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Categorizing sounds into meaningful groups helps listeners more efficiently process
the auditory scene and is a foundational skill for speech perception and language
development. Yet, how auditory categories develop in the brain through learning,
particularly for non-speech sounds (e.g., music), is not well understood. Here, we
asked musically naïve listeners to complete a brief (∼20 min) training session where
they learned to identify sounds from a musical interval continuum (minor-major 3rds).
We used multichannel EEG to track behaviorally relevant neuroplastic changes in
the auditory event-related potentials (ERPs) pre- to post-training. To rule out mere
exposure-induced changes, neural effects were evaluated against a control group
of 14 non-musicians who did not undergo training. We also compared individual
categorization performance with structural volumetrics of bilateral Heschl’s gyrus (HG)
from MRI to evaluate neuroanatomical substrates of learning. Behavioral performance
revealed steeper (i.e., more categorical) identification functions in the posttest that
correlated with better training accuracy. At the neural level, improvement in learners’
behavioral identification was characterized by smaller P2 amplitudes at posttest,
particularly over right hemisphere. Critically, learning-related changes in the ERPs were
not observed in control listeners, ruling out mere exposure effects. Learners also showed
smaller and thinner HG bilaterally, indicating superior categorization was associated with
structural differences in primary auditory brain regions. Collectively, our data suggest
successful auditory categorical learning of music sounds is characterized by short-term
functional changes (i.e., greater post-training efficiency) in sensory coding processes
superimposed on preexisting structural differences in bilateral auditory cortex.

Keywords: auditory learning, EEG, auditory event related potentials (ERPs), morphometry, music perception,
individual differences, categorical perception (CP)
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INTRODUCTION

Classifying continuously varying sounds into meaningful
categories like phonemes or musical intervals enables more
efficient processing of an auditory scene (Bidelman et al., 2020).
Categorization of auditory stimuli is also a foundational skill
for language development and is believed to arise from both
learned and innate factors (Rosen and Howell, 1987; Livingston
et al., 1998; Pérez-Gay Juárez et al., 2019; Mankel et al., 2020a,b).
Auditory categories are further shaped by experiences such as
speaking a second language (Lively et al., 1993; Escudero et al.,
2011; Perrachione et al., 2011) or musical training (Bidelman
et al., 2014; Wu et al., 2015; Bidelman and Walker, 2019),
suggesting flexibility in categorical perception with learning.
While the behavioral aspects of category acquisition are well
documented, the underlying neural mechanisms and the
influence of individual differences in shaping this process are
poorly understood.

Characterizing the neurobiology of category acquisition is
typically confounded by prior language experience and the
overlearned nature of speech (Liu and Holt, 2011). For example,
perceptual interference from native-language categories can
impede the learning of foreign speech sounds (Guion et al.,
2000; Flege and MacKay, 2004; Francis et al., 2008). Instead,
non-speech stimuli (e.g., music) offer the ability to probe the
neural mechanisms of nascent category learning without the
potential confounds of language background or automaticity that
stems from using speech materials (Guenther et al., 1999; Smits
et al., 2006; Goudbeek et al., 2009; Liu and Holt, 2011; Yi and
Chandrasekaran, 2016). In this regard, musical categories (i.e.,
intervals, chords) offer a fresh window into tabula rasa category
acquisition. Indeed, non-musicians are unable to adequately
categorize musical stimuli despite their exposure to music in daily
life (Locke and Kellar, 1973; Siegel and Siegel, 1977; Howard
et al., 1992; Klein and Zatorre, 2011; Bidelman and Walker,
2019). While several studies have assessed category learning of
musical intervals, they either used highly trained listeners (Burns
and Ward, 1978) or focused on different training methods that
maximize learning gains (Pavlik et al., 2013; Little et al., 2019). To
our knowledge, very few studies have assessed the neural changes
associated with category learning in music.

Speech categorization is believed to emerge in the brain
around N1 of the cortical event-related potentials (ERPs) and
is fully manifested by P2 (i.e., ∼150–200 ms; Bidelman et al.,
2013b; Ross et al., 2013; Bidelman and Lee, 2015; Alho et al., 2016;
Bidelman and Walker, 2017; Mankel et al., 2020a). Fewer studies
have examined the electrophysiological underpinnings of music
categorization, but evidence from musicians suggests a similar
neural time course (Bidelman and Walker, 2019). Functional
magnetic resonance imaging (fMRI) indicates that categorization
training leads to a decrease in perceptual sensitivity for within-
category stimuli in auditory cortex while learning to discriminate
categorical sounds shows the opposite effect—greater sensitivity
to differences between stimuli (Guenther et al., 2004). Still,
the majority of studies on category learning have involved
speech. Speech and music categorization may invoke separate
yet complementary networks in the left and right hemispheres,

respectively (Desai et al., 2008; Chang et al., 2010; Liebenthal
et al., 2010; Klein and Zatorre, 2011, 2015; Alho et al., 2016).
Although there are likely some parallels across domains (Liu and
Holt, 2011), it remains unclear whether the neuroplastic changes
from rapidly learning non-speech categories such as musical
intervals parallel that of speech.

More generally, auditory perceptual learning studies have
reported changes in both early sensory-evoked (i.e., N1, P2)
and late slow-wave ERP responses following training (Tremblay
et al., 2001, 2009; Atienza et al., 2002; Tremblay and Kraus, 2002;
Bosnyak et al., 2004; Alain et al., 2007, 2010; Tong et al., 2009;
Ben-David et al., 2011; Carcagno and Plack, 2011; Wisniewski
et al., 2020). A true biomarker of learning, however, should
vary with learning performance (Tremblay et al., 2014). Because
modulations in P2 amplitudes occur with mere passive stimulus
exposure in the absence of training improvements, some posit P2
reflects aspects of the task acquisition process rather than training
or perceptual learning, per se (Ross and Tremblay, 2009; Ross
et al., 2013; Tremblay et al., 2014). Given the equivocal role of
P2 in relation to auditory learning, we aimed to re-adjudicate
whether changes in P2 scale with individual behavioral outcomes
as listeners rapidly acquire novel music categories.

There is also significant variability in the acquisition of
auditory categories (e.g., Howard et al., 1992; Golestani and
Zatorre, 2009; Mankel et al., 2020b; Silva et al., 2020), especially
for speech (Wong et al., 2007; Díaz et al., 2008; Mankel et al.,
2020a; Fuhrmeister and Myers, 2021; Kajiura et al., 2021). More
successful learners show greater neural activation, particularly in
auditory cortex (Wong et al., 2007; Díaz et al., 2008; Kajiura et al.,
2021). Such variability might be attributable to differences in
the creation or retrieval of long-term memories for prototypical
vs. non-prototypical sounds during learning (Golestani and
Zatorre, 2009). However, we have previously shown better
categorizers show efficiencies even in early sensory processing
(∼150–200 ms), suggesting stimulus representations themselves
are tuned at the individual level rather than later memory-related
processes, per se (Mankel et al., 2020a).

In addition to differences in functional processing, individual
categorization abilities may be partially driven by preexisting
structural advantages within the brain (Ley et al., 2014;
Fuhrmeister and Myers, 2021). Paralleling the left hemisphere
bias for speech (Binder et al., 2004; Myers et al., 2009; Lee
et al., 2012; Bouton et al., 2018), categorization of musical
sounds is believed to involve a frontotemporal network in
the right hemisphere, including key brain regions such as
the primary auditory cortex (PAC), superior temporal gyrus
(STG), and inferior frontal gyrus (IFG) (Klein and Zatorre,
2011, 2015; Bidelman and Walker, 2019; Mankel et al., 2020a;
Gertsovski and Ahissar, 2022). PAC/STG size (primarily right
hemisphere) has also been associated with perception of
relative pitch and musical transformation judgments (Foster
and Zatorre, 2010), melodic interval perception (Li et al.,
2014), spectral processing (Schneider et al., 2005), and even
musical aptitude (Schneider et al., 2002). To our knowledge,
few studies have examined structural correlates of categorization
at the individual level. In the domain of speech, faster, more
successful learners of non-native phonemes exhibit larger left

Frontiers in Neuroscience | www.frontiersin.org 2 June 2022 | Volume 16 | Article 897239

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-897239 June 22, 2022 Time: 14:28 # 3

Mankel et al. Neural Correlates of Category Learning

Heschl’s gyrus (Golestani et al., 2007; Wong et al., 2008) and
parietal lobe volumes (Golestani et al., 2002). Additionally, better
and more consistent speech categorizers show increased right
middle frontal gyrus surface area and reduced gyrification in
bilateral temporal cortex (Fuhrmeister and Myers, 2021). We thus
hypothesized that successful category learning for non-speech
(i.e., musical) sounds would be predicted by neuroanatomical
differences (e.g., gray matter volume, cortical thickness), perhaps
with a right PAC bias.

The aim of this study was to examine the functional
and structural neural correlates of auditory category learning
following short-term identification training of music sound
categories (i.e., intervals). Musical intervals allowed us to track
sound-to-label learning without the potential lexical-semantic
confounds inherent to using speech materials (Liu and Holt,
2011). We measured learning-related changes in the cortical
ERPs in musically naïve listeners against a no-contact control
group to determine the specificity of neuroplastic effects. If
rapid auditory category learning is related to enhanced sensory
encoding of sound, we predicted changes in early brain activity
manifesting at or before auditory object formation (i.e., prior
to ∼250 ms; P2). If instead, short-term learning is associated
with later cognitive processes related to decision and/or task
strategy, we expected neural effects to emerge later in the ERP
time course (e.g., late slow waves > 400–500 ms; Alain et al.,
2007). Additionally, we anticipated successful learners would
recruit neural resources in right auditory cortices, mirroring the
left hemispheric specialization supporting speech categorization
(Liebenthal et al., 2005; Joanisse et al., 2007; Klein and Zatorre,
2011; Bidelman and Walker, 2019). Our findings show that
successful auditory category learning of musical intervals is
characterized by both structural and functional differences in
auditory cortex. The presence of anatomical differences along
with ERP changes specific to learning suggest that the acquisition
of auditory categories depend on a layering of preexisting and
short-term plastic changes in the brain.

MATERIALS AND METHODS

Participants
Our sample included N = 33 participants. Nineteen young adults
(16 females) participated in the training task. An additional
fourteen (7 females) served as a control group (data from Mankel
et al., 2020a). All had normal hearing (thresholds ≤25 dB SPL,
250–8,000 Hz), were right-handed (Oldfield, 1971), and had
no history of neurological disorders. Participants completed
questionnaires that assessed education level, socioeconomic
status (SES) (Entwislea and Astone, 1994), language history (Li
et al., 2006), and music experience. Groups were comparable
in age (learners: µ = 24.9 ± 4.0 years, controls: µ = 24.9 ±
1.7 years; p = 0.55), education (learners: µ = 18.5 ± 3.3 years,
controls: µ = 17.3 ± 3.0 years; p = 0.32), and SES [rating
scale of average parental education from 1 (some high school
education) to 6 (Ph.D. or equivalent); learners: µ = 4.6 ± 1.3,
controls: µ = 4.1 ± 0.6; p = 0.11]. All were fluent in English
though six reported a native language other than English. We

excluded tone language speakers as these languages improve
musical pitch perception (Bidelman et al., 2013a). To ensure
participants were naïve to the music-theoretic labels for pitch
intervals, we required participants have no more than 3 years
total of formal music training on any combination of instruments
and none within the past 5 years. Critically, groups did not
differ in prior music training (learners: µ = 1.1 ± 1.0 years,
controls: µ = 0.6 ± 0.8 years; p = 0.14). All participants gave
written informed consent according to protocol approved by
the University of Memphis Institutional Review Board and were
compensated monetarily for their time.

Stimuli
We used a five-step musical interval continuum to assess category
learning of non-speech sounds (Bidelman and Walker, 2017;
Mankel et al., 2020b). Individual notes of each dyad were
constructed of complex tones consisting of 10 equal amplitude
harmonics added in cosine phase. Each token was 100 ms in
duration with a 10 ms rise/fall time to reduce spectral splatter.
The bass note was fixed at a fundamental frequency (F0) of
150 Hz while the upper note’s F0 ranged from 180 to 188 Hz
corresponding to just intonation frequency ratios of 6:5 and 5:4,
respectively (2 Hz spacing between adjacent tokens; Figure 1).
The two notes of a given token were played simultaneously
as a harmonic interval. Thus, the musical interval continuum
spanned a minor (token 1) to major third (token 5). The minor-
major third continuum was selected because these intervals occur
frequently in Western tonal music and connote typical valence
of “sadness” and “happiness,” respectively, and are therefore
easily described to participants unfamiliar with music-theoretic
labels (Bidelman and Walker, 2017). Moreover, without training,
non-musicians perceive musical intervals in a continuous mode
indicating they are initially heard non-categorically (Locke and
Kellar, 1973; Siegel and Siegel, 1977; Burns and Ward, 1978;
Zatorre and Halpern, 1979; Howard et al., 1992; Bidelman and
Walker, 2017, 2019).

Procedure
Participants were seated comfortably in an electroacoustically
shielded booth. Stimuli were presented binaurally through ER-2
insert earphones (Etymotic Research) at ∼81 dB SPL. Stimulus
presentation was controlled by MATLAB routed through a
TDT RP2 interface (Tucker Davis Technologies). Categorization
was assessed in a pre- and post-test phase. Following brief
task orientation (∼2–3 exemplars), one of the five tokens was
randomly presented on each trial. Participants were instructed
to label the sound they heard as either “minor” or “major”
via keyboard button press as fast and accurately as possible.
The interstimulus interval was 400–600 ms (jittered in 20 ms
steps) following the listener’s response to avoid anticipation of
the next trial, reduce rhythmic entrainment of EEG oscillations,
and to help filter out overlapping activity from the previous
trial (Luck, 2014). No feedback was provided during the pre- or
post-test. To reduce fatigue, participants were offered a break
after each phase. Pre- and post-test procedures were similar
between both the learning and control groups; the learning
group received additional identification training following the
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FIGURE 1 | Depiction of musical interval continuum. The bass note of all five interval tokens was fixed at an F0 of 150 Hz while the upper note’s F0 ranged from 180
to 188 Hz corresponding to just intonation frequency ratios of 6:5 (minor third) and 5:4 (major third), respectively. The two notes of a given token were played
simultaneously as a harmonic interval on a given trial. The individual notes of each dyad were constructed of complex tones consisting of 10 equal amplitude
harmonics added in cosine phase (harmonics not shown).

pretest (see “Training Paradigm”) while the control group
participants were offered a break before continuing to the
posttest. Total experimental session time (including the consent
process, demographics questionnaires, EEG capping, pre- & post-
tests, training, etc.) was∼2.5–3 h.

Training Paradigm
Participants in the learning group underwent a 20-min
identification training between the pre- and post-test phases.
Training consisted of 500 trials, 250 presentations each of
the minor and major 3rd exemplars (i.e., tokens 1 and 5),
spread evenly across 10 blocks.1 Feedback was provided to
improve accuracy and efficiency of auditory category learning
(Yi and Chandrasekaran, 2016). The training procedure was
conducted using E-Prime 2.0 (PST, Inc.). Listeners were
successful in training if they reached ≥90% correct in at least
one training block, the criterion equivalent to a trained musician’s
performance on the same task (see Reetzke et al., 2018).

EEG Acquisition and Preprocessing
EEG data were recorded using a Synamps RT amplifier
(Compumedics Neuroscan) from 64 sintered Ag/AgCl electrodes
at 10–10 scalp locations and referenced online to a sensor placed
∼1 cm posterior to Cz. Impedances were < 10 k�. Recordings
were digitized at a sampling rate of 500 Hz. Preprocessing
was completed in BESA Research (v7.1; BESA GmbH). Blink
artifacts were individually corrected for each participant using
principal components analysis (Picton et al., 2000). Bad channels
were interpolated on an individual basis according to the other
electrodes using spherical spline interpolation (≤ 2 channels

1Two pilot subjects received 6 and 15 blocks of training, respectively, before
settling on the final 10 block training regimen.

per participant). The data were sufficiently clean following
these procedures and no further trial-wise artifact rejection was
necessary. Continuous data were re-referenced offline to the
common average reference, filtered from 1 to 30 Hz (4th-order
Butterworth filter), baselined to the prestimulus interval, epoched
from−200 to 800 ms, and averaged across trials to compute ERPs
for each token per electrode.

MRI Segmentation and Volumetrics
A total of 12 out of 19 learning group participants returned
on a separate day for structural MRI scanning. 3D T1-
weighted anatomical volumes were acquired on a Siemens 1.5T
Symphony TIM scanner (tfl3d1 GR/IR sequence; TR= 2,000 ms,
TE = 3.26 ms, inversion time = 900 ms, phase encoding
steps = 341, flip angle = 8◦, FOV = 256 × 256 acquisition
matrix, 1.0 mm axial slices). Scanning was conducted at the
Semmes Murphey Neurology Clinic (Memphis, TN). All MRI
T1-weighted images were corrected for inhomogeneities using an
N4 bias field correction algorithm and registered to MNI ICBM
152 T1 weighted atlas with 1 × 1 × 1 mm3 isometric voxel size
using affine transformation with 12 degrees of freedom (Dierks
et al., 1999; Scott et al., 2014). The inverse transformation matrix
was computed and applied to the brain mask in atlas space to
create a mask in subject space (i.e., each subject’s original image
space) for skull removal (Evans et al., 1993). An LPBA40 T1
weighted atlas with 2 × 2 × 2 mm3 voxel size was then used
to register the images and remove the cerebellum using the atlas
cerebrum mask and following the same process performed in
subject space as explained above (Shattuck et al., 2008). After skull
removal and cerebrum extraction, an AAL3 T1 weighted atlas
with 1 × 1 × 1 mm3 voxel size that provides parcellation of a
large number of brain regions was used for extracting gray matter
volume in certain regions of interest (ROIs) for each participant
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(Rolls et al., 2020). All of the MRI pre-processing analyses were
performed using in-house script written in Python2 using the
ANTs library (Avants et al., 2009).

Data Analysis
Behavioral Data
Identification curves were fit with a two-parameter sigmoid
function P = 1/[1 + e−β1(x−β0)], where P describes the
proportion of trials identified as major, x is the step number
along the stimulus continuum, β0 is the locus of transition along
the sigmoid (i.e., categorical boundary), and β1 is the slope of
the logistic fit. Larger β1 values reflect steeper psychometric
functions and therefore better musical interval categorization
performance. Reaction times (RTs) were computed as the
listeners’ median response latency for the ambiguous (i.e., token
3) and prototypical tokens (i.e., mean[tokens 1 and 5]; see “ERP
Data”), after excluding outliers outside 250–2,500 ms (Bidelman
et al., 2013b; Bidelman and Walker, 2017; Mankel et al., 2020a).
As an index of training success, accuracy was calculated in the
learning group as the average percent correct identification across
all training trials.

Event-Related Potential Data
For data reduction purposes, we analyzed a subset of electrodes
from a frontocentral cluster (mean of F1, Fz, F2, FC1, FCz,
FC2) where categorical effects in the auditory ERPs are most
prominent at the scalp (Bidelman et al., 2013b, 2014; Bidelman
and Lee, 2015; Bidelman and Walker, 2017). Peak latencies and
amplitudes were quantified for P1 (40–80 ms), N1 (70–130 ms),
and P2 (140–200 ms). The mean amplitude was also measured
for slow wave activity between 300 and 500 ms, given prior work
suggesting rapid auditory learning effects in this later time frame
(Alain et al., 2007, 2010).

We also quantified neural responses at T7 and T8 to assess
hemispheric lateralization. Previous work has shown neural
response differences measured from these electrodes following
rapid perceptual learning of concurrent speech vowels (Alain
et al., 2007). For these analyses, we computed difference
waves derived between the ambiguous and prototypical tokens
(1ERP = mean[ERPToken1 & ERPToken5] − ERPToken3) for both
the pre- and post-test (see Mankel et al., 2020a). Larger 1ERP
values indicate stronger differentiation of category ambiguous
from category prototype sounds and thus reflect the degree of
“neural categorization” in each hemisphere.

MRI Data
Each participant’s MRI images were registered to the AAL3 atlas,
ROI masks were transformed to subject space, and ROI volumes
were then calculated (cm3) (see Supplementary Figures 3, 4
for individual subject images and ROI localization). Atlas
registration was confirmed using SPM12 toolbox in MATLAB
(Penny et al., 2011). Cortical thickness was examined using a
diffeomorphic registration based cortical thickness (DiReCT)
measure (Das et al., 2009). We used the OASIS atlas (Marcus
et al., 2009) for the computation of cortical thickness because

2http://www.python.org

it provides four brain segmentation priors for parcellating
cerebrospinal fluid (CSF), cortical gray matter, white matter, and
deep gray matter. 3D cortical thickness maps for each subject
were computed based on these priors. Thickness maps were then
multiplied with the AAL3 atlas (converted to subject space) to
compute the cortical thickness of each brain region mapped to
their corresponding labels. Finally, the mean, standard deviation,
and range of the cortical thickness measurements along with the
surface area and volume of the cortical regions were computed
for each ROI. Volumetrics were normalized to each participant’s
total intracranial brain volume to control for artificial differences
across individuals (e.g., head size; Whitwell et al., 2001). To test
for hemispheric differences specific to auditory neuroanatomic
measures, we restricted ROI analysis to bilateral Heschl’s gyrus
(Rolls et al., 2021).

Statistical Analysis
Unless otherwise noted, ERPs were analyzed using generalized
linear mixed-effects (GLME) regression models in SAS (Proc
GLIMMIX; v9.4, SAS Institute, Inc.) with subjects as a random
factor and fixed effects of training phase (two levels: pretest
vs. posttest), stimulus token (two levels: tokens 1 and 5 vs. 3)
and behavioral performance [identification slopes or training
accuracy (learning group only); continuous measures]. We also
included the interaction of phase and behavioral performance
to investigate whether brain-behavior correspondences change
after training. The behavioral GLME models included RTs
or identification slopes as dependent variables, main effects
and interactions between phase and group (two levels: control
vs. learning), and an additional main effect of token in the
RT model (slopes are token-independent). For the MRI data,
the GLME models incorporated main effects and interactions
between neuroanatomical measurements (i.e., cortical thickness
or normalized gray matter volume) and phase to determine
whether brain structure predicts training gains in categorization
performance (i.e., dependent variable: identification slopes).
We used a backward selection procedure to remove non-
significant variables and report final model results throughout.
Post hoc multiple comparisons were corrected using Tukey
adjustments. Identification function slopes (β1) were square root
transformed to improve normality and homogeneity of variance.
Demographic variables were analyzed using Wilcoxon-Mann-
Whitney and Fischer’s exact tests due to non-normality. An
a priori significance level was set at α = 0.05. Conditional
studentized residuals (| SR| > 2), Cook’s D (> 4/N), and
covariance ratios (< 1) were used to identify and exclude
influential outliers.

RESULTS

Training Results
Behavioral training outcomes are plotted in Figure 2. On
average, participants in the learning group improved in accuracy
[Figure 2A; F(9, 158) = 2.05, p = 0.038] and exhibited faster
RTs [Figure 2B; F(9, 158) = 2.74, p = 0.005] over the course
of training. Training was highly effective; most individuals
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FIGURE 2 | Behavioral categorization improves following rapid auditory training. Brief major/minor categorization training yields an increase in accuracy (A) and
decrease in reaction time (B) across blocks. Pretest and posttest psychometric identification functions for the learning group (C) show stronger categorization for
musical intervals after training (excluding data from n = 5 non-learners); performance was identical pre- to post-test for control listeners (D). Slopes were square-root
transformed for statistical analysis (E). Error bars/shading = ± 1 SE. *p < 0.05.

averaged > 80–90% identification accuracy across the 10 blocks
(i.e., the approximate performance of a musician on the same
task; data not shown). N = 5 “non-learners” had training
accuracies that did not reach the 90% criterion threshold in
a block (see “Training Paradigm”) with averages remaining
near chance performance (i.e., average training accuracies of
46, 46.8, 50.6, 57.8, and 68%, respectively). Consequently, these
individuals were removed for all subsequent analysis. Post hoc
analyses revealed RTs became faster following the third training
block (all p’s < 0.05). Similarly, listeners’ identification was more
accurate starting at the 9th training block compared to the first
block [block 9 vs. 1: t(158) = 3.44, p = 0.025; block 10 vs. 1:
t(158) = 3.40, p= 0.028].

Behavioral Categorization Following
Training
We then assessed training-related improvements in
categorization via listeners’ identification of the musical

interval continuum. We found a group × phase interaction
for identification slopes [F(1, 26) = 4.93, p = 0.035].
Importantly, control and learning groups did not differ at
pretest (Figures 2C–E; t26 = −0.72, p = 0.48), suggesting
common baseline categorization. Critically, post hoc analyses
revealed that identification slopes were steeper at posttest for
successful learners (Figure 2E; t26 = 4.42, p < 0.001), whereas
performance remained static in the control group (t26 = 1.28,
p = 0.21). Comparison of the probability density functions
between groups of the pre- to post-test difference in slopes
also suggested greater improvement in slopes for the learning
group compared to the control group (see 1.1 Learning-Related
Behavioral Categorization Changes in Supplementary Material
and Supplementary Figure 1). For learners, in addition to
training gains [main effect of phase: F(1, 13) = 11.65, p = 0.005],
achieving better accuracy during training was associated
with steeper identification functions overall [F(1, 13) = 8.58,
p = 0.012]. RTs only showed an effect of phase [F(1, 81) = 10.72,
p= 0.002; group× phase: F(1, 81) = 0.03, p= 0.856], but a trend
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for a group × phase interaction was also observed after removal
of a single influential outlier from the learning group [i.e., in
addition to the prior removal of non-learners; see “Training
Results”; F(1, 78) = 3.98, p = 0.050; phase: F(1, 78) = 9.31,
p = 0.003]. Whereas the control group achieved faster RTs at
posttest [t(78) =−3.64, p < 0.001], RTs remained constant in the
learning group [t(78) =−0.73, p= 0.466].

Electrophysiological Results
ERP waveforms are shown per group and experimental phase in
Figure 3 (pooling all tokens). For the learning group, we found
a training accuracy × phase interaction in P2 [F(1, 39) = 5.77,
p = 0.021] and P1 amplitudes [F(1, 39) = 11.29, p = 0.002];
better performance during training was associated with decreased
amplitudes in the posttest but not the pretest [P2: t(39) = −2.71,
p = 0.010; P1: t(39) = −2.72, p = 0.010]. All other ERP
comparisons with training accuracy were not significant.

In learners, we found an identification slopes × phase
interaction for P2 amplitudes [F(1, 38) = 4.16, p = 0.048];
steeper (i.e., more categorical) posttest identification slopes
were associated with a decrease in neural activity after training
(Figure 4A). Main effects of slope [F(1, 39) = 8.46, p= 0.006] and
phase [F(1, 39) = 6.26, p = 0.017] were also found for the slow
wave (300–500 ms). Critically, these brain-behavior relationships
were specific to learners and were not observed in the control
group (Figure 4B; all p-values > 0.05).

Hemispheric asymmetries were assessed via difference
waveforms computed as the difference in voltage between brain
responses to tokens 1 and 5 vs. the midpoint token 3 [i.e., mean
(ERPToken1 & ERPToken5) − ERPToken3] (Bidelman and Walker,
2019). Greater difference wave values indicate stronger neural
differentiation of category prototype from category ambiguous
sounds, respectively, and thus index the degree of “neural
categorization” in each hemisphere. This analysis focused on
electrodes T7 and T8 located over the left and right temporal
lobes, respectively. We used a running paired t-test to evaluate
training effects in a point-by-point manner across the ERP time
courses (BESA Statistics, v2; Figure 5). This initial, data-driven
method was applied in an exploratory manner (i.e., uncorrected)
to identify time windows when category encoding effects were
strongest after training. In learners, category differentiation was
modulated by learning 112–356 ms after stimulus onset over
electrode T8 (right hemisphere; Figure 5B). Guided by these
results, we then extracted average amplitudes within this time
window for both the pre- and post-test and ran a more stringent
(i.e., corrected for multiple comparisons) three-way mixed model
ANOVA (group, identification slopes, phase). The group× slope
interaction was significant for electrode T8 [F(1, 23) = 7.86,
p = 0.010] after removing two influential outliers (one from
each group). Post hoc analyses revealed that for learners, steeper
identification slopes predicted larger (i.e., more categorical)
responses over the right hemisphere [t(23) = 2.49, p = 0.021].
This brain-behavior relationship was not observed in controls
nor over the left hemisphere (p-values > 0.05; Figure 5C).
Complementary analyses of global field power similarly revealed
a greater pre- to post-test change in neural activation over
the right hemisphere temporal electrodes compared to the left

hemisphere (Supplementary Figure 2). These data suggest a
right hemisphere bias in neural mechanisms supporting category
learning of musical intervals.

Exploratory Neuroanatomical Results
Having established that musical interval learning leads to
functional lateralization, we were interested in evaluating
whether preexisting structural asymmetries (i.e., gray matter
volume, cortical thickness) of Heschl’s gyrus (HG) were also
associated with successful category learning. Gray matter volume
was normalized according to each individual’s total brain volume
for ease of inter-subject comparisons (raw data mean±SD
[range] cm3—left: 0.80±0.05 [0.73–0.86]; right: 0.93±0.08 [0.84–
1.06]; total brain volume: 1143.80±81.81 [1030.53–1302.40]).
Volumetric analyses revealed that normalized gray matter
volumes were larger on average in the right compared to
left HG [Figure 6, center; t(11) = 12.36, p < 0.001]. The
interaction of phase and structural measures were not significant
for identification slopes. However, phase was kept in the models
to isolate the relationship between structural HG measures and
behavior after factoring out training effects. Smaller normalized
gray matter volumes in right HG were associated with stronger
categorization overall [F(1, 11) = 5.80, p= 0.035, after accounting
for effects of phase; Figure 6A]. Meanwhile, thinner cortical
thickness of left HG corresponded to better identification slopes
[Figure 6B; F(1, 11) = 15.07, p = 0.003, after accounting for
effects of phase]. Cortical thicknesses and normalized gray matter
volumes did not correlate with each other for either right or left
HG suggesting these volumetrics provided independent measures
of the anatomy (all p-values > 0.05). Taken together, these results
indicate that preexisting differences in bilateral HG structure
predict individual categorization performance.

DISCUSSION

By measuring multichannel EEGs and brain volumetrics during
a short term auditory category learning task, our data reveal
four primary findings: (i) rapid label learning of musical
intervals emerges very early in the brain (∼150–200 ms, P2
wave), (ii) these ERP signatures decrease with more successful
learning suggesting more efficient neural processing (i.e.,
reduced amplitudes) after training; (iii) neuroplastic changes in
categorizing musical sounds are stronger in right hemisphere,
and (iv) smaller and thinner auditory cortical regions predict
better categorization performance. Successful category learning
is therefore, characterized by increased functional efficiency of
sensory processing, whereas better categorization performance
(but not category learning) is associated with preexisting
structural advantages within auditory cortex.

Functional Correlates of Auditory
Category Learning
Our data suggest musical interval category acquisition is
associated with changes in ERP P2. The functional significance
of P2 is still poorly understood (Crowley and Colrain, 2004).
Experience-dependent neuroplasticity in P2 has been interpreted
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FIGURE 3 | Grand average ERP waveforms collapsed across all tokens from the frontocentral electrode cluster (mean F1, Fz, F2, FC1, FCz, FC2). The learning
group (left) underwent brief identification training whereas the control group (right) did not. Shading = ± 1 SE.

FIGURE 4 | Neural amplitudes scale with behavioral outcomes in the learning group (A) but not the control group (B). Better posttest categorization (i.e., steeper
identification slopes) is associated with a decrease in P2 amplitudes. Identification slopes were square-root transformed for statistical analysis. Data points indicate
individual subjects (collapsed across tokens 1 & 5 and 3). Arrow/value mark an outlier (which did not alter results).

as reflecting enhanced perceptual encoding and/or auditory
object representations (Garcia-Larrea et al., 1992; Shahin et al.,
2003; Ross et al., 2013; Bidelman et al., 2014; Bidelman
and Lee, 2015), improvements in the task acquisition process
(Tremblay et al., 2014), reallocation of attentional resources
(Alain et al., 2007), increased inhibition of task-irrelevant signals
(Sheehan et al., 2005; Seppanen et al., 2012), or mere stimulus

exposure (Sheehan et al., 2005; Ross et al., 2013). Here, we
demonstrate early ERP waves including P1 (∼40–80 ms) as well
as P2 (∼150–200 ms) closely scale with behavioral learning.
While our experimental design does not permit a deeper probe
into the listening strategies employed by the participants that
resulted in improved categorization performance, our results
demonstrate that the process of learning to map musical sounds
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FIGURE 5 | Neuroplastic changes following auditory categorical learning of music intervals are biased toward right hemisphere. Only data for the learning group is
shown. (A) Topographic statistical map at t = 336 ms (dotted gray line in B,C) where pre- to post-test changes in categorical coding is maximal over the right
hemisphere. Electrodes T7 and T8 are bordered by black squares. (B,C) Difference wave amplitudes [diff. amp.; i.e., mean(token 1 & 5) − token 3] indexing
categorical neural coding (see text). An increase in neural categorization after training occurs over right (B; electrode T8) but not left hemisphere (C; electrode T7).
The red shaded region in B indicates a significant effect of phase in the exploratory t-test (i.e., uncorrected). Average amplitudes were extracted from this time
window (112–356 ms) for both hemispheres and subjected to more stringent statistical analyses (see text).

FIGURE 6 | Neuroanatomical measures in Heschl’s gyrus (HG) predict behavioral categorization performance in the learning group (Center). MRI image from a
representative subject with left and right HG shown in blue and white, respectively. See Supplementary Figures 3, 4 for individual MRI images of all subjects. (A) In
left HG, larger cortical thickness is associated with poorer categorization. (B) Similarly, larger normalized gray matter volumes in right HG (normalized to each
individuals’ total brain volume) were associated with poorer behavioral categorization. Data points indicate individual subject identification slopes (values are
square-root transformed). a.u. = arbitrary units. Shading = 95% CI.

(i.e., intervals) to categorical labels is associated with changes
in sensory encoding responses in the brain. Moreover, these
neuroplastic effects are surprisingly fast, occurring rapidly within
only 20 min of training. Our findings parallel visual category
learning where changes in the visual-evoked N1 and late positive
component signal successful learning (Pérez-Gay Juárez et al.,
2019). Our results also align with previous studies using various
auditory training tasks including speech (Tremblay et al., 2001,
2009; Tremblay and Kraus, 2002; Alain et al., 2007, 2010; Ben-
David et al., 2011) and non-speech sounds (Atienza et al., 2002;

Bosnyak et al., 2004; Tong et al., 2009; Wisniewski et al., 2020)
suggesting P2 indexes auditory experience that reflects learning
success and is not simply a product of the task acquisition
process (cf. Tremblay et al., 2014) or repeated stimulus exposure
(Sheehan et al., 2005; Ross and Tremblay, 2009; Ross et al., 2013).
The lack of clear neural effects in control listeners further rules
out exposure or repetition effect accounts of our data.

In this study, successful learning (i.e., both training accuracy
and identification function slopes) was characterized by a
reduction in ERP amplitudes after training. The specific direction
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of P2 modulations varies across experiments with some reporting
an increase in evoked responses with learning (Tremblay et al.,
2001; Atienza et al., 2002; Bosnyak et al., 2004; Sheehan et al.,
2005; Tong et al., 2009; Carcagno and Plack, 2011; Ross et al.,
2013; Wisniewski et al., 2020) and others a decrease (Zhang et al.,
2005; Alain et al., 2010; Ben-David et al., 2011). As suggested by
Alain et al. (2010), such discrepancies could be related to the task
(e.g., active task vs. passive recording), the stimuli (e.g., speech
vs. non-speech), the rate of learning among the participants, or
even the rigor of training paradigm. Studies reporting enhanced
P2 often included multiple days of training or recorded ERPs
during passive listening (Tremblay et al., 2001; Atienza et al.,
2002; Bosnyak et al., 2004; Ross et al., 2013; Seppanen et al.,
2013; Wisniewski et al., 2020). Long-term auditory experiences
(e.g., music training, tone language expertise) have also been
associated with enhanced P2 during active sound categorization
(Bidelman et al., 2014; Bidelman and Alain, 2015; Bidelman and
Lee, 2015) as well as learning (Shahin et al., 2003; Seppanen
et al., 2012, 2013). The ERP decreases we find in successful
learners are highly consistent with single-session, rapid learning
experiments demonstrating greater efficiency of sensory-evoked
neural responses during active task engagement (Guenther et al.,
2004; Alain et al., 2010; Ben-David et al., 2011; Sohoglu and Davis,
2016; Pérez-Gay Juárez et al., 2019). Consequently, our results
reinforce notions that the P2 is a biomarker of learning to classify
auditory stimuli and map sounds to labels.

On the contrary, decreased neural activity might reflect
other aspects of the task, including arousal and/or fatigue
(Näätänen and Picton, 1987; Crowley and Colrain, 2004).
However, decreased neural activity from these factors would have
been expected in both groups due to the similar task constraints
on all participants. If better learners simply sustain arousal
more effectively through posttest, we would have also expected
faster RTs. Rather, our data suggest decreases in activation
meaningfully reflect music category learning (Gertsovski and
Ahissar, 2022), paralleling findings with speech (Guenther et al.,
2004). Alternatively, given modulations in both P2 and slow
wave activity, a separate but overlapping processing negativity
within this timeframe cannot be ruled out. Negative processing
components have been associated with early auditory selection
and attention (Hillyard and Kutas, 1983; Näätänen and Picton,
1987; Crowley and Colrain, 2004) and may therefore be another
target for learning processes.

Hemispheric Lateralization and Music
Categorization
Our findings show that acquiring novel categories for musical
intervals predominantly recruits neural resources from the right
auditory cortex, complementing the left hemisphere bias reported
for speech categorization (Zatorre et al., 1992; Golestani and
Zatorre, 2004; Liebenthal et al., 2005, 2010, 2014; Desai et al.,
2008; Myers et al., 2009; Chang et al., 2010; Alho et al.,
2016). Specifically, we observed enhanced neural categorization
over the right hemisphere in more successful learners. These
findings support long-standing notions about lateralization for
speech vs. music categorization in the brain (Zatorre et al., 1992;

Desai et al., 2008; Chang et al., 2010; Liebenthal et al., 2010; Klein
and Zatorre, 2011, 2015; Alho et al., 2016; Bouton et al., 2018;
Bidelman and Walker, 2019; Mankel et al., 2020a). Our data
parallel a study by Gertsovski and Ahissar (2022) where learning
to categorize relative pitches was associated with a decrease of
neural activation in right PAC as well as bilateral STG and
left posterior parietal cortex. Superior music categorization in
both trained musicians (Klein and Zatorre, 2011, 2015; Bidelman
and Walker, 2019) as well as musically adept non-musicians
(Mankel et al., 2020a) has been associated with right temporal
lobe functions. We thus provide new evidence that even brief,
20-min identification training is sufficient to induce neural
reorganization in the right hemisphere circuity that subserves
auditory sensory coding and classification of musical stimuli.

Neuroanatomical Correlates of Auditory
Category Learning
Our MRI results indicate that individual variation in structural
measures (gray matter volume, cortical thickness) within Heschl’s
gyrus also predict behavioral categorization performance beyond
mere training effects. Because MRIs were available for only
63% (12/19) of individuals from the learning group (and none
in the control group), the findings reported here should be
considered exploratory. Additional research is needed to verify
the anatomical trends we see in our data. Brain structure
is influenced by genetic, epigenetic, and experiential factors
(Zatorre et al., 2012). Thus, it is often difficult to know
whether anatomical differences are innate or experience-driven,
but structural measures are presumed to be more stable and
less plastic than functional responses (e.g., ERPs) (Golestani,
2012). Anatomical variability in auditory cortex has been
related to learning rate and attainment for foreign speech
sounds (Golestani et al., 2007), linguistic pitch patterns (Wong
et al., 2008), and melody discrimination (Foster and Zatorre,
2010) as well as native speech categorization (Fuhrmeister and
Myers, 2021). Consistent with this prior work on speech, our
findings suggest that individual differences in music category
perception and functional plasticity are influenced by anatomical
predispositions within auditory cortex—that is, a layering of both
nature and nurture.

It is often assumed larger morphology within a particular
brain area yields better computational efficiency (i.e., “bigger
is better”; Kanai and Rees, 2011). For example, faster, more
successful learners of non-native speech sounds show more
voluminous primary auditory cortex and adjacent white matter in
left hemisphere (Golestani et al., 2002, 2007; Wong et al., 2008).
Relatedly, expert listeners (i.e., musicians) show increased gray
matter volumes and cortical thickness in PAC (Schneider et al.,
2002; Gaser and Schlaug, 2003; Bermudez et al., 2009; Seither-
Preisler et al., 2014; Wengenroth et al., 2014; de Manzano and
Ullen, 2018). Instead, our data show the opposite pattern with
regard to non-speech (i.e., musical interval) category learning.
To our knowledge, only one study has shown correspondence
between decreased gyrification in temporal regions and improved
consistency in speech categorization behaviors (Fuhrmeister and
Myers, 2021). Similarly, smaller gray matter volume in STG has
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been linked to improvements in speech and cognitive training
(Takeuchi et al., 2011a,b; Maruyama et al., 2018). Additionally,
the trend for reduced cortical thickness in better categorizers is
consistent with previous research showing individual differences
in regions of reduced cortical thickness along HG (Zoellner
et al., 2019). Thus, it seems “less is more” with respect to the
expanse of auditory anatomy and certain aspects of listening
performance. However, future research is needed to clarify
the relationships between macroscopic gray and white matter
volumes measured by MRI, neuronal microstructures, and their
behavioral correlates.

Limitations
While the relationship between neural responses and individual
learning performance suggests a role for P2 as an index
of learning, it remains possible that some of the neural
differences observed between the two groups is confounded
by the experimental design. Relative to the control group, our
learning group received approximately 20 additional minutes
of exposure to the musical intervals during training. Increased
familiarity with the musical intervals may have led to decreased
ERP amplitudes in the learning group. Previous research has
suggested that exposure to auditory stimuli is sufficient to
induce changes in neural responses (Sheehan et al., 2005;
Ross and Tremblay, 2009; Ross et al., 2013). Additionally,
procedural learning is confounded with perceptual learning
in this study design (Maddox and Ashby, 2004). However,
we have argued above that the relationship between ERP
responses and individual learning performance (i.e., accuracy
and identification slopes in the learning group) suggests these
neural pre- to post-test neural changes are more than simply
exposure (see “Functional Correlates of Auditory Category
Learning”). These effects also occur in waves that localize to
auditory-perceptual areas and well before motor responses,
more indicative of rapid perceptual learning due to training in
our study. Future research employing an active control group,
where listeners hear the same number of musical intervals but
train on an unrelated task, or a passive control group with
identical stimulus exposure as the learning group would be
particularly useful in ruling out these potential confounds. Other
modifications to the study design, such as additional training
time rather than a rapid learning paradigm, might lead to
more exaggerated behavioral differences between the learning
and control groups (Figure 2E) and/or different brain-behavior
associations altogether (e.g., enhanced neural responses; see
“Functional Correlates of Auditory Category Learning”).

Although the use of musical interval categories was intentional
to avoid possible confounds of language background on (novel)
speech learning, it remains an open question whether our results
complement category learning in other speech and non-speech
domains. Our results suggest promising parallels with speech
categorization and learning (Alain et al., 2010; Liebenthal et al.,
2010; Bidelman et al., 2013a; Ross et al., 2013), but further
research is needed to determine the domain-specificity and
generality of these neural processes. Additionally, the likelihood
of distributed sources outside of auditory cortex contributing to
the generation of the P2 response (Crowley and Colrain, 2004;
Ross and Tremblay, 2009) makes it difficult to directly relate

individual differences in ERPs to our PAC neuroanatomical
measures. The relationships between behavioral performance
and both functional and structural measures suggest bilateral
auditory cortices play a role in category learning. However, future
analyses could utilize source localization techniques to more
specifically determine where changes occur in the brains that
predict successful category learning outcomes.

CONCLUSION

We demonstrate that rapid auditory category learning of musical
interval sounds is characterized by increased efficiency in
sensory processing in bilateral, though predominantly right,
auditory cortex. The relationship between better behavioral
gains in identification performance and the ERPs corroborate
P2 as an index of auditory experience and a biomarker
for successful perceptual learning. The right hemisphere
dominance supporting music category learning complements
left hemisphere networks reported for speech categorization.
These short-term functional changes can be superimposed on
preexisting structural differences in bilateral auditory areas to
impact individual categorization performance.
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