
algorithms, PART can learn rules at a time. Hence, PART is a
simpler and more efficient approach without global optimization.
In general, PART can produce many partial decision trees and
combine the rules from these decision trees via the separate-and-
conquer technique. Similar to RF and SVM, we also used one tool
in Weka to implement PART. The tool was named as “PART.”

Synthetic Minority Oversampling
Technique
In each dataset, control samples were about twice as many
as AD samples. It is better to balance samples in these
two classes. To this end, the widely used method, synthetic
minority oversampling technique (SMOTE; Chawla et al., 2002)
was adopted, which is an over-sampling method. It iteratively
produces new samples for the minor class until the minor class
has equal number of samples in major class. In detail, it first
randomly selects a sample, say x, in the minor class. Then, a
number of samples in this class are picked up such that these
samples have smallest distance to x. The randomly selected
sample, say y, from above samples and x are used to generate the
new sample z, which is defined as the linear combination of x
and y. The tool “SMOTE” in Weka was applied in this study. The
SMOTE was only used in evaluation of performance of classifiers.
The samples generated by it did not participate in evaluating the
importance of methylation features.

Performance Evaluation
Matthew correlation coefficients (MCC) is a widely used
measurement for binary classification (Matthews, 1975; Zhao
et al., 2019; Liang et al., 2020; Zhang et al., 2021b; Yang and Chen,
2022), which was adopted herein to assess the performance of
the different classifiers within a 10-fold cross-validation (Kohavi,
1995; Zhao et al., 2019; Zhang et al., 2021a; Tang and Chen, 2022).
The MCC can be computed as follows:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, (1)

where TP, TN, FP, and FN indicate the sample number of
true-positive, true-negative, false-positive, and false-negative
predictions, respectively. MCC values range from -1 to +1
and achieves +1 when the classification model has the
best performance.

In addition, we also calculated other five measurements:
sensitivity (SN), specificity (SP), prediction accuracy (ACC),
precision and F1-measure, to fully display the performance of
different classifiers. They can be computed by

SN =
TP

TP + FN
(2)

SP =
TN

TN + FP
(3)

ACC =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

F1−measure =
2× TP

2× TP + FN + FP
(6)

RESULTS

In this study, the DNA methylation dataset on four brain
structures of AD and control samples was deeply analyzed. The
entire procedures are illustrated in Figure 1. This section gave
the detailed results produced by such procedures.

Results of Boruta and Max-Relevance
and Min-Redundancy Methods
For each brain structure, one methylation dataset was collected.
As a large number of methylation features were involved in each
dataset, the Boruta method was first applied on each dataset
to exclude irrelevant features. Important methylation features
remained for each dataset, which are provided in Supplementary
Table 1. The number of remaining features on each dataset
is listed in Table 1. It can be observed that less than 200
features were kept on each dataset, greatly reducing the scope of
investigated methylation features. These features were deemed to
be essential for distinguishing AD patients from control samples
on corresponding brain structure.

The features selected by Boruta method were further analyzed
by the mRMR method according to Figure 1. One mRMR feature
list was produced on each dataset, which is also provided in
Supplementary Table 1. Such list would be investigated in the
following analysis.

Incremental Feature Selection Results
on Four Brain Regions
The mRMR method produced an mRMR feature list on each
dataset, corresponding to one brain structure. Then, the IFS
method was applied on such list, which integrated three
classification algorithms.

For the CRB dataset, the mRMR feature list contained 124
methylation features. Accordingly, 124 feature subsets were

TABLE 1 | Number of methylation features selected by Boruta method
on each dataset.

Dataset on brain structure Number of methylation features

CRB dataset 124

ERC dataset 158

DLPFC dataset 149

HIPPO dataset 132
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FIGURE 1 | Entire procedures of the investigation on DNA methylation profile of patients with Alzheimer’s disease and control samples. The profile is retrieved from
Gene Expression Omnibus. Four datasets are constructed, corresponding to four brain structures. Each dataset is deeply analyzed by Boruta feature filtering and
max-relevance and min-redundancy methods one by one, resulting in a feature list. This list is used in the incremental feature selection, containing some
classification algorithms, to identify methylation signatures, rules and construct efficient classifiers.

generated in the IFS method by using step one. On each subset, a
classifier was built with one of the three classification algorithms,
which was further assessed by 10-fold cross-validation. The
predicted results were counted as measurements listed in section
“Performance Evaluation,” which are provided in Supplementary
Table 2. To clearly display the performance of the classifiers based
on one classification algorithm and different feature subsets, one
IFS curve was plotted for each classification algorithm by setting
MCC as Y-axis and number of used features as X-axis, as shown
in Figure 2. It can be observed that the RF, SVM, and PART
produced the highest MCC values of 0.968, 0.936, and 0.846,
respectively. These values were obtained by using top 38, 16, and
6, respectively, features in the mRMR feature list. These features
were the optimal ones for corresponding classification algorithm.
Accordingly, the optimal RF/SVM/PART classifier can be built
using corresponding optimal features. The ACC and F1-measure
of these classifiers are listed in Table 2, whereas the other three
measurements: SN, SP, and precision, are illustrated in Figure 3A.
Evidently, the optimal RF classifier was best, followed by the
optimal SVM classifier and optimal PART classifier.

For the other three datasets (ERC, DLPFC, and HIPPO
datasets), the same IFS procedures were conducted. Detailed IFS
results are provided in Supplementary Tables 3–5. Three IFS
curves, corresponding to three classification algorithms, were
plotted, as shown in Figures 4–6. From Figure 4 for ERC
dataset, we can see that RF/SVM/PART yielded the highest
MCC of 0.966/0.966/0.934, which was based on top 1/4/2
features in the list. Accordingly, we can build three optimal
classifiers with corresponding features. Other measurements of
these classifiers are provided in Table 2 and Figure 3B. Clearly,
the optimal RF and SVM classifiers gave equal performance,

whereas they were all superior to the optimal PART classifier.
For the IFS results on DLPFC dataset, it can be observed
from Figure 5 that three classification algorithms generated the
highest MCC values of 0.967, 1.000, and 0.868, respectively.
Top 6, 20, and 2, respectively, features in the list were adopted
to produce these MCC values, which comprised the optimal
features for the corresponding classification algorithm. With
these optimal features, three optimal classifiers were built. Their
detailed performance is listed in Table 2 and Figure 3C. The
optimal SVM classifier gave the best performance, followed by
the optimal RF and PART classifiers. As for the last dataset
(HIPPO dataset), the highest MCC value for RF/SVM/PART
was 0.926/1.000/0.920, which can be observed from Figure 6.
This MCC was obtained by using top 15/18/34 features in the
list. They were optimal features of corresponding classification

FIGURE 2 | IFS curves with different classification algorithms on different
number of methylation features for CRB brain structure. The RF, SVM, and
PART yield the highest MCC of 0.968, 0.936, and 0.846, respectively. They
are obtained by using top 38, 16, and 6, respectively, features in the list.
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TABLE 2 | Performance of the optimal classifiers based on different classification
algorithms on four brain structures.

Dataset of
brain
structure

Classification
algorithm

Number of
features

ACC MCC F1-measure

CRB dataset RF 38 0.985 0.968 0.979

SVM 16 0.970 0.936 0.957

PART 6 0.925 0.846 0.902

ERC dataset RF 1 0.986 0.966 0.976

SVM 4 0.986 0.966 0.976

PART 2 0.971 0.934 0.952

DLPFC dataset RF 6 0.985 0.967 0.977

SVM 20 1.000 1.000 1.000

PART 2 0.941 0.868 0.909

HIPPO dataset RF 15 0.969 0.926 0.944

SVM 18 1.000 1.000 1.000

PART 34 0.969 0.920 0.938

algorithm. The optimal RF/SVM/PART classifier was constructed
with its optimal features. Table 2 and Figure 3D summarizes the
detailed performance of these three optimal classifiers. Evidently,
the optimal SVM classifier was best, whereas other two optimal
classifiers were almost at the same level.

Based on the above IFS results, we can select a best classifier
on each dataset, which can be an efficient tool for identification
of AD samples based on a certain brain structure.

Classification Rules on Four Brain
Regions
On each brain structure, the optimal PART classifier always
provided the lowest performance. However, it can provide
more clues than other two optimal classifiers to uncover
different methylation patterns within a certain brain structure

FIGURE 4 | IFS curves with different classification algorithms on different
number of methylation features for ERC brain structure. The RF, SVM, and
PART yield the highest MCC of 0.966, 0.966, and 0.934, respectively. They
are obtained by using top 1, 4, and 2, respectively, features in the list.

of AD patients and control samples. By employing the optimal
features used in the optimal PART classifier, PART learned
rules based on all AD and control samples. These rules
are listed in Table 3. Two rules were obtained for CRB
brain structure. For other three brain structures, four, two
and two, respectively, rules were accessed. These rules clearly
displayed the different patterns on methylation levels between
AD and control samples, which were helpful to improve our
understanding on AD.

DISCUSSION

In this study, several computational methods were adopted
to analyze the DNA methylation profile of AD and control
samples. As pathological methylation alterations may occur in the
different brain structures, the methylation profile on four brain
structures was investigated. Some key methylations and rules

FIGURE 3 | Bar chart to show three measurements of the optimal classifiers on four brain structures. (A) CRB brain structure; (B) ERC brain structure; (C) DLPFC
brain structure; and (D) HIPPO brain structure. The optimal PART classifier generally provided the lowest performance.
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FIGURE 5 | IFS curves with different classification algorithms on different
number of methylation features for DLPFC brain structure. The RF, SVM, and
PART yield the highest MCC of 0.967, 1.000, and 0.868, respectively. They
are obtained by using top 6, 20, and 2, respectively, features in the list.

FIGURE 6 | IFS curves with different classification algorithms on different
number of methylation features for HIPPO brain structure. The RF, SVM, and
PART yield the highest MCC of 0.926, 1.000, and 0.920, respectively. They
are obtained by using top 15, 18, and 34, respectively, features in the list.

TABLE 3 | Classification rules generated by PART for four brain structures.

Brain structure Rule index Condition Result

CRB Rule-1 (cg15926585 > 0.2202) AND
(cg08105590 > 0.1467) AND

(cg07094785 > 0.7870)

Control

Rule-2 Others AD

ERC Rule-1 cg05810363 ≤ 0.8365 Control

Rule-2 cg05810363 > 0.8793 AD

Rule-3 cg08462501 > 0.8234 AD

Rule-4 Others Control

DLPFC Rule-1 (cg14622549 ≤ 0.8740) AND
(cg21097354 ≤ 0.2427)

Control

Rule-2 Others AD

HIPPO Rule-1 (cg13076843 > 0.8321) AND
(cg06639320 > 0.3468)

AD

Rule-2 Others Control

were obtained, as listed in section “Results.” Here, the analyses
on some methylations and rules were conducted.

Methylation Signatures and Rules From
the Cerebellum
Cerebellum mainly contributes to learning and the establishment
of theories and computational models. Given that a reduction

in learning capacity is a typical symptom of AD (Sultana
et al., 2006), identifying the methylation alterations during
AD pathogenesis in the CRB is necessary. In our prediction
list, the top methylation locus was cg07094785, which targets
HNRNPUL2. Although only a few studies directly examined
the function of this gene, it reportedly participates in AD
pathogenesis, for example, by regulating the accumulation of tau
protein in brain (Vanderweyde et al., 2016). Given that CRB
tissues are highly specific, this gene was found to effectively
function during nerve system degeneration due to age in multiple
animal models, including mice and rats (Jasien et al., 2014;
Kalinin et al., 2017). The other top-ranked locus was cg08105590,
which targets FAM38A. This locus can also be associated with
AD pathogenesis in the CRB at the methylation level. This gene
might be correlated with AD by regulating Piezo1 channels
(Velasco-Estevez et al., 2018), which has been shown to have a
tight correlation with AD initiation and progression. Given that
such correlations were validated using cerebellar cells (Velasco-
Estevez et al., 2018), we can reasonably speculate that they can be
observed in the CRB in vivo.

The first parameter for quantitative rules is cg15926585,
which targets the intermediate region of COMT and TXNRD2.
These two genes are both highly negatively correlated with the
abnormal behavioral symptoms of AD (Borroni et al., 2006;
Jin et al., 2017). Methylation of this region may inhibit the
expressions of these genes and further trigger AD initiation and
progression. Two other parameters that target HNRNPUL2 and
FAM38A are functionally correlated with AD. Hypermethylation
of these genes has also been demonstrated to participate in
the development of diseases associated with nerve disorders
(Pathak et al., 2019; Gürkan et al., 2020) but not with AD.
Therefore, these quantitative rules in the CRB were explained
according to publications above, demonstrating the effectiveness
of our analysis.

Methylation Signatures and Rules From
the Entorhinal Cortex
Entorhinal cortex is a region that controls memory, navigation,
and time perception (Goyal et al., 2018; Montchal et al., 2019).
ERC is reportedly correlated with AD initiation and progression
(Marzi et al., 2018; Grubman et al., 2019; Petrache et al., 2019).
In our predicted feature list, the first locus is cg05810363,
which targets RHBDF2. This gene is hypermethylated in
HIPPO cells during AD pathogenesis (De Jager et al., 2014).
Similar methylation patterns were recently identified in the
ERC via interacting with H3K27AC (Marzi et al., 2017;
Marzi et al., 2018). The methylation status of another
locus, namely, cg08462501, which interacts with TBC1D1,
is predicted to be downregulated during AD pathogenesis.
Given that the ERC is correlated with a specific biomarker
called TDP-43, this region could be hypomethylated during
AD pathogenesis (Sun et al., 2017). Therefore, TBC1D1
may also present methylation status in the ERC similar
to that in HIPPO.

Three quantitative rules, including the two features discussed
in this section, i.e., the hypermethylated gene RHBDF2 and
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the hypomethylated gene TBC1D1, may contribute to AD
pathogenesis. This contention was supported by previous reports.

Methylation Signatures and Rules From
Dorsolateral Prefrontal Cortex
Dorsolateral prefrontal cortex mainly controls the decision-
making and working memory functions of the human brain.
Given that people with AD show a decrease in the ability to
render judgment (Heekeren et al., 2006) and a decline in working
memory at late stages (Mars and Grol, 2007), we can reasonably
regard this region as a potential target to identify methylation
effects associated with AD pathogenesis. A locus predicted by
our computational analysis is cg14622549, which targets the
gene body region of EP400. As early as 2013, EP400 has already
been regarded as a potential biomarker for detecting AD at
the transcriptomics level (Desire et al., 2013; Trifonova et al.,
2022). Methylation of EP400 is reportedly functionally correlated
with autism, another disease of the nervous system that affects
DLPFC. This supposition suggests the potential pathological
effects of EP400 and supports our contention that methylation
affects specific brain structures. The next locus is cg21097354,
which targets the intermediate region of TTYH3 and AMZ1.
AMZ1 has been shown to be a potential regulator for nerve
system, especially in the elderly (Swingler et al., 2009; Panossian
et al., 2018). Given that AD is a typical disease of the nervous
system that is associated with aging, we can reasonably predict
the potential relationships between DLPFC and AD. On the
basis of a monozygotic twin model, a study suggested that the
demethylation of AMZ1 in DLPFC is associated with dyskinesia,
another potential symptom of AD (Soerensen et al., 2019).
This report further confirmed the pathogenesis and downstream
pathogenic regions of this methylation alteration.

The two parameters in the only classification rule were the
two aforementioned loci. Their demethylation would aid in the
identification of patients with AD according to this rule.

Methylation Signatures and Rules From
Hippocampus
Numerous methylation loci can help in the identification of
specific methylation alterations associated with AD in HIPPO,
a region that regulates memory and navigation. The first locus
is cg08056778, which targets the 3’UTR region of TBC1D1
and may further affect the expression of this gene in HIPPO.
TBC1D1 is correlated with cerebral palsy (Mohandas et al.,
2018). Moreover, TBC1D1 may be precisely regulated by effective
microRNAs, thereby contributing to the development and aging
of the central nervous system (Sephton et al., 2012). An in vivo
study based on the model organism Caenorhabditis elegans
confirmed that TBC1D1 in HIPPO may be functionally correlated
with aging-related diseases (Escoubas-GüNey, 2018). Although
this study did not cover AD, it nevertheless confirmed the
tissue specificity of this gene. Thus, we can reasonably argue
that pathological methylation alterations in HIPPO may affect
AD pathogenesis, thereby validating our prediction. Similarly,
SDK1, ANK1, and CHRNB4, which are targeted by cg04680535,
cg05066959, and cg17179314, respectively, also have either a

certain gene expression level regulated by a specific methylation
status (De Jager et al., 2014; Kanno et al., 2014; Yan et al., 2019)
or an epigenomic change during AD pathogenesis (Li et al., 2010;
De Jager et al., 2014).

Two parameters associated with the extracted quantitative
rules were predicted to aid in the identification of patients with
AD. The first parameter is RHBDF2 (cg13076843), which has
already been confirmed to be associated with AD (De Jager
et al., 2014). The other parameter, that is, cg06639320, was
also screened to be hypermethylated in patients with AD. The
targeting of FHL2 by this locus is reportedly correlated with AD
progression (Bennett et al., 2017; Altuna et al., 2019).

CONCLUSION

This study is the first to identify a group of brain structure-
specific AD signatures and quantitative rules at the methylation
level. According to previous studies, the identified signatures and
the parameters associated with this rule are correlated with AD
pathogenesis. Therefore, the present study successfully screened
a group of effective molecules with pathological potentials. This
study also established a systematic workflow for the identification
of effective tissue-specific biomarkers for complex diseases.
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