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Persistent pain is a key symptom in people living with knee osteoarthritis

(KOA). Infra-slow Neurofeedback (ISF-NF) training is a recent development

focusing on modulating cortical slow-wave activity to improve pain

outcomes. A parallel, two-armed double-blinded, randomized sham-

controlled, feasibility clinical trial aimed to determine the feasibility and

safety of a novel electroencephalography-based infraslow fluctuation

neurofeedback (EEG ISF-NF) training in people with KOA and determine the

variability of clinical outcomes and EEG changes following NF training. Eligible

participants attended nine 30-min ISF-NF training sessions involving three

cortical regions linked to pain. Feasibility measures were monitored during the

trial period. Pain and functional outcomes were measured at baseline, post-

intervention, and follow-up after 2 weeks. Resting-state EEG was recorded

at baseline and immediate post-intervention. Participants were middle-aged

(61.7 ± 7.6 years), New Zealand European (90.5%), and mostly females (62%)

with an average knee pain duration of 4 ± 3.4 years. The study achieved a

retention rate of 91%, with 20/22 participants completing all the sessions.

Participants rated high levels of acceptance and “moderate to high levels

of perceived effectiveness of the training.” No serious adverse events were

reported during the trial. Mean difference (95% CI) for clinical pain and

function measures are as follows for pain severity [active: 0.89 ± 1.7 (−0.27

to 2.0); sham: 0.98 ± 1.1 (0.22–1.7)], pain interference [active: 0.75 ± 2.3

(−0.82 to 2.3); Sham: 0.89 ± 2.1 (−0.60 to 2.4)], pain unpleasantness [active:

2.6 ± 3.7 (0.17–5.1); sham: 2.8 ± 3 (0.62–5.0)] and physical function [active:

6.2 ± 13 (−2.6 to 15); sham: 1.6 ± 12 (−6.8 to 10)]. EEG sources demonstrated
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frequency-specific neuronal activity, functional connectivity, and ISF ratio

changes following NF training. The findings of the study indicated that

the ISF-NF training is a feasible, safe, and acceptable intervention for pain

management in people with KOA, with high levels of perceived effectiveness.

The study also reports the variability in clinical, brain activity, and connectivity

changes following training.

KEYWORDS

infraslow oscillation, knee osteoarthritis, neurofeedback, pain neuromodulation,
safety, feasibility

Introduction

Persistent pain is a significant presenting complaint in
knee osteoarthritis (KOA), leading to activity limitation
and participation restrictions (Vongsirinavarat et al.,
2020). Available non-pharmacological and pharmacological
interventions for reducing pain and improving function (Yusuf,
2016; Ferreira et al., 2019) only achieve modest improvements
in pain outcomes and associated disability (Beswick et al., 2012;
Kittelson et al., 2014; Gregori et al., 2018). Neuroimaging studies
demonstrate altered cortical activities at the somatosensory
cortex (SSC) (Gingold et al., 1991; Price, 2000; Craig, 2002;
Bushnell et al., 2013), dorsal anterior cingulate cortex (dACC),
(Rainville et al., 1997; Price, 2000; Vogt and Sikes, 2000;
Rainville, 2002; Fallon et al., 2015; Vanneste et al., 2017), and
the pregenual anterior cingulate cortex (pgACC) in persistent
pain conditions including KOA (Price, 2000; Fields, 2004; Sofat
et al., 2011; Bushnell et al., 2013; Kwon et al., 2014; Ossipov
et al., 2014; Fingleton et al., 2015; Vanneste et al., 2017; Peters
et al., 2019; Soni et al., 2019; Apkarian, 2020). A heuristic
pathophysiological model suggests that pain is the consequence
of an imbalance between the pain-evoking and descending pain
inhibitory brain regions in patients with chronic pain treated by
spinal cord stimulation (De Ridder and Vanneste, 2016, 2021;
Vanneste and De Ridder, 2021).

Electroencephalography-based neurofeedback (EEG-NF) is
a non-invasive neuromodulatory technique in which cortical
electrical activity is measured and fed back in real-time to the
individual to facilitate self-regulation of the cortical activity
to influence specific behavior or clinical outcomes (Ros et al.,
2014; Sitaram et al., 2017). EEG-NF protocols are designed
either to upregulate or downregulate the cortical potentials of
various regions of interest (ROI) linked to symptom or disease
states (Rance et al., 2011; Gorini et al., 2015; Yang L. et al.,
2015; Marzbani et al., 2016; Enriquez-Geppert et al., 2017; Shoji
et al., 2017; Sitaram et al., 2017; Prinsloo et al., 2018; Reiner
et al., 2018; Saj et al., 2018; Roy et al., 2020). The functional
magnetic resonance imaging (fMRI) Blood Oxygenation Level
Dependent (BOLD) signal fluctuates in the infraslow frequency
(ISF) band (0.01–0.1 Hz) and correlates with EEG infraslow

fluctuations (Pan et al., 2013; Hiltunen et al., 2014; Thompson
et al., 2014; Keinänen et al., 2018; Gutierrez-Barragan et al.,
2019). Increasing evidence implicates the role of a novel ISF
in modulating dynamic brain connections (Ploner et al., 2017)
and physiological and pathological brain functions including
in chronic pain (Vanhatalo et al., 2004; Lőrincz et al., 2009;
Schroeder and Lakatos, 2009; Hughes et al., 2011; Ko et al., 2011;
Rodin et al., 2014). EEG-NF training targeting the ISF band
(0.0–0.1 Hz) can produce clinical benefits (Leong et al., 2018;
Balt et al., 2020). The ISF band correlates with higher frequency
oscillations and is phase-locked with the faster frequency
spectrum greater than 1 Hz extending to 20 Hz (Vanhatalo et al.,
2005; Ploner et al., 2017). Preclinical and empirical research
shows that neuropathic pain is associated with altered ISF within
the dorsal horn, extending to the SSC (Gerke et al., 2003; Iwata
et al., 2011). Additionally, evidence from neuroimaging studies
demonstrates increased ISF activity within the pain-evoking
brain regions, including dACC and SSC, and decreased ISF
activity within the antinociceptive network, including pgACC
(Majeed et al., 2011; Kucyi et al., 2013; Kucyi and Davis, 2015;
Alshelh et al., 2016; Alshelh, 2018; Zhou et al., 2018; Zhang
B. et al., 2019; Zhang Y. et al., 2019; Di Pietro et al., 2020).
Also, greater infra-Slow oscillation power in the contralateral
orbitofrontal cortex, insula, thalamus, secondary SSC, and the
ipsilateral anterior insula was identified in individuals with
CRPS compared with controls (Di Pietro et al., 2020). EEG-NF
training of the ISF band can modulate the resting-state brain
networks, and this has been demonstrated in both clinical and
preclinical studies (Monto et al., 2008; Dong et al., 2012; Mairena
et al., 2012; Smith et al., 2014). Currently, there is no evidence of
the efficacy of ISF-NF training in people with pain. Moreover,
there is no evidence on the safety, feasibility, and acceptability
of the ISF-NF training as an intervention for persistent pain
(Mathew et al., 2020). Therefore, the objectives of the study were:
(1) to assess the feasibility, safety, and acceptability of ISF-NF
training in individuals with KOA; (2) to descriptively report
the variability of change in the clinical and experimental pain
outcomes in people with KOA following NF training; (3) to
descriptively explore the changes in EEG current source density
(CSD) at the targeted cortical areas (SSC, dACC, and pgACC),
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functional connectivity between the three cortical areas (SSC,
dACC, and pgACC), and the CSD ratios between the ROIs (SSC,
dACC, and pgACC) following ISF-NF training.

Materials and methods

Design, ethics, and cultural
consultation

A two-arm, parallel-group, double-blinded, randomized
sham-controlled feasibility trial was conducted in Dunedin,
New Zealand. The trial is reported according to the
Consolidated Standards of Reporting Trials (CONSORT)
extension for randomized pilot and feasibility trials (Eldridge
et al., 2016). The description of the study intervention was
structured following the Template for Intervention Description
and Replication (TIDieR) guide (Hoffmann et al., 2014).
The trial was registered with the Australian New Zealand
Clinical Trials Registry (ACTRN12620000273987), and the
study protocol was published in a peer-reviewed journal
(Mathew et al., 2020). This study was approved by the Health
and Disability Ethics Committee (HDEC), New Zealand
(19CEN182), and the cultural consultation was obtained from
the Ngāi Tahu Research Consultation Committee (5733_21392).

Sampling and recruitment strategy

Study participants were recruited from the Dunedin
community using convenience sampling. Periodic advertising
was carried out through Newspapers, Facebook (Sponsored), an
e-mail invitation to the University of Otago (UO), displaying
study flyers at the Public Hospital, School of Physiotherapy
clinic, and other UO departments. Interested volunteers
contacted the first author via telephone or email and underwent
screening using the Qualtrics online survey platform (Qualtrics,
Provo, UT, United States, 2013) (Cantor and Thorpe, 2018).
Eligible participants were further contacted via phone, and
appointments were fixed for the confirmatory baseline
assessment session. Eligible participants provided written
consent and completed a baseline assessment. Calendar
invitations were sent to all the participants confirming
their appointments for their training sessions and post-
intervention assessment session. Automated reminder
emails or text messages were sent prior to assessment and
training session days.

Inclusion criteria
Adults aged 44–75 years, with a clinical diagnosis of KOA

with pain severity of at least ≥ four on an 11-point numerical
rating scale for a minimum duration of 3 months were eligible

to participate in the study (Fingleton et al., 2015; Bartley et al.,
2016).

Exclusion criteria
Participants were excluded if they had one of the following

situations or conditions: underwent surgery or other invasive
procedures in the last 6 months and any surgical procedures
scheduled within 8 weeks after screening; undertaken any
steroid injections to the knee joint in the past 3 months
or on oral steroids in the previous month; current intake
of centrally acting medications or intention of taking new
medications in the next 8 weeks; neurological conditions
or diseases; soft tissue injuries of the knee in the last 3
months; cognitive impairments; difficulty or inability to read
or understand English or provide informed consent; and
pregnancy or 6 months post-labor. A paper-based Mini-Mental
State Examination (MMSE) was carried out for screening
volunteers with cognitive impairments. The maximum MMSE
is scored out of 30 points, and volunteers scoring a total score of
24 or below were excluded from the study.

Randomization and allocation
concealment

Participants were randomized into either active ISF-NF or
sham ISF-NF groups (in a ratio of 1:1) using an open-access
block randomization program by the department research
administrator not involved in the assessments, allocation,
or interventions. The allocations were concealed until after
the initial assessment was completed. The NF provider (first
author) opened the sealed envelope before the first NF
training session.

Blinding

Participants and the outcome assessor were blinded to the
group allocation. The group was disclosed to the participant
after completing the follow-up questionnaire after 2 weeks after
the post-intervention assessment session. Every week, all the
participants were asked at the end of the third training session,
“Which training condition do you think you received?” to
determine the blinding integrity (Leong et al., 2018).

Primary study outcomes

Feasibility outcomes
The recruitment rate was determined by the number

of participants attending the screening assessment. The
randomization rate was assessed by the ratio of the
number of participants randomized into the trial from
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amongst those eligible. The retention rate was determined
by the number of sessions attended by the participant
as per the initial appointment schedule. The drop-
out rate was measured as the number of participants
who dropped out from each group and expressed
as a percentage of the total number of participants
enrolled in the study.

Acceptability

Acceptability is a “multi-faceted construct that reflects the
extent to which people receiving a healthcare intervention
consider it appropriate, based on anticipated or experienced
cognitive and emotional responses to the intervention” (Sekhon
et al., 2017). All the participants reported the training
acceptability on a Likert scale with “0” corresponding “not at all
acceptable” and “7” corresponding to “very acceptable” on their
post-intervention assessment.

Perceived level of effectiveness

The subjective likelihood that the ISF-NF training
will have a persuasive impact on the participant (Suka
et al., 2018). Participants reported their perceived
levels of effectiveness on a Likert scale with “0-
not at all effective and 7-very effective” on their
post-intervention assessment.

Adverse events
An adverse effect is described as any harmful sign

or symptom resulting from the treatment, which could
be related to the ISF-NF training. All the participants
were instructed to complete a Discontinuation-Emergent
Sign and Symptom (DESS) inventory to record worsening
or improving side effects compared to the status before
every training session. DESS has been used in previous NF
studies to record adverse events associated with NF training
(Rogel et al., 2015). DESS is a checklist of 43 symptoms,
consisting of emotional, behavioral, cognitive, and physical
conditions that can be considered possible side effects from
NF training. At each training session, participants were
asked the following question: “Since the last visit, have you
experienced any changes in the following symptoms? (Please
check only one response for each symptom).” The scale
was originally developed and used to capture symptoms
associated with discontinuation or interruption of Selective
Serotonin Reuptake Inhibitors (SSRI) treatment (Bhat and
Kennedy, 2017). Participants rated each symptom as a “new
symptom,” “old symptom but worse,” “old symptom but
improved,” “old symptom but unchanged,” and “symptom
not present.” We have reported any adverse effect if the
participant has reported any symptom as a “new symptom”
at least once during the trial, which they think is related to
the NF training.

Secondary outcome measures

Pain, function, and psycho-social constructs were collected
using validated questionnaires. The multi-dimensional
constructs were chosen based on the biopsychosocial model of
pain literature. Based on the recommendations by Initiative on
Methods, Measurement, and Pain Assessment in Clinical Trials
(IMMPACT) consensus II, Pain (both numerical and categorical
tools), physical and emotional functioning measurement tools
were included (Edwards et al., 2016). A summary of the outcome
measures is given in Supplementary Table 1. Details including
psychometric properties and the method of implementation of
each tool are explained in the protocol (Mathew et al., 2020).

Pain sensitivity
Quantitative Sensory Testing (QST) procedures including

pressure pain threshold (PPT), mechanical temporal summation
(MTS), conditioned pain modulation (CPM), vibration
perception threshold, cold hyperalgesia, tactile acuity, and body
schema integrity (Rolke et al., 2006; Georgopoulos et al., 2019)
are detailed in the published protocol (Mathew et al., 2020) and
are also summarized in (Supplemental Digital Content).

EEG and source localization
Resting-state EEG was obtained in a quiet room while the

participant was sitting upright in a comfortable chair by an
independent researcher. EEG was collected using the Mitsar
EEG system sampled at 500 Hz with WinEEG software at
baseline (T0) and immediately post-intervention (T1) (Gorecka
and Makiewicz, 2019). The EEG was sampled with 21 electrodes
placed in the standard 10–20 International placement, and
impedances were checked to remain below 5 k� (Khazi et al.,
2012). Data was collected for∼10 min with the participant’s eyes
closed. The participants’ alertness was observed by monitoring
both the slowing of the alpha rhythm and the appearance of
spindles in the EEG stream to prevent possible enhancement
of the theta power due to drowsiness during recording
(Britton et al., 2016).

Follow-up assessment
Two weeks following the final training session, all

participants were contacted by a phone call or email to complete
the online survey on pain (pain intensity, pain bothersomeness,
pain unpleasantness) and adverse events using the DESS tool.

Interventions

Eligible participants attended nine sessions (30 min
each; three sessions/week) of NF training at the School
of Physiotherapy, UO. The intervention was provided by
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a researcher (JM) who was not involved in the outcome
assessment and randomization process. Two NF experts trained
the researcher who provided the intervention in the trial. Before
the trial, the researcher conducted NF training sessions on 10
healthy people to get familiarized with standardized training
protocols (Mathew et al., 2020). The experimental methodology
and reporting of NF followed the Consensus on the Reporting
and Experimental Design of clinical and cognitive-behavioral
NeuroFeedback studies checklist (CRED-nf checklist) (Ros
et al., 2020). Since this was a feasibility trial, most of the items
on the CRED-nf list were not applicable.

During each session, participants were asked to sit on a chair
with their back supported and stay relaxed for 10 min, allowing
the trainer to prepare the participant for the NF training.
Both active ISF-NF and sham ISF-NF were administered using
a 21-channel DC-coupled amplifier produced by BrainMaster
Technologies, Inc. The amplifier was connected to a high-end
laptop (G752VS, Intel R© CoreTM i7-6700HQ CPU @ 2.60GHZ)
produced by the ASUSTek computer INC. The Comby EEG
lead cap with sensors (Ag/AgCl) with appropriate size was
fixed to the individual’s head, with reference electrodes placed
at the mastoids. A sparse amount of EEG gel was applied
to each electrode using a syringe with caution to prevent
bridging between adjacent electrodes. The tip of the syringe
was used to move the hair beneath each electrode, and
a mild abrasion of the scalp was performed. This was to
ensure proper electrode placement on the scalp and to acquire
quality EEG recording.

The impedance of the active electrodes was monitored and
kept below 5 k� (Leong et al., 2018). The optimal impedance
was acquired by manual adjustment of the electrode initially,
and an additional amount of gel was applied, if necessary, but
always sparsely. The trainer ensured no more than 5 ml of
the gel had been utilized for each training preparation. Any
amount of gel escaping from the electrode was removed using
a cotton swab before the commencement of the training session.
The NF training was performed in a large, closed room with
appropriate ventilation. All efforts were made to maintain the
room temperature with a central temperature control system.
A silent cooler was used when necessary. This was to control
(not eliminate) the influence of sweat with EEG recording. The
room lighting and influence of external sound were controlled
during each training session. Clear instructions were given to
the participant before starting the NF training. Participants
were emphasized to minimize eyeball movement, head and neck
movements, swallowing, and clenching of teeth to minimize
motion artifact in the EEG. Each NF session consisted of 30 min
of training. The following instruction was given to all the
participants before every NF session; “please close your eyes, keep
your eyes and tongue nice and still. Listen and concentrate on the
sound being played for the coming 30 min. Please let me know if
you experience any problem or discomfort; I am right behind you
controlling the training system.”

Active infraslow neurofeedback balance
training protocol

A novel ISF-NF balance training protocol was developed
to enhance a balance between the three cortical areas (SSC,
dACC, and pgACC) (De Ridder and Vanneste, 2020). The
idea of ISF-NF balance training protocol was based on the
previous studies that observed an imbalance between the dACC
and SSC and pgACC cortical areas (De Ridder and Vanneste,
2020; Vanneste and De Ridder, 2021). The ISF-NF training
protocol (Figure 1) involved simultaneously downregulating the
electrical activities of SSC (sensory-discriminative function) and
dACC (motivational/affective function), and upregulating the
pgACC (descending nociceptive inhibitory function) (Rainville
et al., 1997; Vogt and Sikes, 2000; Rainville, 2002; Kulkarni et al.,
2007; Baliki et al., 2008, 2014; Kong et al., 2010; Tagliazucchi
et al., 2010; Howard et al., 2012; Bushnell et al., 2013; Kucyi
et al., 2013; Kwon et al., 2014; Ossipov et al., 2014; Fallon et al.,
2015; Vanneste et al., 2017; Cottam et al., 2018; Furman et al.,
2018; Yam et al., 2018; De Ridder and Vanneste, 2020; Spisak
et al., 2020). The SSC was made up of Brodmann areas 1, 2, 3,
and 5, as defined by the Montreal Neurological Institute (MNI)
coordinate database (Fuchs et al., 2002; Lancaster et al., 2007).
The dACC and pgACC were designer ROIs and are defined with
the help of the NeuroSynth meta-analytic database.1

Each participant received auditory feedbacks delivered by
BrainMaster Technologies Software for an approximate of 60–
80% in real-time when the participant’s brain activity met the
desired infraslow (0.0–0.1 Hz) threshold at the targeted ROIs.

The software calculated the ratio in real-time in the ISF
band, and the feedback was given when the ratio was > 1 based
on satisfying the following equation:

2 ∗ pgACC
SSC + dACC

= 1

As the dACC and SSC combine two current densities and
the pgACC only one, the current density of the pgACC was
doubled (Vanneste and De Ridder, 2021). Efforts were made to
keep the reward threshold between 60 and 80%. In other words,
60–80% of the time, a sound will be played (reward) when
the participant’s brain activity meets the infraslow magnitude
(threshold). This was chosen based on the insights from our
previous study and the authors’ clinical experience (Leong
et al., 2018). Reaching a predetermined threshold brain activity
(activities) is a response in relation to the received feedback and
participant’s engagement with the training (Enriquez-Geppert
et al., 2017; Sitaram et al., 2017). The software delivered the
auditory feedback within 30 ms when the activity threshold
is met (upregulation of pgACC and downregulation of SSC
and dACC). However, further improvement in the response
would be dependent on how the participant responds to the
reinforcement (Sitaram et al., 2017).

1 www.neurosynth.org
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FIGURE 1

The Regions of interests and neurofeedback training directions with respective coordinates (XYZ). This figure was created using brain images
produced from eLORETA software and with the help of Microsoft PowerPoint application.

Sham infraslow neurofeedback protocol
Conditions for the sham ISF-NF group was the same as

the active ISF-NF group, except the participants received sound
feedback according to someone else’s pre-recorded session. To
ensure this, we have trained healthy participants with an active
ISF-NF program for nine sessions. We captured the feedback
sound using Audacity software, a free and open-source digital
audio editor and recording application (Maheshkumar et al.,
2016). Participants in the sham ISF-NF were prepared as same
as the ISF-NF group, and they received these pre-recorded
feedback sounds. The Audacity software uses the computer’s
sound card as an audio to digital (A/D) converter and eliminates
the additional requirement of an external microprocessor
(Maheshkumar et al., 2016). The pre-recorded signals were
selected randomly by the chit method from a set of nine files.

Data processing

EEG data processing

Using WinEEG advanced software, raw EEG data were
sampled at 500 Hz for 19 channels, filtered from DC
to 50 HZ, plotted, and exported in American Standard
Code for Information Interchange (ASCII) format
(Golomolzina et al., 2014).

The exported files were then batch imported into the
EEGLAB (MATLAB R2020a). Each file was resampled to 128
Hz, bandpass filtered from 0.01 to 0.1 Hz and the first 4 s of data
were truncated. Subsequently, Average Fourier cross-spectral

matrices (Lin and Cai, 2002) were computed for the infraslow
band (0.01–0.1 Hz). The transformation matrix was exported
for import into the Independent Component Neurofeedback
(ICoN) software (Delorme and Makeig, 2004). The ROIs used
in the present study were SSC left (S1Lt) [MNI coordinates
(MNIxyz) = 18,−40, 68], SSC right (S1Rt) (MNIxyz =−18,−40,
68), pgACC (MNIxyz = 0, 36, 2), and dACC (MNIxyz = 0, 16,
32) (Figure 1).

Each EEG file was carefully inspected in ICoN for eye blinks,
muscle artifacts, perspiration, and body movements, and the
artifacts were manually rejected from the file. ICoN performs
fast blind source separation (BSS) on multiple EEG time-series
using second-order statistics (SOS). The ICoN allows source
estimation, data filtering (e.g., artifact rejection), and source
localization of separated sources through the LORETA-Key
software (Pascual-Marqui, 2002; Congedo et al., 2008). The
software is widely used in EEG studies for BSS and artifact
rejection (Bersagliere et al., 2018; Leong et al., 2018; Vanneste
and De Ridder, 2021). The raw EEG data were randomized by
the research administrator and the pre-processing and cleaning
of the EEG data was blinded. The blinding was concealed until
the EEG cleaning was completed.

EEG based outcome measures

Region of interest analysis
Exact low-resolution brain electromagnetic tomography

(eLORETA) software (Jatoi et al., 2014; Aoki et al., 2015) was
used to perform a voxel-by-voxel analysis (comprising 6,239
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voxels) for the ISF frequency band of the CSD distribution.
The log-transformed current density was averaged across all
voxels belonging to the S1Lt, S1Rt, dACC, and pgACC for the
ISF frequency band to identify differences in brain electrical
activity between the groups. Means, standard deviations, and
mean differences for the CSD at the targeted ROIs in the ISF
band were calculated.

We also computed the ISF band ratios between the ROIs as
below and descriptively compared between the groups.

2 ∗ pgACC
SSC + dACC

Lagged phase coherence or functional
connectivity analysis

Similar eLORETA techniques were applied to compute
the FC between the ROIs (Pascual-Marqui, 2002). FC is
a statistical measure of coherence, i.e., co-varying activity
or phase synchronization between two areas in the brain
(Vanneste et al., 2017; De Ridder and Vanneste, 2020). The
lagged phase synchronization between S1Lt, S1Rt, pgACC,
and dACC reflects the communication between those areas
(Lancaster et al., 2007; Mathew et al., 2020). Measures of
linear dependence (coherence) between the multivariate time
series are defined. Functional connectivity contrast maps
were calculated through multiple ROI-by-ROI comparisons
in eLORETA. The significance threshold was based on a
permutation test with 5,000 permutations. The log-transformed
electric current density of the FC strength was derived for
each connection between the ROI and presented descriptively.
The source localization FC analysis is widely used in
neuromodulation and neurophysiological studies (Pascual-
Marqui, 2007, 2017; Duke Han et al., 2013; Yang X. et al., 2015;
Fallon et al., 2016; Pascual-Marqui et al., 2018; Aedo-Jury et al.,
2020; Guo et al., 2020; Modares-Haghighi et al., 2021).

All the graphs and calculations were performed using
GraphPad Prism software version 9.1.0 for Windows (GraphPad
Software, San Diego, CA, United States).

Descriptive analysis

As this was a feasibility trial, a formal sample size
estimation was not conducted, and feasibility outcomes were
reported based on the feasibility trial recommendations (Tickle-
Degnen, 2013; Orsmond and Cohn, 2015). Hypothesis testing
to compare study groups was not performed; instead, data were
reported descriptively in aggregate and group allocation. Means
and standard deviations are reported for continuous normal
distribution data. Medians and percentile range are reported
for non-normal data. Counts and percentages are reported for
categorical data. Both 95 and 75% confidence intervals (CI) for
the mean differences were derived and reported for the pain

and function measures. Based on the intention-to-treat analysis
principle, a “last observation carried forward” methodology was
used to impute the missing data for one participant for the
follow-up assessment session (Moher et al., 2012; Twisk et al.,
2020).

Results

Twenty-two participants with KOA underwent
baseline assessment and were randomly assigned

TABLE 1 Demographic and clinical characteristics of the participants.

Characteristics Active group
(n = 11)

Sham group
(n = 10)

Age, years, M± SD 62.3± 8.5 61.0± 6.7

Sex, n (%) Female 7 (64%) 6 (60%)

Race, n (%)

New Zealand European 10 (91%) 9 (90%)

Australian 1 (9%) 0

Tongan 0 1 (10%)

Body Mass Index, kg/m2 ,
M± SD

32.4± 9.5 30.4± 8.8

Employment, n (%)

Employed part-time 3 (27%) 3 (30%)

Employed full-time 2 (18%) 2 (20%)

Student 1 (9%) 0

Retired 4 (36%) 4 (40%)

Unemployed 1 (9%) 1 (10%)

Education, n (%)

No formal qualifications 1 (9%) 0

Year 12 or equivalent (school
certificate)

1 (9%) 0

Year 10 or equivalent (school
certificate)

0 1 (10%)

Trade/apprenticeship 2 (18%) 2 (20%)

Certificate/diploma 3 (27%) 3 (30%)

University degree/higher
university degree

4 (37%) 4 (40%)

Dominance, n (%) Right 11 (100%) 10 (100%)

Average pain in the last 3
months (on NPRS)

6.1± 1.5 5.9± 1.2

Affected knee, n (%)

Right 8 (72.7%) 7 (70%)

Left 3 (27.3%) 3 (30%)

Knee pain duration–years
(mean, SD)

5.3± 4 2.6± 2.3

Current
medication/treatment status

Analgesics 4 (36.4%) 6 (60%)

Physiotherapy 1 (9.1%) 1 (10%)

Analgesics and physiotherapy 2 (18.2%) 0

No-treatment 4 (36.4%) 3 (30%)
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to receive either active ISF-NF (n = 11) or sham
ISF-NF (n = 11). Participants were middle-aged
(61.7 ± 7.6 years), New Zealand European (90.5%),
and mostly females (62%) with an average knee
pain duration of 4.0 ± 3.4 years. The demographic

and clinical characteristics of the participants at
baseline are summarized in Table 1. Baseline measures
of physical activity, quality of life, health status,
psycho-social, and sleep measures are presented as
Supplementary Table 2.

FIGURE 2

(A) CONSORT flow diagram (B) trial timeline.
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TABLE 2 Recruitment and data collection timeline.

Feb. 2020 Mar Apr May Jun Aug Oct Nov Dec

NP FB UOM NP FB UOM NP FB NP

Interests 14 3 5 17 COVID lock-down
related interruption

10 12 14 16 22 NF training sessions
continued.

Eligible 4 0 2 6 0 1 6 0 8

Baseline assessment 4 0 1 4 0 2 5 0 6

Randomized 4 0 1 4 0 2 5 0 6

NP, News paper; FB, Facebook; UOM, University of Otago e-mail circulation.

Missing data

One person dropped out from the study during the training
session and his data is not demonstrated in the results.
Sport/recreational item was missing from the baseline and post-
intervention assessment from one participant.

Feasibility outcomes

Recruitment rate
The recruitment period was 5 months. A total number of

113 people indicated their interest to take part in the study.
Of 113, 58 people could not be reached either via email
or phone. Fifty-five participants completed online screening,
out of which 20 did not meet the inclusion criteria, and 13
declined to participate in the study. Twenty-two participants
attended baseline assessment sessions and were randomized
into either active or sham groups. A detailed CONSORT
flow diagram and trial timeline are given in Figures 2A,B.
We were able to recruit an average of 4 participants
per month for 5 months of the recruitment period. The
details of recruitment and data collection are summarized in
Table 2.

Table 2 summarizes the number of participants recruited
through various advertisement strategies employed in this
trial. The overall data collection period was from February
to December 2020.

Randomization rate
None of the participants indicated any objection or

raised concerns regarding the randomization process. All
the participants who underwent baseline assessment sessions
(n = 22) were randomized to receive either active ISF-NF
training (n = 11) or sham ISF-NF training (n = 11).

Retention rate
The study achieved a 95.4% retention rate at the end of

the trial, with 21/22 participants completing all the nine NF
training sessions (S1–S9). However, 85.7% rescheduled their
training sessions at least once during the NF training period due
to various personal reasons.

Drop-out rate
Due to the COVID-19 lockdown in New Zealand (Susan

Strongman et al., 2021), one participant in the sham
group was forced to withdraw from the study after the
seventh training session. Also, one participant from the
active group failed to respond to the follow-up email
and/or phone call.

TABLE 3 Motivation and engagement levels and success of
participant blinding.

Active
group

(n = 11)

Sham group
(n = 10)

BCI-QCM-Motivation

Baseline M (SD)

Interest 4 (0.8) 3.9 (0.7)

Mastery of confidence 4.1 (0.5) 3.9 (0.9)

Incompetence fear 4.1 (0.8) 3.7 (0.7)

Challenge 2.8 (0.7) 2.3 (0.6)

Before every NF session, M
(SD)

VAS-motivation 8.4 (1.3) 7.9 (1.4)

Mood-BMIS 8.1 (1.4) 8 (1.3)

Level of engagement

Post every NF session, M
(SD)

Level of engagement 8.6 (1.1) 8.3 (1.4)

Post-training (9 sessions), M
(SD)

Treatment acceptability 6.3 (0.9) 6.5 (0.5)

Level of perceived
effectiveness

4.8 (2.1) 5.7 (1.3)

Blinding success, n (%)

End of week 1 (following S3),
correct prediction

10 (90 %) 4 (40%)

End of week 2 (following S6),
correct prediction

7 (64 %) 4 (40%)

End of week 3 (following S9),
correct prediction

8 (73 %) 3 (30%)

BCI-QCM, Brain-computer interference-Questionnaire of current motivation; NF,
Neurofeedback; VAS, Visual analog scale; BMIS, Brief mood introspection scale; S3, S6,
S9, third/sixth/ninth NF session.
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Acceptability and perceived levels of
effectiveness

Both active and sham group participants reported ISF-
NF training as an acceptable intervention with high levels of
perceived levels of effectiveness (Table 3).

Motivation, mood, and level of
engagement

Participants in both the groups had reported higher levels
of motivation, mood, and engagement with the training sessions
(Table 3 and Figures 3A–C).

Integrity of blinding

Eight participants from the active group correctly identified
their allocation group at the end of the training sessions. The
results are presented in Table 2. Out of eight, six reported

improvements in pain and function as their reason for guessing
the group allocation. Two of them were being hopeful and
believed that they were in the active group. Only three
participants from the sham group correctly identified their
allocation group reported due to no improvement in their
pain. Participants who failed to identify their allocation group
correctly reported various reasons, including being hopeful,
positive feeling, and pain improvement.

Negative and positive events recorded
using discontinuation-emergent sign
and symptom scale

No serious adverse effects were reported during the
trial period. Also, none of the reported symptoms was
worsened during the training period (Figure 4). Two sham
group participants reported improvement (old symptom but
improved) with their “nervousness or anxiety” symptoms
after the 4th training session. Three participants from both
groups reported improved sleeping after the 3rd and 4th

FIGURE 3

Overall motivation, mood, and engagement with neurofeedback training sessions. (A–C) Violine plot of participants motivation and mood
recorded before every neurofeedback session and level engagement scores recorded after the sessions.
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FIGURE 4

Distribution of the reported adverse effects by both groups on the Discontinuation-Emergent Sign and Symptom inventory.

training sessions. One sham group participant reported
having improvement with “agitation” symptoms after the 3rd
training session. One participant from active ISF-NF and two
participants from sham ISF-NF reported improved “fatigue and
tiredness” after the 3rd training session. The participants in both
groups reported no other symptoms.

Changes in the clinical outcome
measures

Participants in both groups have shown changes in pain
severity, pain interference, and unpleasantness (Table 4).

Individual participant data for all outcome measures are plotted
in Figures 5A–H. Descriptive trend analyses show that the
active group (vs. Sham group) showed greater improvement in
pain unpleasantness, pain interference, physical function, and
physical activity measures, and positive changes in the QST
measures (Tables 4–6). These observations were made based on
the descriptive data and graphical trend. No statistical analysis
was conducted, as this was a feasibility trial and not powered to
perform any statistical analysis.

Another observation includes the improvements in pain
severity during immediate and follow-up assessments when
compared to baseline. The sham group tends to taper off
on pain severity after the training period, whereas the active
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TABLE 4 Results of pain and function outcome measures.

Domains and
variables

Active group (n = 11) Sham group (n = 10)

Baseline
(T0)

Post-
intervention

(T1)

Follow-up
(T2)

T0-T1 T0-T2 T1-T2 Baseline
(T0)

Post-
intervention

(T1)

Follow-up
(T2)

T0-T1 T0-T2 T1-T2

Pain severity and interference -BPI, M (SD), 95% CI and 75% CI

Pain severity
sub-score (24 h
items)

3.4 (1.8)
[2.2,4.6]
[2.7, 4.0]

2.5 (1.7)
[1.3, 3.7]
[1.9, 3.1]

2.4 (2.1)
[1.1, 3.8]
[1.7, 3.2]

0.89 (1.7)
[−0.27, 2.0]
[0.25, 1.5]

0.95 (1.5)
[−0.064, 2.0]

[0.40, 1.5]

0.07 (1.1)
[−0.69, 0.83]
[−0.35, 0.49]

3.4 (1.3)
[2.5, 4.4]
[2.9, 3.9]

2.5 (1.7)
[1.2, 3.7]
[1.8, 3.1]

2.6 (1.9)
[1.2, 3.9]
[1.8, 3.3]

0.98 (1.1)
[0.22, 1.7]
[0.56, 1.4]

0.85 (0.86)
[0.24, 1.5]
[0.52, 1.2]

−0.13 (0.98)
[−0.83, 0.58]
[−0.51, 0.26]

Pain interference
sub-score

2.4 (1.4)
[1.5, 3.4]
[1.9, 2.9]

1.7 (1.6)
[0.63, 2.7]
[1.1, 2.3]

Not applicable
(NA)

0.75 (2.3)
[−0.82, 2.3]
[−0.11, 1.6]

NA NA 2.9 (2.5)
[1.1, 4.7]
[1.9, 3.9]

2.0 (1.9)
[0.65, 3.4]
[1.3, 2.8]

NA 0.89 (2.1)
[−0.60, 2.4]
[0.076, 1.7]

NA NA

Worst pain in the
past 24 h

5.3 (2.5)
[3.6, 6.9]
[4.4, 6.2]

3.7 (2.1)
[2.3, 5.1]
[3, 4.5]

3.8 (3.0)
[1.9, 5.8]
[2.8, 4.9]

1.5 (2.1)
[0.16, 2.9]
[0.78, 2.3]

1.5 (2.6)
[−0.28, 3.2]
[0.50, 2.4]

−0.091 (2.3)
[−1.6, 1.5]

[−0.94, 0.76]

5.7 (1.9)
[4.3, 7.1]
[5, 6.4]

4.1 (2.5)
[2.3, 5.9]
[3.1, 5.1]

4.0 (2.6)
[2.2, 5.8]

[3, 5]

1.6 (1.8)
[0.33, 2.9]
[0.91, 2.3]

1.7 (1.5)
[0.63, 2.8]
[1.1, 2.3]

0.10 (1.7)
[−1.1, 1.3]

[−0.57, 0.77]

Worst pain in the
past 4 weeks

6.3 (2.7)
[4.4, 8.1]
[5.3, 7.3]

4.9 (2.6)
[3.1, 6.7]
[3.9, 5.9]

NA 1.4 (2.3)
[−0.21, 2.9]
[0.50, 2.2]

NA NA 6.2 (1.3)
[5.3, 7.1]
5.7, 6.7]

5.8 (2.5)
[4.0, 7.6]
[4.8, 6.8]

NA 0.40 (2.2)
[−1.2, 2.0]

[−0.44, 1.2]

NA NA

Least pain in the
past 24 weeks

1.9 (2.2)
[0.45, 3.4]
[1.1, 2.7]

1.7 (1.6)
[0.64, 2.8]
[1.1, 2.3]

1.4 (1.9)
[0.11, 2.6]
[0.68, 2]

0.18 (2)
[−1.2, 1.5]

[−0.55, 0.91]

0.55 (1.6)
[−0.55, 1.6]
[−0.06, 1.1]

0.36 (1.2)
[−0.45, 1.2]

[−0.08, 0.81]

2.0 (1.8)
[0.69, 3.3]
[1.3, 2.7]

1.1 (1.3)
[0.18, 2.0]
[0.60, 1.6]

1.1 (1.5)
[0.01, 2.2]
[0.51, 1.7]

0.90 (1.1)
[0.11, 1.7]
[0.47, 1.3]

0.90 (1.4)
[−0.14, 1.9]
[0.34, 1.5]

0.0 (0.47)
[−0.34, 0.34]
[−0.18, 0.18]

Least pain in the
past 4 weeks

2.1 (2.6)
[0.33, 3.9]
[1.1, 3.1]

1.2 (1.4)
[0.24, 2.1]
[0.67, 1.7]

NA 0.91 (1.9)
[−0.38, 2.2]
[0.20, 1.6]

NA NA 1.5 (2.2)
[−0.09, 3.1]
[0.64, 2.4]

1.6 (2.0)
[0.20, 3.0]
[0.84, 2.4]

NA −0.10 (0.88)
[−0.73, 0.53]
[−0.44, 0.24]

NA NA

Average pain in the
past 24 h

3.6 (2.0)
[2.3, 5.0]
[2.9, 4.4]

2.4 (1.9)
[1.1, 3.6]
[1.7, 3.1]

2.5 (2.1)
[1.1, 4.0]
[1.8, 3.3]

1.3 (1.7)
[0.11, 2.4]
[0.63, 1.9]

1.1 (1.4)
[0.17, 2.0]
[0.58, 1.6]

−0.18 (0.87)
[−0.77, 0.41]
[−0.50, 0.14]

3.6 (1.4)
[2.6, 4.6]
[3, 4.2]

2.8 (2.0)
[1.3, 4.3]
[2, 3.6]

2.9 (2.0)
[1.5, 4.3]
[2.1, 3.7]

0.80 (1.9)
[−0.54, 2.1]
[0.07, 1.5]

0.70 (1.5)
[−0.37, 1.8]
[0.12, 1.3]

−0.10 (0.99)
[−0.81, 0.61]
[−0.49, 0.29]

Average pain in the
past 4 weeks

4.0 (2.0)
[2.6, 5.4]
[3.2, 4.8]

2.6 (2.2)
[1.2, 4.1]
[1.8, 3.4]

NA 1.4 (1.6)
[0.31, 2.4]
[0.79, 1.9]

NA NA 3.9 (1.7)
[2.7, 5.1]
[3.3, 4.5]

3.0 (1.9)
[1.7, 4.3]
[2.3, 3.7]

NA 0.90 (1.5)
[−0.19, 2.0]
[0.31, 1.5]

NA NA

Current pain (at
the time of
assessment)

2.7 (1.8)
[1.5, 3.9]
[2.1, 3.4]

2.2 (2.0)
[0.84, 3.5]
[1.4, 2.9]

1.8 (2.0)
[0.62, 3.4]
[1.2, 2.8]

0.55 (2)
[−0.78, 1.9]
[−0.18, 1.3]

0.73 (2)
[−0.62, 2.1]
[−0.01, 1.5]

0.18 (1.3)
[−0.66, 1.0]

[−0.28, 0.64]

2.4 (1.5)
[1.3, 3.5]
[1.8, 3]

1.8 (1.8)
[0.50, 3.1]
[1.1, 2.5]

2.3 (2.4)
[0.58, 4.0]
[1.4, 3.2]

0.60 (1.9)
[−0.76, 2.0]
[−0.14, 1.3]

0.10 (1.8)
[−1.2, 1.4]
[−0.60, 80]

−0.50 (2.5)
[−2.3, 1.3]

[−1.5, 0.47]

Pain
unpleasantness, M
(SD)

6.5 (2.8)
[4.7, 8.4]
[5.5, 7.6]

3.9 (3.0)
[1.9, 5.9]
[2.8, 5]

3.6 (2.9)
[1.7, 5.6]
[2.6, 4.7]

2.6 (3.7)
[0.17, 5.1]

[1.3, 4]

2.9 (2.9)
[0.95, 4.9]

[1.8, 4]

0.27 (2.1)
[−1.1, 1.7]
[−0.48, 1]

7.1 (3.4)
[4.7, 9.5]
[5.8, 8.4]

4.3 (2.5)
[2.5, 6.1]
[3.3, 5.3]

5.3 (3.3)
[3.0, 7.6]
[4, 6.6]

2.8 (3)
[0.62, 5.0]

[1.6, 4]

1.8 (3.6)
[−0.81, 4.4]
[0.38, 3.2]

−1.0 (2.2)
[−2.6, 0.58]

[−1.9,−0.14]

Pain
bothersomeness, n
(%), No
bothersome

9 (81.8%) 10 (90.1%) 10 (90.1%) NA NA NA 7 (70%) 9 (90%) 10 (100%) NA NA NA

(Continued)
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TABLE 4 (Continued)

Domains
and
variables

Active group (n = 11) Sham group (n = 10)

Baseline
(T0)

Post-
intervention

(T1)

Follow-up
(T2)

T0-T1 T0-T2 T1-T2 Baseline
(T0)

Post-
intervention

(T1)

Follow-up
(T2)

T0-T1 T0-T2 T1-T2

Physical function, physical activity, and participation-KOOS, M (SD) and 95% CI—(higher the score, higher function)

KOOS pain 56 (14)
[47, 66]
[51, 62]

59 (18)
[47, 72]
[53, 66]

NA 3.1 (17)
[−8.3, 14]
[−3.2, 9.3]

NA NA 51 (15)
[40, 62]
[45, 57]

60 (16)
[49, 72]
[54, 67]

NA 9.2 (12)
[0.51, 18]
[4.5, 14]

NA NA

KOOS symptom 40 (13)
[31, 49]
[35, 45]

44 (10)
[37, 51]
[40, 47]

NA 3.2 (9.3)
[−3.1, 9.5]

[−0.23, 6.6]

NA NA 47 (13)
[38, 57]
[42, 53]

51 (12)
[42, 59]
[46, 55]

NA 3.3 (14)
[−6.8, 13]
[−2.2, 8.8]

NA NA

KOOS ADL 68 (13)
[59, 77]
[63, 73]

68 (16)
[57, 79]
[62, 74]

NA −0.36 (10)
[−7.2, 6.5]
[−4.1, 3.4]

NA NA 68 (17)
[56, 80]
[62, 75]

64 (19)
[50, 78]
[57, 71]

NA −4.1 (17)
[16, 8.3]

[−11, 2.6]

NA NA

KOOS
sports/recreation

34 (27)
[14, 53]
[23, 44]

53 (28)
[33, 73]
[42, 64]

NA 18 (33)
[−4.1, 40]
[5.8, 30]

NA NA 45 (28)
[25, 65]
[34, 56]

44 (20)
[29, 58]
[36, 51]

NA −1.5 (26)
[−20, 17]
[−12, 8.8]

NA NA

KOOS QOL 42 (15)
[32, 52]
[37, 48]

49 (12)
[41, 57]
[44, 54]

NA 6.8 (12)
[−1.5, 15]
[2.2, 11]

NA NA 45 (11)
[37, 53]
[41, 49]

46 (10)
[39, 54]
[42, 50]

NA 1.3 (8.9)
[−5.0, 7.6]
[−2.1, 4.7]

NA NA

KOOS aggregate 47 (12)
[39, 56]
[43, 52]

54 (15)
[44, 64]
[48, 59]

NA 6.2 (13)
[−2.6, 15]
[1.4, 11]

NA NA 51 (12)
[43, 60]
[47, 56]

53 (11)
[45, 61]
[49, 57]

NA 1.6 (12)
[−6.8, 10]
[−3, 6.2]

NA NA
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FIGURE 5

(A–H) Individual participant data for pain severity, pain unpleasantness, pain interference, and physical function scores. *Higher the score, the
higher the physical function.

training group effect is either maintained or further improved
over time (Figures 6A–C). Also, participants in the active
ISF-NF group have shown a consistent reduction in their
pain interference score during their NF sessions. In contrast,
sham ISF-NF has not demonstrated a reduction in the pain
interference scores.

EEG based outcome measures

Region of interest analysis
The log transformed CSD values were averaged across all

voxels belonging to the dACC, pgACC, S1Rt, and S1Lt for the
ISF band (Figures 7A–C).
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TABLE 5 Pain and interference measures during NF training sessions.

Domains and variables Active group (n = 11) Sham group (n = 10)

Week 1 Week 2 Week 3 Week 1 Week 2 Week 3

Pain severity-BPI, M (SD)

Pain severity sub-score 2.7 (1.4) 2.2 (1.6) 2.0 (2.0) 3.2 (1.2) 2.9 (1.7) 2.5 (1.9)

Worst pain in the past 24 h 4.3 (2.1) 3.5 (2.4) 3.3 (2.9) 4.9 (2.0) 4.4 (2.4) 3.7 (2.7)

Least pain in the past 24 weeks 1.5 (1.5) 1.3 (1.5) 1.5 (2.0) 1.8 (1.2) 1.2 (1.1) 1.6 (1.2)

Average pain in the past 24 h 2.9 (1.5) 2.3 (1.7) 2 (1.9) 3.1 (1.3) 3.1 (1.9) 2.5 (2.2)

Current pain (at the time of assessment) 2.2 (1.3) 1.8 (1.7) 1.8 (1.8) 2.9 (1.4) 3 (2.2) 2.3 (1.8)

Pain interference-BPI, single item, M (SD) 1.9 (1.8) 1.8 (1.8) 1.4 (2.4) 2.4 (2.0) 2.4 (2.3) 2.3 (2.5)

Pain unpleasantness, M (SD) 4.4 (2.0) 3.9 (2.8) 3.6 (3.4) 6.3 (3.2) 5.6 (3.3) 4.5 (3.3)

The balance between the areas of interest (pgACC, dACC,
and SSC) for the ISF band was calculated and illustrated in
Figures 8A,B.

Functional connectivity measure
The strength of the ISF band FC between the four ROIs for

both the groups are represented in Figures 9A,B.

Discussion

Principal findings

To our knowledge, this study is the first to assess the
feasibility, safety, and acceptability of ISF-NF training in a
musculoskeletal pain population using a randomized, double-
blinded, sham-controlled design. The trial results suggest that
a future fully powered clinical trial to evaluate the effectiveness
of ISF-NF in KOA is feasible, safe, and acceptable, with
participants rating high levels of perceived effectiveness. The
overall willingness to participate in the trial was high. The
results demonstrate a 100% treatment fidelity with all the NF
training components, including dosage, duration, and frequency
of intervention was delivered and completed as per the study
protocol (Mowbray et al., 2003; Kubiak et al., 2014). The study
also maintained a 95.4% retention rate, with participants in
both groups had reported higher motivation and engagement
levels with the NF training sessions. Both the planned primary
and secondary outcome measures were feasible and acceptable.
Participants in both active and sham groups reported no
serious adverse events.

Recruitment and COVID related
challenges

As planned, we recruited the desired number of participants
in 5 months of the recruitment period (Mathew et al., 2020).

While the COVID-19 pandemic and associated lockdown
periods impacted the study recruitment strategies, this extended
the overall study recruitment and data collection period. Most
of the study participants were recruited through newspaper
advertisement (82%), and the rest of them were recruited
through social media (9%) and university email circulation
(9%). Local community newspaper advertisement is considered
the most strategic recruitment method for future trials for the
defined age limits.

Diversity of participants

The majority of the participants were New Zealand
European and middle-aged females, consistent with the previous
NZ-based studies on KOA (Abbott et al., 2017; Awatere, 2018;
Wilson and Abbott, 2019). However, recruitment of a more
heterogeneous ethnic sample, including Māori and Pacifica
populations with equal sex representation, is warranted in future
research. Participants in the active group had an average pain
duration of 5 years, and the sham group with nearly 3 years.
However, the average pain reported by both the groups in the
last 3 months was comparable at baseline (6/10), and both
groups displayed a similar number of co-morbidities.

Acceptability and perceived levels of
effectiveness of the intervention

Acceptability and perceived levels of effectiveness are
two important domains in the design, evaluation, and
implementation of health care interventions (Sekhon et al.,
2017; Suka et al., 2017). Our results show that participants in
both groups rated high levels of acceptance. Low acceptability
and negative treatment perception could influence treatment
adherence and outcomes (Milosevic et al., 2015).

Participants in both groups also reported moderate to high
levels of perceived effectiveness of the training. The domain is
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TABLE 6 Experimental pain measures and physical performance measures.

Domains and variables Active group (n = 11) Sham group (n = 10)

Baseline Post-intervention Baseline Post-intervention

Quantitative sensory testing measures

Vibration detection threshold

Symptomatic score/8 4.5 (1.4) 4.2 (1) 4.9 (1.6) 4.6 (1.5)

Asymptomatic score/8 4.4 (1.1) 4 (1) 5.2 (1.5) 4.7 (1.3)

Mechanical temporal summation

MTS-Symptomatic VAS change scores 16.8 (18.4) 15.8 (17.3) 7.9 (9.5) 13.6 (20)

MTS-Asymptomatic VAS change scores 11.2 (10.6) 14.9 (17.3) 6.3 (11.8) 12.6 (16.6)

MTS-Dorsal wrist VAS change scores 5.3 (9.8) 6.2 (5.3) 3.8 (9.3) 4.2 (6.7)

MTS-Tibialis anterior VAS change scores 12.4 (13.5) 17.7 (22) 7.1 (11.9) 11.7 (14.2)

Pressure pain threshold, M (SD)

PPT-Symptomatic (kPa) 232.9 (123.8) 254.8 (135.2) 291.9 (219.6) 354.7 (238.1)

PPT-Asymptomatic (kPa) 228.6 (103.6) 216 (104.8) 308.4 (213.5) 352.1 (261.9)

PPT-Dorsal wrist (kPa) 289.7 (170.3) 256.1 (115.6) 281.8 (137.6) 515.2 (673.1)

PPT-Tibialis anterior (kPa) 270.9 (96.3) 242.3 (116.6) 301.5 (181.8) 318.3 (159.2)

PPT-Thumb nail (kPa) 227.9 (71.3) 213.3 (89.3) 285.5 (167.6) 300.9 (192)

Cold hyperalgesia, M (SD)

PVAS-Symptomatic 52.3 (28.6) 35.2 (16.8) 32.7 (19.1) 27.7 (22.8)

PVAS-Asymptomatic 48.6 (29.6) 34.5 (14.8) 31.2 (18.8) 28.9 (20.6)

Conditioned pain modulation, M (SD)

CPM30 s % change scores (PPT-P4 at 30
s—PPT-p4 preconditioning score)

14 (40.1) 13.9 (17.1) 13.2 (28.4) 27.4 (32.2)

CPM60 s % change scores (PPT-P4 at 60
s—PPT-p4 preconditioning score)

20.3 (41.4) 6.8 (21.5) −14.5 (21.7) 25.1 (31)

CPM90 s % change scores (PPT-P4 at 90
s—PPT-p4 preconditioning score)

22.7 (40.9) 7.4 (11.5) −0.8 (21) 17.9 (26.1)

Tactile acuity and motor imagery performance

Body schema integrity, M (SD)

Time (seconds)

Left 2.1 (0.5) 2.3 (0.4) 2.4 (0.4) 2.1 (0.3)

Right 2.4 (0.6) 2.3 (0.4) 2.3 (0.4) 2.2 (0.4)

Accuracy (percentage)

Left 65.8 (11.7) 74.2 (9.6) 71.3 (16.6) 70.3 (10.9)

Right 72.7 (13.2) 73 (9.2) 70 (15.3) 72.7 (8.3)

Two-point discrimination (cm), M (SD)

Symptomatic 4.7 (2) 3.8 (1.3) 5.5 (2) 5.1 (1.3)

Asymptomatic 4.2 (1.8) 3.6 (1) 3.8 (1.8) 4.4 (1.3)

Sensitivity to physical activity

Discomfort (Peak discomfort-baseline) 3.6 (2.5) 2.9 (2.6) 2.4 (2.3) 1.7 (1.8)

Distance in meters 454.3 (131.4) 425.5 (131.2) 446 (60.3) 445.4 (116.9)

Physical performamce-30 s chair stand, M
(SD)

9.5 (2.7) 10.5 (3.4) 11.1 (2.7) 12.7 (3.6)

understudied in health care interventions, and it is important
to conduct standalone research or incorporate it to add further
value to future clinical trials. In the current study, we have used
only a single-item measure to rate the level of the acceptability
and perceived levels of effectiveness with NF training. In the
future, studies need to consider incorporating a qualitative

methodology approach to investigate participants’ perception
of the NF training to understand the depth of the perspective
component associated with the intervention.

Participants did not report difficulties or concerns with the
assessments, and training procedures, and follow-up. Although
all participants completed their training sessions, some of the
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FIGURE 6

(A–C) Pain severity, pain unpleasantness, and pain interference (baseline: T0; weekly: WK1-WK3; post-intervention: T1 and the follow-up: T2)
measures during the training period.

training sessions were rescheduled within the same week. The
main reason for rescheduling is participants’ unavailability to
undergo training. Another challenge was that participants were
not comfortable returning to work/home with dried electrode
gel. Although participants were offered the option to wash
their hair at the study location, none did so due to other
commitments/personal reasons following the training session.
Future research could consider incorporating dry electrodes for
training (Yu et al., 2016; Pei et al., 2018).

Adverse events

Evidence from previous studies has reported various side
effects associated with NF training (Lubar and Shouse, 1976;
Hammond and Kirk, 2008; Todder et al., 2010; Lansbergen et al.,
2011; Dongen-Boomsma, 2014; Rogel et al., 2015). It appears
that different NF protocols are associated with a varying set of
side effects and cannot be generalized. However, all these studies
used different NF training protocols, and none of them was
designed to modulate the ISF band. To our knowledge, this is

the first clinical trial performed a structured methodology using
a full DESS scale to document the adverse effects associated with
ISF-NF protocol training. In the absence of any serious adverse
events, participants in both groups have reported improvement
with their pre-existing symptoms during NF training. The
results support our previous study on ISF-NF training in food
addiction, which also reported no serious/persisting side effects
associated with ISF-NF training (Leong et al., 2018).

Factors influencing the level of
engagement with training

The level of motivation and mood may impact the
participants’ engagement with the NF training (Kleih-Dahms
et al., 2011; Ros et al., 2020). Recently NF studies have
established the importance of motivational value as an essential
addition in predicting the success of NF training (Diaz
Hernandez et al., 2018; Perez-Elvira et al., 2021). Our study adds
to the growing literature regarding the predictors and factors
influencing NF training outcomes (Weber et al., 2020). In our

Frontiers in Neuroscience 17 frontiersin.org

https://doi.org/10.3389/fnins.2022.899772
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-899772 July 27, 2022 Time: 7:22 # 18

Mathew et al. 10.3389/fnins.2022.899772

FIGURE 7

(A,B) Shows the CSD (mean and standard deviation) of ISF band in different ROIs utilized in this trial for both groups. (C) The mean difference
(T1-T0) of CSD of ISF band at the ROIs for both the groups.

study, participants in both groups were highly motivated and
engaged in undergoing the NF training. Our findings support
the notion that the individual’s daily mood and motivation will
significantly impact the training outcome. It would be of value
if the future trial could investigate the relationship between
the everyday mood and motivation with the NF training EEG
measures. Also, the training time of the day is an important
factor determining the participant’s engagement with NF
training. Participants who opted for afternoon training sessions
displayed higher slowing of the alpha rhythm and enhancement
of the theta power indicative of drowsiness during the training
time (Noreika et al., 2020). It is important to monitor the
participant’s alertness during the training time and need to
provide verbal commands if necessary to improve the alertness
and engagement with the training sessions. Participants should
be fully relaxed and involved with the NF training to learn the
patterns of “reward” and maintain the percent of success during
the training. However, this needs to be considered an objective
to predict the NF outcome in future clinical trials.

Blinding integrity

We found that most of the active ISF-NF participants could
predict their group allocation correctly. A potential reason could
be due to reduction of their symptoms. On the other hand,
most sham group participants indicated that they were in the
active group, as they believed and were hopeful of being in
it. This could potentially contribute to the non-specific effect
observed in the sham group and needs further investigation.
Future trials must incorporate methodologies to investigate any
relationship between the subjective pain measures observed in
the sham group with their associated motivational or belief
neural network (Taylor et al., 2004; Wiech et al., 2008; Zhu et al.,
2012; Sterpenich et al., 2014). The failure to identify the group
allocation also implies the integrity of the sham methodology
used in this trial. However, this does not entirely omit the
therapeutic element (Brim and Miller, 2013; Pigott et al., 2018).
Also, future trials must evaluate the blinding integrity of the
assessor to eliminate the potential bias in the QST measures.

Frontiers in Neuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2022.899772
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-899772 July 27, 2022 Time: 7:22 # 19

Mathew et al. 10.3389/fnins.2022.899772

FIGURE 8

ISF ratio changes. (A,B) Shows the ISF-NF ratio changes before and after NF training for the active and sham groups for left and right cortical
regions.

Changes in the clinical outcomes

This study demonstrated changes in the clinical outcomes
in both active and sham ISF-NF groups. It is noteworthy
that the active ISF-NF group showed greater improvements in
pain unpleasantness and pain interference scores. This study
also observed a group difference in the time course effect
on the symptoms during training, post-training (immediate
and follow-up) assessments. The time course effect of NF is
discussed in previous literature (Rance et al., 2018), and the
same trend has been observed in previous NF clinical trials
(Van Doren et al., 2019; Arnold et al., 2020). Considering
the persistence and continuing improvement in symptoms
after NF treatment highlights the importance of including
regular longer follow-up assessment sessions in future trials

to ensure that the time point of greatest effect is sampled
(Rance et al., 2018).

Considering the nature of the study design, we haven’t
performed any statistical analysis for the EEG changes. However,
the descriptive EEG data will help design and perform sample
size calculations for future studies investigating the efficacy
of ISF-NF training inducing neural changes in the chronic
pain population. Future trials also need to consider a full
band activity (>0.1 Hz) and connectivity EEG analysis to
explore the effects of ISF-NF and its relationship with change
in clinical pain outcomes. The results also demonstrated a
positive trend in the balance between the ascending (SSC
and dACC) and descending (pgACC) pain pathways in the
active group. Moreover, the findings support the concept of the
brain imbalance model of chronic pain (Vanneste et al., 2018;
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FIGURE 9

(A,B) Illustrates the functional connectivity changes (means and standard deviations) for the ISF band frequency between the ROIs for both
active and sham group.

De Ridder et al., 2021; Vanneste and De Ridder, 2021), and
thus, the imbalance can potentially be improved using ISF-NF
intervention. However, these results need to be tested on a larger
population to determine the changes in ratio/balance between
the pain pathways and their association with the difference in the
clinical and experimental pain outcomes following NF training.

Limitations and recommendations

Our findings should be interpreted with consideration of
the study’s limitations. We recruited a small sample of KOA
individuals with a homogeneous sex and race distribution,
which restricts the generalizability of the study findings. The
feasibility of long-term follow-up assessment and a higher
number of NF training sessions was not studied in this trial.
Despite the limitations, this study provides an important
foundation for designing and implementing future clinical trials
investigating ISF-NF protocols. Our study outcomes regarding
the feasibility, safety, and acceptability provide validation for
such future studies to replicate and explore the effectiveness
of ISF-NF for chronic musculoskeletal pain conditions. We
recommend a fully powered RCT to investigate the ISF-NF
balance training protocol’s effectiveness with a justifiable sample
size calculated based on the reported means and standard
deviations for detecting differences between groups of at least
medium effect size (Cohen’s d = 0.5) with 80% statistical power.

Conclusion

In conclusion, this feasibility clinical trial suggests that a
fully powered clinical trial is feasible and safe to be conducted
in people with KOA. Moreover, people with KOA reported high
levels of acceptability and perceived high levels of effectiveness
of training and higher levels of motivation and engagement with
the NF training. The study provides variability in the clinical and
EEG measures, thus informing the future studies in ISF-NF for
the estimation of sample size for a fully powered clinical trial.
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