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Autism spectrum disorder (ASD) is a kind of neurodevelopmental disorder that often

occurs in children and has a hidden onset. Patients usually have lagged development

of communication ability and social behavior and thus suffer an unhealthy physical and

mental state. Evidence has indicated that diseases related to ASD have commonalities in

brain imaging characteristics. This study aims to study the pathogenesis of ASD based

on brain imaging data to locate the ASD-related brain regions. Specifically, we collected

the functional magnetic resonance image data of 479 patients with ASD and 478 normal

subjects matched in age and gender and used a machine-learning framework named

random support vector machine cluster to extract distinctive brain regions from the

preprocessed data. According to the experimental results, compared with other existing

approaches, the method used in this study can more accurately distinguish patients from

normal individuals based on brain imaging data. At the same time, this study found that

the development of ASD was highly correlated with certain brain regions, e.g., lingual

gyrus, superior frontal gyrus, medial gyrus, insular lobe, and olfactory cortex. This study

explores the effectiveness of a novel machine-learning approach in the study of ASD

brain imaging and provides a reference brain area for the medical research and clinical

treatment of ASD.

Keywords: autism spectrum disorders, fMRI, pathogenic brain regions identification, disease diagnosis, random

SVM cluster

INTRODUCTION

Autism spectrum disorder (ASD) is a kind of brain developmental disorder with complex etiology
and hidden onset (Lord et al., 2018). It is most often diagnosed in teenagers and children because
of the high plasticity of their brain function. Children with ASD will suffer various difficulties in
early development, including slow response to sensory information (e.g., hearing, smell, and taste),
lagged language learning, limited interest, difficulty interacting with others, etc. (Vallianatos et al.,
2018; McKinnon et al., 2019; Kang et al., 2020; Santore et al., 2020). Currently, there is no specific
therapy for ASD in the clinic, which will cause the long-term economic burden of family and social
support (Helkkula et al., 2020). Considering that the ages of patients are relatively small, it is difficult
to diagnose based on the general quantitative evaluation of social behavior in clinics. Therefore,
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looking for characteristic biomarkers to help clinical workers
make accurate clinical decisions in the early stage is an important
research direction at present (Frye et al., 2019).

Magnetic resonance imaging (MRI) is a commonly applied
technique for diagnosing brain diseases in clinical, which can
intuitively show the location and degree of brain lesions. MRI
is currently playing a major auxiliary role in the treatment
and research of complex brain diseases, such as ASD (Hao
et al., 2017; Du et al., 2019; Dryburgh et al., 2020; Yang et al.,
2021). Specifically, functional MRI (fMRI) is a new neuroimaging
technique that can measure the hemodynamic changes caused
by neuronal activity and generate a time series to reflect the
activity characteristics of certain brain regions. Some open-access
datasets, such as autism brain imaging data exchange (ABIDE),
usually contain sufficient fMRI data, which greatly promotes
the development of relevant research (Di Martino et al., 2014,
2017). For example, Cheng et al. (2017) conducted a knowledge-
based enrichment analysis of fMRI data of patients with autism
and healthy controls (HCs) and found that some functional
connections (FCs) decreased significantly at the network circuit
level. Through specific correlation analysis technology, the
correlation networks among multiple regions of interest (ROIs)
can be established, which provides a broader perspective in
pathogenetic studies (Franzmeier et al., 2019; Noble et al., 2019).
For example, Ingalhalikar et al. (2021) obtained fMRI data in
ABIDE, proposed a novel technology to eliminate differences
between sites, and found several important FCs of patients
with ASD.

Efficiency is usually an important factor in imaging data
analysis. In recent years, machine-learning algorithms have been
increasingly used in dimension reduction and feature extraction
in brain imaging data and have played a key role in the
research of ASD and many other brain diseases (Abraham
et al., 2017; Heinsfeld et al., 2018; Li et al., 2020). Among the
existing machine-learning approaches, a support vector machine
(SVM) can keep a stable performance in optimizing the feature
dimension of samples (Guo et al., 2019; Wei et al., 2019). In
the research related to ASD, Chaitra et al. (2020) proposed a
new feature-eliminating mechanism to iteratively improve the
classification ability of the trivial SVM method and obtained the
connected feature subset with better ASD recognition ability.
Osredkar et al. (2019) combined SVM and radial kernel function
with 4 urine biomarkers to diagnose ASD and found that the
levels of 8-hydroxy-2′-deoxyguanosine and 8-isoproterenol in
urine can improve the diagnosis performance.

The extraction of the most discriminative features is the
central work to ensure the efficiency of SVM. However, most
previous studies focused on optimizing single SVM classifiers.
The disadvantage of such approaches is that current methods of
feature extraction can hardly avoid remaining some important
features incorrectly ignored and the screened features can
difficult be reconsidered after the optimization of a single SVM
classifier. Also, the pathogeny identification in the existing
studies is often based on limited data, which may lead to few
reliable results and weak generality. Therefore, this study applies
a random SVM cluster framework to extract features from fMRI
data to classify patients with ASD and HCs (Bi et al., 2018). With

the help of ensemble learning, only the features shared by most
classifiers are extracted as the important features, which reduces
the blindness in feature selection and prevents over-fitting even
under a large scale of data. As the results indicate, the optimized
random SVM cluster performs well in classifying patients with
ASD and HCs, and the feature extraction results are consistent
with many existing studies. Compared to the other existing
works, this study provides an attractive framework to detect the
disease-associated factors of ASD based on the fMRI data.

MATERIALS AND METHODS

Overview
The entire analysis pipeline of this study can be divided into
three major parts, which are depicted in Figure 1. First, the fMRI
data are preprocessed, resulting in the time series for each ROI.
Second, a random SVM cluster is constructed to extract the
characteristic features. Finally, further analysis is conducted to
identify pathogenetic brain regions.

Subjects
All biological data in this study are from the ABIDE database
and do not involve bio-standard safetymeasures and institutional
safety procedures. The data acquirement has been approved
by relevant departments and complies with relevant standards.
The subjects used in this study are determined through further
screening. This study has tried to keep as many samples as
possible to ensure the robustness of the conclusion. However,
it is a necessity to eliminate the data that occur errors while
preprocessing. At last, it remains raw fMRI data of 479 patients
with ASD and 478 HCs obtained from ABIDE-I for analysis.
All HCs have signed written consent and are out of any other
neurological diseases. ABIDE database has strict standards for
data collection and processing, which ensures the homology of
data structure.

The online datasets extendedly provide additional
information on subjects, including age, full-scale intelligence
quotient (FIQ), performance intelligence quotient (PIQ), and
verbal intelligence quotient (VIQ). The latter three indicators
are used to quantify the comprehensive performance of
the intellectual function. This study evaluated the statistical
differences in the above attributions between ASD and HC
groups. The basic information of the two groups of subjects is
shown in Table 1, which indicates no significant difference in all
indicators among the participants.

Data Preprocessing
All fMRI data are collected from MRI scanners whereas the
subjects are in the resting state, which means all subjects
are relaxed without doing any thinking work during the
scanning. To conduct data preprocessing, this study uses a
Data Processing Assistant for Resting-State fMRI (DPARSF),1 a
widely applied tool in the MATLAB platform that is dedicated
to fMRI preprocessing (Karpiel et al., 2019). Specific steps of
preprocessing are listed as follows:

1http://rfmri.org/dpabi
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FIGURE 1 | The entire workflow of this study.

TABLE 1 | Basic information of the subjects.

Variable Patients with ASD HC subjects p-value

Age 16.70 ± 8.23 17.20 ± 8.06 0.798*

FIQ 105.21 ± 16.56 111.20 ± 12.80 0.000**

PIQ 104.89 ± 17.06 108.61 ± 13.31 0.001**

VIQ 103.25 ± 18.05 110.37 ± 13.50 0.000**

*This study calculated the p-value corresponding to the age through chi-square test.

**This study calculated the p-values corresponding to FIQ, PIQ, and VIQ using two-

sample t-test. All information listed in this table is expressed by the format of “mean ±

standard deviation.” It shows no statistical difference between two groups of data if the

corresponding p-value is >0.05.

(1) Inputting the raw DCM files and converting the data format
to NIFTI;

(2) Deleting the initial 10 time points and slice timing;
(3) Realigning the head movement to eliminate artifact effect;
(4) Readjusting, including standardizing the functional image to

echo plane imaging template and smoothing;

(5) Eliminating the residual noise which increases or decreases
over time;

(6) Temporal filtering to maintain the fluctuation being within
0.01± 0.08Hz;

(7) Removing covariates and head movements that may affect
unnatural BOLD fluctuations.

Construction of Sample Features
Functional connections can reflect the organization and
interrelationships among different ROIs even if they are not
histologically connected. In this study, FCs are constructed as
the features of the samples. Specifically, the weight value of an
FC is calculated to represent the tightness of the corresponding
ROI–ROI pair. Concrete construction steps are as follows.

(1) Separating all brain images into ROIs according to the
automatic anatomical labeling template, which is applied
in many fMRI-based studies (Liu et al., 2016). The applied
template can generate 116 ROIs in total, of which 90 ROIs
belong to the brain whereas the other 26 ROIs belong to
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the cerebellum. As a common practice, this study focuses
only on the brain and the ROIs in the cerebellum are
therefore omitted.

(2) Calculating the Pearson correlation coefficient value between
each ROI pair as the FCs. Before the calculation, time series
are normalized and further sliced to a uniform length to
eliminate the effect of inter-site difference (Esteban et al.,
2017; Wang et al., 2022). The higher the coefficient value, the
stronger the FC between two ROIs.

(3) Constructing sample features. For each sample, a vector
composed of 4,005 (i.e., the number of free combinations
among 90 ROIs) weight values of FCs is calculated as the
sample feature for subsequent experiments. In other words,
the dimensionality of the original sample features is 4,005 in
this study.

Construction of the Random Support
Vector Machine Cluster
In machine learning, excessively big feature dimensionality
may cause mass computing load. However, if the feature
dimensionality is too small, a large amount of important
information may be lost. Ensemble learning is an effective
strategy that can effectively improve the model performance by
integrating single classifier to form clusters and generate results
through a voting mechanism (Chen et al., 2018a; Wei et al.,
2018). According to our previous research, ensemble learning
shows great potential in feature selection (Bi et al., 2020, 2021).
In this study, this study adopted a method named random SVM
cluster to effectively analyze the high-dimensional data, which
has performed well in the fMRI-based study of Alzheimer’s
disease. The concrete procedure details are as follows.

First, the initial sample set S is divided into three subsets,
namely, a training set S1 with 382 subjects, a verifying set S2 with
96 subjects, and a testing set S3 with 479 subjects. The size rate
is ∼4:1:5. The proportion balance of patients and HCs is kept
during the division.

Second, to construct an SVM classifier, M samples are
randomly selected from the training set S1.and a d-dimension
sub-feature is generated by randomly selecting d components
from the original 4,005-dimension feature. The above procedure
improves the diversity of SVM classifiers, which, according to the
theory of ensemble learning, will bring significant improvement
to the generalization performance of the integrated learner. By
repeating the above procedure for n times, n SVMs are derived
and the random SVM cluster is constructed accordingly.

Third, the SVM classifiers are further screened for
optimization. Specifically, the verification set S2 is applied
to evaluate all constructed SVM classifiers by their respective
classification accuracies. The classifiers with classification
accuracies lower than 0.5 will be deleted, in that such
performance is inferior to the randomly guessing and will
passively affect the performance of the overall cluster. After the
selection, k superior SVMs (k < n) have been selected to form a
new cluster.

Finally, sample classification and feature extraction are
conducted using the random SVM cluster. Concretely, k screened

SVMs in the cluster separately classify the samples in the testing
set S3 and generate the final result through the majority voting
mechanism. By calculating the ratio of the number of correctly
classified samples to the size of the S3, the accuracy of the entire
cluster is obtained.

Identification of Pathological Brain
Regions
The SVM classifiers in this study are generated through the
random selection of features and samples, which makes the
features of each classifier not the same. At the same time, the
classification accuracy of a classifier indicates the significance of
its corresponding features. After the screening of classifiers, the
remaining features are taken as the important features that have
strong classification ability for ASD andHC. In other words, ASD
and HC have more obvious differences in these characteristics,
which means that the ROIs contained in these characteristics
are more prone to functional or structural damage. Further,
considering that these features are defined as FCs of ROI–ROI
pairs, the ROIs that appear the most in the important features are
selected as the pathological brain regions. The specific procedure
of pathogeny identification is as follows.

(1) Sorting and determining the superior classifiers. All SVM
classifiers are sorted in descending order of classification
accuracy. Then, a classifier whose accuracy is greater than
a certain threshold of 0.75 would be determined as the
superior classifier.

(2) Extracting the optimal features. The appearance frequency of
each feature in superior SVM classifiers is calculated. Then,
the features with the highest frequencies are extracted as the
optimal features, which represent the most discriminative
FCs between patients with ASD and HC subjects.

(3) Determining the pathological brain regions of ASD. In
this study, this study defined the weight of an ROI as its
appearance frequency in optimal features. The ROIs with the
highest weights are taken as the pathological brain regions.

RESULTS

Performance Comparison With Existing
Methods
To certify the efficiency of the random SVM cluster, this article
compared its performance with other common approaches
for feature selection. The baseline methods include product-
based neural network (PNN), backpropagation neural network
(BPNN), K-nearest neighbor (KNN), naïve Bayes classifier
(Bayes), single SVM classifier (SVM), random forest (RF), and
random SVM cluster (RSVMC). Considering the randomness in
sample division and feature selection, all comparative methods
have been repeated 50 times to avoid accidental errors. The box
plot in Figure 2 depicts the comparative results.

It could be observed that the applied random SVM cluster
was significantly superior to the baseline approaches. It is worth
noting that the random forest method, as a typical ensemble
learner, performed better than all single learners, which indicates
the effectiveness of ensemble learning. Also, the highest accuracy
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FIGURE 2 | Classification accuracy of different classification method.

of single SVM among all single learners proves the superiority
of SVM in brain imaging analysis. Such results implied that the
superiority of our method derives from the effective integration
of the advantages of SVM and ensemble learning.

To compare the performances of the machine-learning
methods, this study further calculated the precision and recall
values of all comparative methods. Figure 3 depicted the
Precision-Recall (P-R) curves of all competing methods, where
we could observe that the random SVM cluster owned the highest
position among all methods, and the superiority of our method is
confirmed from another angle.

Parameter Optimization
According to the method definition, the SVM number n and
feature dimensionality d are the two important parameters to
be optimized, which is critical to finalizing a well-performed
random SVM cluster. Parameter optimizing results are shown
as follows.

On the one hand, this study conducted experiments to find
the optimal number of SVM classifiers in the initial cluster.
Specifically, the number of the SVMwas gradually increased from
5 to 600 with a step length of 5, during which the accuracy of
the random SVM cluster had first increased and then tended
to be stable. According to the experimental results depicted in
Figure 4, it can be observed that when the cluster includes 360

SVMs, the overall performance started to be stable. Thus, the base
classifier number n was determined as 360.

On the other hand, this study determined the optimal feature
dimensionality. To ensure the performance of the model, the
conventional practice is to set the feature dimensionality as
the square root of the original feature dimensionality (Belgiu
and Drǎgu, 2016). However, considering the data complexity
of fMRI, such means may cause a great loss of important
information, which inspired us to expand and optimize the
feature dimensionality. First, this study built the initial cluster
with 70 out of 4,005 randomly opted features. The initial number
is determined as 70 because it was an approximate value of
the square root of 4,005. Subsequently, this study increased the
feature dimensionality up to 300 in a step of 2 and calculated
the overall accuracy of the cluster in each iteration. Finally,
this study took the feature dimensionality corresponding to
the highest accuracy as the optimal dimensionality of features.
Figure 5 depicted the results during all iterations, which showed
that when the feature dimensionality is determined as 148, the
accuracy was 88.1%. It is worth noting that the equivalence
of accuracies in two optimization experiments was an accident
and these two experiments were carried out successively,
which means that in the second experiment, the number
of SVM classifiers was determined as 360 according to the
former experiment.

Frontiers in Neuroscience | www.frontiersin.org 5 May 2022 | Volume 16 | Article 900330

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Pathogeny Identification in ASD

FIGURE 3 | The P-R curves of comparative methods.

Extraction Results of the Pathological
Brain Regions
By fitting the optimal number of features to 148, the performance
of the random SVM cluster was maximized and the cost of
computing resources was concurrently reduced. Consequently,
148 discriminative FCs in patients with ASD and HCs were
obtained. The top 20 FCs with the highest frequencies were
visualized in Figure 6, where the node size that corresponds to
each brain region represents the weight of the brain region, that
is, the frequency of the brain area. The larger the node, the higher
the frequency of brain regions. Subsequently, the frequencies of
all 90 ROIs included in the 148 FCs are shown in Figure 7.

DISCUSSION

This study utilized an improved SVM learner and achieved
the classification accuracy of 88.1% in patients with ASD

identification. Compared with other recent endeavors based
on ABIDE datasets, our method also shows superiority in
classification performance. Liu et al. (2020) proposed amulti-task
objective function to extract the dynamic functional connectivity
specific to ASD, archiving an accuracy of 76.8%. Wang et al.
proposed a new method integrating ensemble learning with
sparseness constraints and tested the method on two different
sites of data in ABIDE, obtaining accuracies of 72.6 and 71.4%,
respectively. Epalle et al. (2021) improved the deep neural
network model and tested the proposed classification framework
based on cross-validation, achieving the final accuracy value
of 78.07%.

As shown in Figure 7, the discriminative FCs of ASD
mainly existed in the lingual gyrus (LING.R), superior frontal
gyrus, medial (SFGmed.R), olfactory cortex (OLF.L), insula
(INS.R), parahippocampal gyrus (PHG.R), posterior cingulate
gyrus (PCG.R), and fusiform gyrus (FFG.R). On the one hand,
our findings were consistent with other existing studies of
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FIGURE 4 | Performance of the random SVM cluster with different number of SVM.

single brain regions. For instance, Herringshaw et al. (2016)
utilized meta-analysis methods to quantify the common and
consistent brain activation patterns that usually develop the
language processing control, and the results showed that the
activation of the LING.R in patients with ASD increased. Lee
et al. (2020) used a univariate universal linear model to determine
the regions of average connectivity differences between male and
female subjects with ASD, and the results showed similar gender
differences in the tongue gyrus and the posterior cingulate gyrus
cortex. Qian et al. (2018) analyzed the time-varying connectivity
using the resting-state fMRI data to investigate brain state
mutations in children with ASD and finally found abnormal
connectivity between INS.R and visual network (and in the
middle). Glerean et al. (2016) calculated the correlation between
the hemodynamic time courses of each pair of 6-mm isotropic
voxels and the proportional inclusiveness between all pairs of
subjects, and the results indicated that the subjects who had lower
autism quotient scores conversely showed significantly higher
nodule intensity in certain brain regions, including FFG.R.

On the other hand, some connection-based studies also verify
the results in this article. Huang et al. (2019) enhanced the
representation of FC networks by fusing and conveying the
public and supplementary information into multiple networks
to identify the biomarkers of neuropsychiatric diseases, and the

results indicated that OLF.L in subcortical regions is a potential
discriminative brain region. Liu and Huang (2020) applied
multivariate model analysis to study the connectedness subset
of whole-brain FC, finding out that the severity of ASD with
SFGmed.R and SFGmed.L changed significantly. Noriega (2019)
adopted a sliding-time window method based on an adjusted
time span to study whether the time proportion of correlation
measure was above or below the average, and the results showed
that the FC related to OLF.L was significantly enhanced in
controls relative to ASD-severe. Delbruck et al. studied the action
observation network of children with ASD and observed that
atypical connectomes related to FFG.R showed great significance
to the social cognitive defection.

Some other highly-rated ROIs found in our work, such as the
PCG.R and PHG.R, were rarely studied in other research about
ASD. Nevertheless, certain studies have indicated their potential
relation to ASD. For example, PCG.R has been presently found as
the tissue correlated with sensation, stereo location, andmemory.
The hippocampus is an emotion regulation center, which had
been long paid special attention in depression research. In
addition, as the main cortex of the hippocampus, PHG.R can
significantly affect the cognitive and emotional functions of the
brain. Thus, the findings in this article may provide a new insight
for further exploration of the pathological mechanism of ASD.
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FIGURE 5 | Accuracies of the random SVM cluster with different numbers of important fusion features.

FIGURE 6 | Top 20 functional connections corresponding to the extracted optimal features.
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FIGURE 7 | Frequencies of all ROIs.

Despite the satisfactory performance, our study still has
limitations. First, in this study, this study uses a normalization
strategy to preprocess fMRI data obtained from multiple sites,
whereas many advanced approaches have been proposed to
eliminate the inter-site differences (Moradi et al., 2017; Wang
et al., 2019), which may be applied in future work. Second,
this study utilizes the Anatomical Automatic Labeling (AAL)
template for brain segmentation, but there are many other
proposed templates, e.g., the Harvard-Oxford Atlas template,
which may provide some quite different information and help
to discover different types of FCs (Lei et al., 2020). Finally, in
this study, this study only analyzed the medical imaging data
for feature extraction. In the follow-up work, we will try to
expand the data types in various ways and may involve genes,
cells, electrocardiographs, or other clinical phenotypes for further
research (Raka et al., 2017; Wang et al., 2017; Chen et al., 2018b;
Du et al., 2020).

CONCLUSION

This article conducted an fMRI-based study for ASD diagnosis
using a machine-learning approach named random SVM
cluster. Defining the sample features as FCs among ROIs, the
pathological factors of ASD were explored. According to the
experimental results, discriminative ROIs of patients with ASD
and HCs were identified, including LING.R, SFGmed.R, OLF.L,
INS.R, PCG.R, PHG.R, and FFG.R. The contributions of our
work can be summarized in two key points. On the one hand,
an efficient random SVM cluster was applied for ASD diagnosis.
On the other hand, some pathological FCs and ROIs highly

related to the development of ASD are identified, which can
provide valuable references for the medical research and clinical
treatment of ASD.
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Belgiu, M., and Drǎgu,t, L. (2016). Random forest in remote sensing: a review

of applications and future directions. ISPRS J. Photogram. Remote Sens. 114,

24–31. doi: 10.1016/j.isprsjprs.2016.01.011

Bi, X-,a, Hu, X., Xie, Y., and Wu, H. (2021). A novel CERNNE approach

for predicting Parkinson’s disease-associated genes and brain regions based

on multimodal imaging genetics data. Med. Image Anal. 67, 101830.

doi: 10.1016/j.media.2020.101830

Bi, X-,a, Liu, Y., Xie, Y., Hu, X., and Jiang, Q. (2020). Morbigenous brain region

and gene detection with a genetically evolved random neural network cluster

approach in late mild cognitive impairment. Bioinformatics 36, 2561–2568.

doi: 10.1093/bioinformatics/btz967

Bi, X-,a, Shu, Q., Sun, Q., and Xu, Q. (2018). Random support vector machine

cluster analysis of resting-state fMRI in Alzheimer’s disease. PLoS ONE 13,

e0194479. doi: 10.1371/journal.pone.0194479

Chaitra, N., Vijaya, P., and Deshpande, G. (2020). Diagnostic prediction

of autism spectrum disorder using complex network measures in a

machine learning framework. Biomed. Signal Process. Control 62, 102099.

doi: 10.1016/j.bspc.2020.102099

Chen, J.-H., Parsons, S. P., Shokrollahi, M., Wan, A., Vincent, A. D., Yuan, Y., et al.

(2018b). Characterization of simultaneous pressure waves as biomarkers for

colonic motility assessed by high-resolution colonic manometry. Front. Physiol.

9, 1248. doi: 10.3389/fphys.2018.01248

Chen, Q., Meng, Z., Liu, X., Jin, Q., and Su, R. (2018a). Decision variants for the

automatic determination of optimal feature subset in RF-RFE. Genes 9, 301.

doi: 10.3390/genes9060301

Cheng, W., Rolls, E. T., Zhang, J., Sheng, W., Ma, L., Wan, L., et al. (2017).

Functional connectivity decreases in autism in emotion, self, and face circuits

identified by knowledge-based enrichment analysis. Neuroimage 148, 169–178.

doi: 10.1016/j.neuroimage.2016.12.068

Di Martino, A., O’connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., et al.

(2017). Enhancing studies of the connectome in autism using the autism brain

imaging data exchange II. Sci. Data 4, 1–15. doi: 10.1038/sdata.2017.10

Di Martino, A., Yan, C-G, Li, Q., Denio, E., Castellanos, F. X., Alaerts, K.,

et al. (2014). The autism brain imaging data exchange: towards a large-scale

evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19,

659–667. doi: 10.1038/mp.2013.78

Dryburgh, E., McKenna, S., and Rekik, I. (2020). Predicting full-scale and

verbal intelligence scores from functional connectomic data in individuals

with autism spectrum disorder. Brain Imaging Behav. 14, 1769–1778.

doi: 10.1007/s11682-019-00111-w

Du, L., Liu, K., Yao, X., Risacher, S. L., Han, J., Saykin, A. J., et al. (2020).

Detecting genetic associations with brain imaging phenotypes in Alzheimer’s

disease via a novel structured SCCA approach. Med. Image Anal. 61, 101656.

doi: 10.1016/j.media.2020.101656

Du, L., Liu, K., Zhu, L., Yao, X., Risacher, S. L., Guo, L., et al. (2019). Identifying

progressive imaging genetic patterns via multi-task sparse canonical correlation

analysis: a longitudinal study of the ADNI cohort. Bioinformatics 35, i474–i83.

doi: 10.1093/bioinformatics/btz320

Epalle, T. M., Song, Y., Liu, Z., and Lu, H. (2021). Multi-atlas classification of

autism spectrum disorder with hinge loss trained deep architectures: ABIDE

I results. Appl. Soft Comput. 107, 107375. doi: 10.1016/j.asoc.2021.107375

Esteban, O., Birman, D., Schaer, M., Koyejo, O. O., Poldrack, R. A., and

Gorgolewski, K. J. (2017). MRIQC: Advancing the automatic prediction

of image quality in MRI from unseen sites. PLoS ONE 12, e0184661.

doi: 10.1371/journal.pone.0184661

Franzmeier, N., Rubinski, A., Neitzel, J., Kim, Y., Damm, A., Na, D. L., et al. (2019).

Functional connectivity associated with tau levels in ageing, Alzheimer’s, and

small vessel disease. Brain 142, 1093–1107. doi: 10.1093/brain/awz026

Frye, R. E., Vassall, S., Kaur, G., Lewis, C., Karim, M., and Rossignol, D. (2019).

Emerging biomarkers in autism spectrum disorder: a systematic review. Ann.

Trans. Med. 7, 792. doi: 10.21037/atm.2019.11.53

Glerean, E., Pan, R. K., Salmi, J., Kujala, R., Lahnakoski, J. M., Roine, U., et al.

(2016). Reorganization of functionally connected brain subnetworks in high-

functioning autism.Hum. BrainMapp. 37, 1066–1079. doi: 10.1002/hbm.23084

Guo, K., Chai, R., Candra, H., Guo, Y., Song, R., Nguyen, H., et al. (2019). A

hybrid fuzzy cognitive map/support vector machine approach for EEG-based

emotion classification using compressed sensing. Int. J. Fuzzy Syst. 21, 263–273.

doi: 10.1007/s40815-018-0567-3

Hao, X., Li, C., Du, L., Yao, X., Yan, J., Risacher, S. L., et al. (2017). Mining

outcome-relevant brain imaging genetic associations via three-way sparse

canonical correlation analysis in Alzheimer’s disease. Sci. Rep. 7, 44272.

doi: 10.1038/srep44272

Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., and Meneguzzi, F.

(2018). Identification of autism spectrum disorder using deep learning and the

ABIDE dataset. Neuroimage Clin. 17, 16–23. doi: 10.1016/j.nicl.2017.08.017

Helkkula, A., Buoye, A. J., Choi, H., Lee, M. K., Liu, S. Q., and Keiningham,

T. L. (2020). Parents’ burdens of service for children with ASD–

implications for service providers. J. Service Manage. 31, 1015–1039.

doi: 10.1108/JOSM-01-2020-0011

Herringshaw, A. J., Ammons, C. J., DeRamus, T. P., and Kana, R. K.

(2016). Hemispheric differences in language processing in autism spectrum

disorders: a meta-analysis of neuroimaging studies. Autism Res. 9, 1046–1057.

doi: 10.1002/aur.1599

Huang, H., Liu, X., Jin, Y., Lee, S. W., Wee, C. Y., and Shen, D. (2019). Enhancing

the representation of functional connectivity networks by fusing multi-view

information for autism spectrum disorder diagnosis. Hum. Brain Mapp. 40,

833–854. doi: 10.1002/hbm.24415

Ingalhalikar, M., Shinde, S., Karmarkar, A., Rajan, A., Rangaprakash, D., and

Deshpande, G. (2021). Functional connectivity-based prediction of Autism

on site harmonized ABIDE dataset. IEEE Trans. Biomed. Eng. 68, 3628–3637.

doi: 10.1109/TBME.2021.3080259

Kang, E., Gadow, K. D., and Lerner, M. D. (2020). Atypical communication

characteristics, differential diagnosis, and the autism spectrum disorder

phenotype in youth. J. Clin. Child Adolesc. Psychol. 49, 251–263.

doi: 10.1080/15374416.2018.1539912

Karpiel, I., Klose, U., and Drzazga, Z. (2019). Optimization of rs-fMRI parameters

in the seed correlation analysis (SCA) in DPARSF toolbox: a preliminary study.

J. Neurosci. Res. 97, 433–443. doi: 10.1002/jnr.24364

Lee, J. K., Amaral, D. G., Solomon, M., Rogers, S. J., Ozonoff, S., and Nordahl, C.

W. (2020). Sex differences in the amygdala resting-state connectome of children

with autism spectrum disorder. Biol Psychiatry Cogn. Neurosci. Neuroimaging

5, 320–329. doi: 10.1016/j.bpsc.2019.08.004

Frontiers in Neuroscience | www.frontiersin.org 10 May 2022 | Volume 16 | Article 900330

https://doi.org/10.1016/j.neuroimage.2016.10.045
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1016/j.media.2020.101830
https://doi.org/10.1093/bioinformatics/btz967
https://doi.org/10.1371/journal.pone.0194479
https://doi.org/10.1016/j.bspc.2020.102099
https://doi.org/10.3389/fphys.2018.01248
https://doi.org/10.3390/genes9060301
https://doi.org/10.1016/j.neuroimage.2016.12.068
https://doi.org/10.1038/sdata.2017.10
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1007/s11682-019-00111-w
https://doi.org/10.1016/j.media.2020.101656
https://doi.org/10.1093/bioinformatics/btz320
https://doi.org/10.1016/j.asoc.2021.107375
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1093/brain/awz026
https://doi.org/10.21037/atm.2019.11.53
https://doi.org/10.1002/hbm.23084
https://doi.org/10.1007/s40815-018-0567-3
https://doi.org/10.1038/srep44272
https://doi.org/10.1016/j.nicl.2017.08.017
https://doi.org/10.1108/JOSM-01-2020-0011
https://doi.org/10.1002/aur.1599
https://doi.org/10.1002/hbm.24415
https://doi.org/10.1109/TBME.2021.3080259
https://doi.org/10.1080/15374416.2018.1539912
https://doi.org/10.1002/jnr.24364
https://doi.org/10.1016/j.bpsc.2019.08.004
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Pathogeny Identification in ASD

Lei, B., Zhao, Y., Huang, Z., Hao, X., Zhou, F., Elazab, A., et al. (2020). Adaptive

sparse learning using multi-template for neurodegenerative disease diagnosis.

Med. Image Anal. 61, 101632. doi: 10.1016/j.media.2019.101632

Li, X., Gu, Y., Dvornek, N., Staib, L. H., Ventola, P., and Duncan, J. S.

(2020). Multi-site fMRI analysis using privacy-preserving federated learning

and domain adaptation: ABIDE results. Med. Image Anal. 65, 101765.

doi: 10.1016/j.media.2020.101765

Liu, J., Sheng, Y., Lan, W., Guo, R., Wang, Y., and Wang, J. (2020). Improved ASD

classification using dynamic functional connectivity and multi-task feature

selection. Pattern Recognit. Lett. 138, 82–87. doi: 10.1016/j.patrec.2020.07.005

Liu, J., Zhang, X., Yu, C., Duan, Y., Zhuo, J., Cui, Y., et al. (2016). Impaired

parahippocampus connectivity in mild cognitive impairment and Alzheimer’s

disease. J. Alzheimers Dis. 49, 1051–1064. doi: 10.3233/JAD-150727

Liu, X., and Huang, H. (2020). Alterations of functional connectivities

associated with autism spectrum disorder symptom severity: a multi-

site study using multivariate pattern analysis. Sci. Rep. 10, 4330.

doi: 10.1038/s41598-020-60702-2

Lord, C., Elsabbagh, M., Baird, G., and Veenstra-Vanderweele, J. (2018). Autism

spectrum disorder. Lancet 392, 508–520. doi: 10.1016/S0140-6736(18)31129-2

McKinnon, C. J., Eggebrecht, A. T., Todorov, A., Wolff, J. J., Elison, J.

T., Adams, C. M., et al. (2019). Restricted and repetitive behavior and

brain functional connectivity in infants at risk for developing autism

spectrum disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 50–61.

doi: 10.1016/j.bpsc.2018.09.008

Moradi, E., Khundrakpam, B., Lewis, J. D., Evans, A. C., and Tohka, J.

(2017). Predicting symptom severity in autism spectrum disorder based on

cortical thickness measures in agglomerative data. Neuroimage 144, 128–141.

doi: 10.1016/j.neuroimage.2016.09.049

Noble, S., Scheinost, D., and Constable, R. T. (2019). A decade of test-

retest reliability of functional connectivity: a systematic review and

meta-analysis. Neuroimage 203, 116157. doi: 10.1016/j.neuroimage.2019.

116157

Noriega, G. (2019). Restricted, repetitive, and stereotypical patterns of behavior

in autism—an fmri perspective. IEEE Trans. Neural Syst. Rehabil. Eng. 27,

1139–1148. doi: 10.1109/TNSRE.2019.2912416
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