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and Food Sciences, Zhuhai College of Science and Technology, Zhuhai, China

Glutamate-induced neuroexcitotoxicity could be related to the pathophysiology of some
neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease.
Extracellular ATP exerts a wide variety of functions, such as attenuating AB-mediated
toxicity, inhibiting N-Methyl-D-Aspartate (NMDA) receptor subunit combinations, and
aggravating ischemic brain injury. However, the effect of extracellular ATP on
glutamate-induced neuroexcitotoxicity remains largely unknown. Herein, we showed
that extracellular ATP prevented the glutamate-induced excitotoxicity via binding to
its P2Y1 receptors. We found that excessive glutamate triggered cellular reactive
oxygen species (ROS) overproduction and mitochondrial membrane potential damage,
which were significantly attenuated by extracellular ATP. Besides, glutamate activated
autophagy, as illustrated by the increased protein level of autophagic marker LC3Il and
decreased level of p62, and glutamate-induced neuroexcitotoxicity could be completely
abolished by autophagy inhibitor chloroquine. In addition, we revealed that extracellular
ATP activated Erk1/2 signaling to suppress autophagy and to exert its neuroprotective
effects, which was further reduced by autophagy agonist rapamycin and the selective
Erk1/2 inhibitor PD0325901. Taken together, our findings suggest that extracellular
ATP binding to P2Y1 receptors protected against glutamate-induced excitotoxicity via
Erk1/2-mediated autophagy inhibition, implying the potential of ATP for the treatment of
neurodegenerative disorders.

Keywords: neuroexcitotoxicity, autophagy, extracellular ATP, neuroprotection, Erk1/2 signaling pathway

INTRODUCTION

Neuroexcitotoxicity caused by glutamate is related to pathogenesis in a variety of neurodegenerative
diseases, including Parkinson’s disease (PD) and Alzheimer’s disease (AD) (Yang et al., 2014;
Sabogal-Guaqueta et al., 2019; Chen et al., 2020). Glutamate acts as an excitatory neurotransmitter
and exert many functions in mammalian brain, such as learning and memory, via modulating
Nat, Ca?T and K™ influx through its several receptors (Ribeiro et al., 2017). Excessive glutamate
release induces the overactivation of glutamate receptors and high levels of Ca>* entry into neural
cells, which in turn triggers excitotoxicity and ultimately neural death. Many in vitro experiments
have demonstrated that glutamate at high concentrations induces neural cell death. For instance,
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glutamate resulted in an increase of mitophagy and high levels of
zinc ion in HT-22 cells (Jin et al., 2018), or induced apoptosis in
the rat primary cortical neurons (Hu et al., 2013) and SH-SY5Y
cells (Xiong et al., 2021). Evidence showed that glutamate induced
excitotoxicity by increasing reactive oxygen species (ROS) in
cultured primary neurons (Kritis et al., 2015). Therefore, it is of
importance to identify a mechanism that exerts neuroprotective
effects against glutamate-induced neuroexcitotoxicity.

Adenosine triphosphate (ATP) has been reported to play
important roles in the central nervous system (CNS). Massive
extracellular release of ATP is involved in the etiopathology of
some neurodegenerative disorders. For instance, extracellular
ATP activated astrocytes to mediate motor neuron death
(Gandelman et al., 2010). Extracellular ATP also contributed
to photoreceptor neurodegeneration in rodents and induced
intracellular alpha-synuclein to damage lysosome functions
(Puthussery and Fletcher, 2009; Gan et al., 2015). However,
increasing evidence has showed that extracellular ATP could
be neuroprotective. An analogue of ATP, ATP-y-S-(a, p-CH2),
rescued PC12 cells from oxidative stress injury and amyloid
beta-induced toxicity (Danino et al., 2015). Besides, extracellular
ATP administration protected astrocytes against H,O,-induced
oxidative injury (Shinozaki et al., 2005), or activated glutamate
receptor to modulate synaptic plasticity in the hippocampus
(Yamazaki and Fujii, 2015). Importantly, ATP has recently
been demonstrated as an endogenous inhibitor of N-methyl-
D-aspartate (NMDA) receptors against glutamate-induced
mitochondrial membrane potential disruption in cultured
rat hippocampal neurons (Fujikawa et al, 2012). Therefore,
these actual results suggest that extracellular ATP acts opposite
effects in the CNS: neuroprotection and neurodegeneration.
Although ATP has been reported to be neuroprotective against
glutamate, the contribution of extracellular ATP on excitotoxicity
induced by glutamate and its underlying mechanism in SH-SY5Y
neuroblastoma cells still maintain largely unknown.

In the present study, we investigated the potential of
extracellular ATP on glutamate-induced excitotoxicity and
explored the underlying molecular mechanisms in SH-SY5Y
cells. We clearly demonstrated that extracellular ATP suppress
autophagy to attenuate glutamate-induced excitotoxicity via
Erkl1/2 signaling. Our study therefore highlighted that ATP
could be as an effective agent in the treatment of some
neurodegenerative diseases.

MATERIALS AND METHODS

Reagents and Antibodies

Extracellular ATP, PD0325901, rapamycin, and chloroquine
(CQ) were purchased from MedChemExpress (MCE, San
Rafael, CA, United States), and L-glutamate was obtained
from Sigma-Aldrich (St. Louis, MO, United States). MRS2500
tetraammonium salt was purchased from Tocris (Bio-techne,
Shanghai, China). Dulbecco’s modified Eagle’s medium (DMEM),
fetal bovine serum (FBS), penicillin/streptomycin, trypsin and
phosphate-buffered saline (PBS) were purchased from Gibco
(Thornton, NSW, Australia). The Cell Counting kit (CCK-8)

was purchased from Dojindo Laboratory (Kumamoto, Japan).
The JC-1 assay kit (5,50,6,60-tetrachloro-1,10,3,30-tetraethyl-
imidacarbocyanine iodide) and RIPA lysis buffer were obtained
from Beyotime Biotech (China). The ROS assay kit (DCFH-
DA) was purchased from Meilun (China). The FITC-labeled
Annexin V Apoptosis Detection kit was purchased from BD
Biosciences (Canada). The antibodies of p-Erkl/2, Erkl/2,
p-Akt, Akt, LC3, SQSTM1/p62, GAPDH, FITC and horseradish
peroxidase (HRP)-conjugated goat anti-rabbit/mouse antibody
were obtained from Cell Signaling Technology (Danvers, MA,
United States). The second antibody conjugated anti-mouse I1gG
and conjugated anti-rabbit IgG were purchased from Thermo.
Anti-P2Y1 receptor antibody was purchased from Alomone Labs
(Jerusalem BioPark, Israel).

Cell Culture and Treatment

Human neuroblastoma cell SH-SY5Y cells were purchased from
The Global Bioresource Center (ATCC, United States) and
were cultured in DMEM with the addition of 10% FBS, 100
U/mL penicillin and 100 U/mL streptomycin at 37°C in a
humidified atmosphere of 95% air and 5% CO2 incubator.
SH-SY5Y cells were plated at a density of 2 x 10%/well in
96-well plates and 2 x 10°/well in 6-well plates for 24 h.
Thereafter, SH-SY5Y cells were pretreated with either PBS or
extracellular ATP followed by a stimulation of 10 mM glutamate
for 24 h and experimental analyses, such as cell viability,
mitochondrial membrane potential, ROS generation and protein
expression, were performed.

Cell Viability

Cell viability was quantified by CCK-8 kit following the
manufacturer’s instruction. After SH-SY5Y cells seeded in 96-
well plates were treated with extracellular ATP and/or glutamate
for 24 h, 10 pL CCK-8 solution was added into each well and
incubated at 37°C for 1 h. Thereafter, the absorbance at 450 nm
was determined using a microplate reader (BioTek).

Measurement of Intracellular Reactive
Oxygen Species

The intracellular levels of reactive oxygen species (ROS) were
measured with probe 2,7'-dichlorodihydrofluorescein diacetate
(DCFH-DA, ROS assay kit). Briefly, the treated SH-SY5Y cells
were washed twice with PBS and incubated in serum-free
medium with 10 uM DCFH-DA at 37°C for 30 min. Fluorescent
images were captured in six different areas of each well under
a fluorescent microscope (AxioVert Al, Zeiss, Germany) and
measured using Image-J v1.8.0 software. The percentage of ROS-
positive cells was calculated.

Measurement of Mitochondrial

Membrane Potential

The level of mitochondrial membrane potential was measured
by a commercial cyanine JC-1 assay Kkit, either as red fluorescent
J-aggregates or as green fluorescent J-monomers, as previous
(Dong et al, 2020). J-aggregates at higher mitochondrial
concentrations reflect higher membrane potential whereas
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J-monomers at lower mitochondrial concentrations indicate lost
membrane potential. Accordingly, fluctuation of mitochondrial
membrane potential is represented as the J-aggregate/J-monomer
(red/green) fluorescence intensity ratio. The treated SH-SY5Y
cells were washed with PBS and then incubated with 1 mL JC-
1 solution (5 pM) at 37°C for 30 min. Subsequently, images of
the cells were captured in six different areas of each well under
the fluorescence microscope. The changes in mitochondrial
membrane potential were presented as the red/green fluorescence
intensity ratio using Image-J v1.8.0 software.

Immunofluorescence

After each treatment, SH-SY5Y cells were fixed with 4%
paraformaldehyde for 15 min. After twice washing, the cells
were permeabilized with 0.5% Triton X-100 and blocked
with 5% BSA. Cells were incubated with LC3 antibody or
SQSTM1/p62 antibody (1:1,000) in blocking solution for
24 h and then incubated with FITC conjugated anti-mouse
IgG or with FITC conjugated anti-rabbit IgG (1:2,000)
for 2 h. Thereafter, DAPI (1:1,000, Beyotime, China) was
incubated with cells in PBS solution for 10 min at room
temperature in dark. Samples were observed under an inverted
fluorescence microscope (AxioVert Al, Zeiss, Germany). The
cells in six different areas of each well were photographed
under fluorescent microscope. Images were analyzed with
Image-] v1.8.0 software. The percentage of each group was
calculated as LC3-positive or p62-positive cell number/total cell
number x 100%.

Western Blot

After each treatment, cells were rinsed twice with cold
PBS and lysed by RIPA lysis buffer containing proteases
inhibitors (1:50, Roche, Germany), phosphatase inhibitors
1 and 2 (1:100, Roche, Germany), phenylmethanesulfonyl
fluoride (PMSE, 1:100, Beyotime, China), and nuclease (1:1,000,
Biolong Biotech, China) on ice. The collected cell lysates were
then vortexed and the insoluble cell debris were removed
by centrifugation at 12,000 x g for 10 min at 4°C. The
total protein concentrations were measured using a Pierce
BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham,
MA, United States). The equal amount of protein extracts
(10 pg) was separated on a 10-15% sodium dodecyl sulfate-
polyacrylamide (SDS-PAGE) gel and transferred onto PVDF
membranes (Bio-Rad, Hercules, CA, United States). Membranes
were blocked with 5% milk in Tris-buffered saline containing
0.05% (v/v) Tween 20 (TBS-T) at room temperature for
60 min and then incubated with the relevant primary antibodies
at 4°C overnight. The antibodies were diluted as follows:
p-Erk1/2, Erk1/2, LC3II, p62, Akt and p-Akt and GAPDH
in 1:1,000 dilution. Afterward, membranes were incubated
with corresponding HRP-conjugated secondary antibodies at
a 1:5,000 dilution for 60 min at room temperature. Reactive
bands were visualized by the Quantity One automatic imaging
analysis system (Bio-Rad, Hercules, CA, United States) using
enhanced chemiluminescence ECL (Millipore, Kankakee, IL,
United States). Finally, the protein band intensities were
calculated using Image-J v1.8.0 software.

Statistical Analysis

Statistical comparisons were performed using one-way analysis of
variance (ANOVA) following by a post hoc multiple-comparison
Tukey test. All quantified biological data were expressed as
means =+ standard error of the mean (SEM) of at least three
independent experiments. Mean values were considered to be
significant at *P < 0.05, **P < 0.01, and ***P < 0.001.

RESULTS

Extracellular Adenosine Triphosphate
Reduces Glutamate-Mediated
Excitotoxicity via Binding to P2Y1

Receptors in SH-5Y5Y Cells

To study the vulnerability of SH-SY5Y cells to glutamate, SH-
SY5Y cells were initially exposed to several concentrations of
glutamate (2, 4, 6, 8, 10, 12, and 14 mM) for 24 h, and the cell
viability was detected using CCK-8 kit. The result showed that
glutamate caused a dose-dependent decrease in cell viability as
compared to control (Figures 1A,B). Glutamate at 4 mM led
to a significant decrease in cell density (P < 0.001). Glutamate
of 10 mM could induce almost half SH-SY5Y cell loss and thus
was applied in all the following experiments. We then examined
whether extracellular ATP exerted neuroprotective effect against
glutamate-induced excitotoxicity in SH-SY5Y cells as that in
rat hippocampal neurons. SH-SY5Y cells were incubated with
10 mM glutamate in the presence or absence of 5 uM or
10 pM ATP for 24 h, respectively. As shown in Figures 1C,D,
extracellular ATP at both concentrations significantly prevented
glutamate-induced reduction of cell viability (P < 0.001,
compared to the glutamate group), while 10 uM extracellular
ATP did not exhibit any cytotoxicity. In addition, extracellular
ATP remarkably prevented reduction of EdU incorporation
induced by glutamate (Supplementary Figure 1). Importantly,
we demonstrated that purinergic P2Y1 receptors of extracellular
ATP were expressed in SH-SY5Y cells, and the expression
of P2Y1 was not affected by all treatments (Figure 1E).
However, MRS2500, the selective antagonist of P2Y1 receptors,
completely abolished the neuroprotection of extracellular ATP
(Figure 1F). Finally, we tested whether glutamate triggered
apoptosis in SH-SY5Y cells and no apoptotic cells were observed
(Supplementary Figure 2), in accordance with the previous study
(Brasil et al., 2021). Taken together, these results demonstrated
that extracellular ATP protects SH-SY5Y cells from glutamate-
mediated excitotoxicity via the P2Y1 receptors.

Extracellular Adenosine Triphosphate
Reduces Intracellular Reactive Oxygen
Species Overproduction and
Mitochondrial Membrane Potential

Damage

Previous studies have manifested that glutamate induced
excessive ROS productions and mitochondrial dysfunction to
cause cell death (Atlante et al., 2001; Xu et al., 2012). Accordingly,
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FIGURE 1 | Extracellular adenosine triphosphate (ATP) prevents glutamate-induced excitotoxicity via binding P2Y1 receptors in SH-SY5Y cells. (A) Representative
images of the cell morphology after cultured SH-SY5Y cells were treated with various concentrations of glutamate (Glu) for 24 h; the control group (Ctrl) consisted of
the untreated cells. Scale bar = 100 um under 20x magnification. (B) Cell viability was detected using Cell Counting kit (CCK-8). (C) Representative images of the
cell morphology after pretreated by ATP (5 and 10 wM) or phosphate-buffered saline (PBS) following by the application of 10 mM glutamate for 24 h. Scale

bar = 100 pm under 20x magnification. (D) Cell viability was calculated. (E) The protein expressions of P2Y1 receptor, and the bar chart presented the levels of
P2Y1 receptor in all groups. Expression of GAPDH was served as a loading control. (F) CCK-8 kit was performed to evaluated cell viability after the administration of
MRS2500, and the changes were shown in histograms as percentage with control. All data represent mean + SEM from at least three independent experiments.
**P < 0.01 and **P < 0.001 versus the glutamate group or the ATP treated control group. n.s., no significance.

we analyzed intracellular ROS production induced by glutamate 10 mM glutamate, which was further prevented by either 5 or
in the presence or absence of extracellular ATP. As shown in 10 wM extracellular ATP. We also monitored the mitochondrial
Figures 2A,B, ROS production was significantly induced by ~membrane potential by JC-1 staining, and found that the
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ATP (5 uM) + Glu ATP (10 uM) + Glu

FIGURE 2 | Extracellular ATP reduces reactive oxygen species (ROS) overgeneration and restored mitochondrial membrane potential functions induced by
glutamate. Cultured SH-SY5Y cells were incubated in different concentrations (5 and 10 wM) of extracellular ATP, following by the application of 10-mM glutamate for
24 h; the control group consisted of the untreated cells. (A) SH-SY5Y cells were stained with DCFH-DA. Covered glasses with cells were observed under a
fluorescent microscope. Scale bar = 100 wm under 20 x magnification. (B) Fluorescent density mean of ROS level was calibrated. (C) JC-1 staining in SH-SY5Y
cells. Scale bar = 100 wm under 20x magnification. (D) The ratio of the red/green fluorescence optical density were analyzed by image J. All data in bar charts
present mean + SEM from at least three independent experiments. “P < 0.05, **P < 0.01, and ***P < 0.001 versus the glutamate group or the control group.
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red/green ratio was significantly reduced by 10 mM glutamate
compared to the control group (Figures 2C,D). However,
administration of extracellular ATP substantially increased the
red/green ratio (P < 0.001, compared to the glutamate group),
suggesting that extracellular ATP could prevent mitochondrial
membrane potential disruption. Therefore, extracellular ATP
exerted neuroprotective effects by reducing ROS production and
restoring mitochondrial functions.

Extracellular Adenosine Triphosphate
Neuroprotects Against
Glutamate-Induced Excitotoxicity via
Suppressing Autophagy

There were numerous evidence showing the connections
among mitochondrial damage, ROS overproduction and
autophagy (Scherz-Shouval and Elazar, 2011; Li et al, 2015).
To address whether autophagy was involved in glutamate-
induced excitotoxicity in SH-SY5Y cells, the protein level
of LC3II, a critical marker of autophagy, and the level of
SQSTM1/p62 (p62), a marker for autolysosomal degradation,

were analyzed. Apparently, exposure to glutamate significantly
increased the level of LC3II compared to the control group
(P < 0.001) whereas the expression of p62 was downregulated
(Figure 3A), suggesting that glutamate activated autophagy
process. Treatment with chloroquine (CQ), an autophagic
inhibitor, further upregulated the amount of LC3II and
p62, indicating the activation of autophagy by glutamate
(Figure 3A). Furthermore, CQ treatments significantly increased
cell viability and prevented ROS overproduction induced
by glutamate (Figures 3B,C). Administration of CQ also
significantly ameliorated the mitochondrial membrane potential
disruptions (Figure 3D). Therefore, these above results clearly
demonstrated that glutamate activates autophagy to cause
excitotoxicity. Importantly, we found that extracellular ATP
restored the activated autophagy by glutamate, as evidenced
by decreased expression of LC3II and upregulated expression
of p62 (Figure 3E). The immunofluorescence results showed
glutamate-induced increased LC3II expression and decreased
P62 expression were significantly prevented by extracellular ATP
(Figures 3F,G). These suggested that ATP not only deceased
autophagosome accumulation and suppressed autolysosomal
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degradation. Consistently, when cells were simultaneously
pretreated with extracellular ATP as well as rapamycin, an
agonist of autophagy, the protective effects of ATP against
glutamate-induced excitotoxicity disappeared (Figures 3H-]
and Supplementary Figure 3). CQ did not significantly increase
ATP neuroprotection against glutamate-induced excitotoxicity
(Supplementary Figure 4). Taken together, these results
suggested that extracellular ATP suppresses autophagy to inhibit
glutamate-induced excitotoxicity.

Erk1/2 Signaling Pathway Is Involved in
the Neuroprotective Effects of

Extracellular Adenosine Triphosphate

Next, we examined the possible roles of several signaling
pathways implicated in the ATP-mediated protective response
to glutamate-induced neuroexcitotoxicity, such as PI3K/Akt
and Erkl/2 signaling pathways (Ali et al., 2018; Chen et al,
2020; Liu et al, 2021). We monitored the protein levels
of phosphorylated Erk1/2 (p-Erk1/2) and phosphorylated Akt
(p-Akt), and found that the levels of p-Erkl/2 were down-
regulated by glutamate in SH-SY5Y cells; whereas the treatments
of extracellular ATP significantly increased the expression of
p-Erk1/2 (Figure 4A), suggesting that ATP activates Erk1/2 to
antagonize glutamate. However, the expression of p-Akt was
not affected by extracellular ATP and glutamate (Supplementary
Figures 5E,F). To further explore the potential of Erkl/2
signaling in ATP neuroprotection against glutamate-mediate
excitotoxicity, PD0325901, a selective Erk1l/2 inhibitor, was
employed. As shown in Figure 4B, the enhancement of
cell viability treated by extracellular ATP against glutamate
was totally abolished by PD0325901. In addition, PD0325901
prevented the decrease of ROS generation treated by ATP
(Figure 4C), as well as inhibited the ATP-mediated recovery of
mitochondrial membrane potential (Figure 4D). Furthermore,
PD0325901 prevented the ATP-promoted increase in EdU
incorporation (Supplementary Figures 5C,D). Together, these
results suggested that the activated Erk1/2 pathway is involved
in the neuroprotective effects of extracellular ATP against
glutamate-induced excitotoxicity.

Extracellular Adenosine Triphosphate
Suppresses Autophagy via Erk1/2
Signaling Pathway

To further definite the neuroprotective mechanism of
extracellular ATP against glutamate, we examined the connection
between Erk1/2 and autophagy inhibition. SH-SY5Y cells were
treated with glutamate and ATP in the presence or absence of
PD0325901, and protein levels of LC3II levels and p62 were
analyzed. Apparently, PD0325901 treatment entirely reversed the
expression levels of LC3II and p62 mediated by extracellular ATP
(Figures 5A-C). However, autophagy inducer rapamycin did not
influence the expression of p-Erk1/2 affected by extracellular ATP
(Figures 5D,E). Therefore, we concluded that extracellular ATP
activates Erk1/2 signaling pathway to inhibit glutamate-mediated
activation of autophagy.

DISCUSSION

Increasing studies have reported that extracellular ATP could
be neuroprotective in the CNS. For instance, extracellular
ATP could attenuate NMDA-mediated neurotoxicity in cultured
hippocampal neurons by inhibiting the heterologous expression
of NMDA receptors (Ortinau et al., 2003). Extracellular ATP
regulated amyloid precursor protein processing to inhibit
AB production (Chan et al., 2008). Enhancement of ATP
production could ameliorate cognitive dysfunctions in a PD
mouse model (Haga et al, 2019). In current study, we
demonstrated that extracellular ATP protected SH-SY5Y cells
from glutamate-induced excitotoxicity via activating Erkl/2
to suppress lethally autophagy. These studies suggest that
extracellular ATP might be able to develop as a therapeutic
strategy for neurodegenerative disorders.

Neuroexcitotoxicity ~ caused by high  concentration
of glutamate is one of pivotal pathological features in
neurodegenerative disorders (Hugon et al, 1996; Binvignat
and Olloquequi, 2020). Abnormally high concentration of
glutamate stimulates the excessive activation of N-methyl-D-
aspartate (NMDA) subtype of ionotropic L-glutamate receptors,
subsequently results in an excessive Ca’* influx, which is
taken up by mitochondria and subsequently triggers excitatory
biochemical processes and death pathways (Rothstein, 1996; Jia
et al., 2015). Furthermore, glutamate-mediated excitotoxicity
involves ROS overproduction that leads to neuroinflammation
and synaptic dysfunctions in rat brain regions (Khan et al,
2021). In the present study, we also demonstrated that
glutamate remarkably caused ROS generation in SH-SY5Y
cells (Figures 2A,B), which was consistent with previous studies
that glutamate caused oxidative damage in SH-SY5Y cells (Sun
et al., 2010; Lee et al., 2019). Massive ROS production aggressed
mitochondria and led to mitochondrial dysfunctions (Sinha
et al,, 2013; Angelova and Abramov, 2018). Our previous study
has shown that excessive ROS caused the loss of mitochondrial
membrane potential and activated mitochondria-dependent
cell deficits in HT-22 cells (Dong et al., 2020). Besides, ROS
overproduction stimulated by glutamate could result in lipid
peroxidation and mitochondrial dysfunctions to the detriment
of cellular growth (Lee et al.,, 2019). Kushnareva et al. (2005)
reported that excessive glutamate caused a reduction of
mitochondrial ATP and an imbalance of homeostasis that
precede commitment to neuronal death. Consistent with
previous studies, we observed that exposure to 10 mM glutamate
for 24 h indeed induced disruptions of mitochondrial membrane
potential in SH-SY5Y cells (Figures 2C,D). Furthermore, we
showed that 10 mM glutamate prevented cell proliferation by
EdU staining (Supplementary Figure 1). Finally, glutamate
induced HT-22 cell ferroptosis mediated by massive ROS
production (Jiang et al, 2020). However, our data showed
that glutamate could neither affect glutathione peroxidase
4 levels nor glutathione expression, which suggested that
glutamate-induced excitotoxicity in SH-SY5Y cells was not
related to ferroptosis (data not shown). Flow cytometer analysis
showed that glutamate could not induce SH-SY5Y cell apoptosis
(Supplementary Figure 2). Characteristics of cell injury in
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FIGURE 3 | Extracellular ATP prevents glutamate-induced excitotoxicity via suppressing autophagy in SH-SY5Y cells. (A) The protein expression of LC3 and p62
were determined by western blot in SH-SY5Y cells treated with 10-mM Glu in the presence or absence of chloroquine (CQ) (20 wM), and expression of GAPDH was
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FIGURE 3 | immunocytochemistry were photographed under fluorescent microscope, and images were analyzed. (H) Cell viability was detected. (I) ROS-positive
cells were calibrated. (J) Treated SH-SY5Y cells were stained using JC-1, and the changes were presented. All data in bar charts present mean + SEM from at least
three independent experiments. *P < 0.05, “*P < 0.01, P < 0.001 versus the ATP treated group or the glutamate group. n.s., no significance.
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response to glutamate shown in these studies suggest that
glutamate-induced excitotoxicity is associated to multiple
molecular mechanisms. Together, we confirmed that glutamate
induced excessive ROS generation, triggered mitochondrial
dysfunctions, and prevented cell proliferation.

Adenosine triphosphate, a well-known intracellular energy
currency, is a signaling molecule that influences cell proliferation,
differentiation, survival, myelination as well as repairment
in the CNS (Fields and Burnstock, 2006; Burnstock, 2007).
Extracellular ATP not only counteracted H,O,-promoted cell
death in astrocytes (Shinozaki et al., 2006), but also ameliorated
cognitive impairments in a mouse model with PD (Haga et al,,
2019). Notably, extracellular ATP has been implicated to act
two opposite roles when it combines and activates different
purine receptors (P2X receptors and P2Y receptors) in ischemic
brain injury: pathogenesis and neuroprotection. For instance,
P2 x 1, P2 x 2, P2 x 4, P2 x 7 receptors participated in
the pathogenesis of cerebral ischemia whereas P2Y1 receptor
could induce neuroinflammatory responses to neuroprotect
against ischemic neuronal injury (Koizumi et al., 2007; Tu and
Wang, 2009; Fukumoto et al., 2019). These studies demonstrated
that the activation of different purine receptors could be
crucial for extracellular ATP neuroprotection. Our current

study elucidated that extracellular ATP protected SH-SY5Y
cells from glutamate-induced neuroexcitotoxicity. The statistical
results showed that several concentrations of extracellular ATP
(2, 5, 10, 20, and 40 uM) could significantly rescue SH-
SY5Y cells from 10 mM glutamate-mediated excitotoxicity,
including increasing cell viability (Supplementary Figure 1A).
The neuroprotective effects of extracellular ATP at 10, 20,
and 40 uM were almost similar, and 2-puM ATP could not
significantly prevent glutamate-induced cell loss. Therefore,
extracellular ATP at 5 and 10 pM were applied the following
experiments. The observation further showed that ATP not
only inhibited ROS generation but also recovered mitochondrial
functions (Figure 2). Importantly, we found that P2Y1 receptors
expressed in SH-SY5Y cells, and its selective antagonist,
MRS2500, absolutely eliminated neuroprotective effects of
extracellular ATP against glutamate (Figures 1E,F), which was
supported by a previous study that activated P2Y1 receptors
were neuroprotective (Fukumoto et al., 2019). Evidence, on the
contrary, demonstrated that P2Y1 receptor blockade could
normalized activation of astrocytes and then attenuated cognitive
dysfunctions in AD mouse models (Reichenbach et al., 2018),
indicating that activation of P2Y1 receptor could mediate
neurodegeneration. The opposite roles of P2Y1 receptors
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in neurodegeneration and neuroprotection might be due to
the activation of P2Y1 receptors in different neural cells:
neuroprotection in neuronal cells and neurodegeneration in
glial cells. Evidence showed that P2Y2 receptor is believed to
be neuroprotective under inflammatory conditions (Weisman
et al, 2012). To explore whether ATP prevented glutamate-
induced neuroexcitotoxicity by its binding to P2Y2 receptors,
diquafosol tetrasodium, the agonist of P2Y2 receptor, was
applied. Our data showed that diquafosol tetrasodium could
not affect glutamate-mediated excitotoxicity in SH-SY5Y cell,
indicating that the neuroprotective effects of extracellular ATP
were not related to P2Y2 receptor (data not shown). In neurons,
both ATP and its secondary metabolite ADP turn to AMP
through CD39 or E-NTPDase and then is hydrolyzed into
adenosine by CD73 or 5 nucleotidase. Adenosine is widely
valued in the treatment of the CNS diseases (Liu et al.,
2019). In order to verify ATP neuroprotective effects, ADP was
applied to pretreat SH-SY5Y cells incubated by glutamate, and
CCK-8 assay showed that ADP did not rescue SH-SY5Y cells
from glutamate-induced excitotoxicity (data not shown). Taken
together, we concluded that extracellular ATP binding to its
P2Y1 receptors protected from glutamate-induced excitotoxicity
in SH-SY5Y cells.

Under normal physiological conditions, autophagy maintains
neuronal homeostasis and neuronal survival (Mizushima
et al, 2008). Autophagy has been implicated to play a
dominant role in neurodegenerative disorders, such as
AD and PD. Autophagy could promote the metabolism of
AB and the assembling of tau, and thus dysfunctions of
autophagy might lead to the progress of AD (Zhu et al,
2013; Li et al., 2017). Moreover, autophagy processes could
alter PD-associated genes, like SNCA, GBA, ATP13A2,
and FBXO7 (Lu et al, 2020). These studies suggested that
selective agonists of autophagy might be developed as potential
drugs for neurodegenerative disorders. However, excessive
autophagy induces oxidative damage, neuroinflammatory
injury, and then exacerbates neurodegeneration. Evidence
has revealed that high concentrations of glutamate induced
autophagy via the activation of the lysosomal Ca** channels
TPC1 and TPC2 in neural cells (Pereira et al., 2017). In
this study, we found that 10 mM glutamate significantly
induced an increase of LC3II and a decrease of p62/SQATM1
(Figure 3A), indicating that autophagy could be involved in
glutamate-induced excitotoxicity. An inhibitor of autophagy,
CQ, significantly suppressed glutamate-induced excitotoxicity,
including increasing cell viability, decreasing ROS generation,
and recovering mitochondrial functions (Figures 3B-D). Our
results demonstrated that glutamate-induced excitotoxicity
was mediated by autophagy, which was supported by
a previous study (Pereira et al, 2017). Importantly, the
treatments of ATP were able to suppress autophagy induced
by glutamate (Figure 3 and Supplementary Figure 3). A study
demonstrated that knockdown or pharmacological inhibition
of purinergic P2Y12 receptors suppressed autophagy process in
advanced atherosclerosis (Pi et al., 2021), which supported that
extracellular ATP could suppress autophagy processes. Similarly,
high concentrations of adenosine, one of ATP metabolites,

inhibited autophagy in P cells (Israeli et al., 2018). Opposite
to our study, a literature showed that extracellular ATP could
be though P2 x 7 receptors to trigger autophagy in primary
microglia (Fabbrizio et al., 2017). In summary, these studies
implied that extracellular ATP could exert different functions
through activating different receptors in a certain condition.
In the current study, we confirmed that the neuroprotective
effects of ATP against glutamate-induced excitotoxicity was via
preventing autophagy.

Multiple mechanisms were involved in the neuroprotective
effects of extracellular ATP. For instance, extracellular ATP
binding to P2Y1 receptors protected pancreatic duct epithelial
cells via cAMP signaling pathway (Seo et al., 2016). Extracellular
ATP binding to P2Y13 purinergic receptors could neuroprotect
astrocytes via PI3K/Akt/GSK3 pathway (Carrasquero et al,
2009). Also, extracellular ATP attenuated stroke via inhibiting
glutamate release to neuroprotection of antioxidants against
(Hurtado et al, 2003). Our current study demonstrated
extracellular ATP neuroprotected against glutamate-mediated
excitotoxicity through Erk1/2 signaling pathway in SH-SY5Y
cells (Figure 4). PD0325901, a selective antagonist of Erkl/2
remarkably abolished the neuroprotective effects of extracellular
ATP. Consistently, activation of Erkl/2 promoted PC12 cell
survival by blocking the expression of the pro-apoptotic factor,
BH3-only protein Bim (Terasawa et al., 2009). A previous study
showed that activated ATP-dependent potassium channels
promoted glioma cell proliferation by upregulated Erk1/2
signaling pathway (Huang et al, 2009), which supported
our findings that extracellular ATP pretreatment via Erkl/2
signaling pathway promoted SH-SY5Y cell proliferation
(Supplementary Figure 5). Interestingly, extracellular ATP
induced the S-phase cell cycle arrest of oral squamous cell
carcinoma SAS cells via its binding to P2Y1 receptors-mediated
Erk1/2 signaling (Lau et al, 2021). This research showed
the antitumor effects of extracellular ATP were through
interaction with P2Y1 receptors to promote Erk1/2 signaling,
which was opposite to its effects in SH-SY5Y cells shown in
the current study. This might be due to extracellular ATP
exerted multiple functions in different microenvironments.
Notably, our results showed that extracellular ATP though
upregulation of p-Erkl/2 expression prevented autophagy
against glutamate excitotoxicity (Figure 5). Similarly, Sun
et al. (2019) demonstrated that active MEK1 protected against
H,0;-induced autophagy though Erkl/2 signaling pathway
in neonatal rat cardiac ventricular cardiomyocytes. Evidence,
on the contrary, demonstrated that activation of Erkl/2
could contribute to glutamate-induced oxidative injury in
primary cortical neurons (Stanciu et al, 2000; Sun et al,
2019). Another study also showed that PD98059, a blockade
of Erkl/2 pathway, suppressed H;O,-induced cell death
(Bhat and Zhang, 1999). These studies illustrate that Erk1/2
signaling pathway can promote either neuronal survival or
neuronal death under different paradigms. One possible
explanation is that the magnitude and duration of Erkl/2
activation determines the different downstream effectors
exerting the death-promoting capacity and cellular outcomes
(Sun et al., 2019).
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The current research is only based on non-clinical in vitro
experiments, and a combination of in vivo and in vitro
experiments is still needed to further explore the role of
extracellular ATP as a potential candidate against excitotoxicity.

CONCLUSION

We clearly demonstrated that extracellular ATP binding to P2Y1
receptors prevented glutamate-mediated neuroexcitotoxicity
through activating Erkl1/2 to suppress lethally autophagy
in SH-SY5Y cells (Supplementary Figure 6). Our present
findings provide new insights into the neuroprotective molecular
mechanism of extracellular ATP and extend the therapeutic
strategy of neurodegenerative diseases.
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