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In the present study, we aimed to elucidate changes in electroencephalography (EEG)
metrics during recovery of consciousness and to identify possible clinical markers
thereof. More specifically, in order to assess changes in multidimensional EEG metrics
during neuromodulation, we performed repeated stimulation using a high-density
transcranial direct current stimulation (HD-tDCS) protocol in 42 patients with disorders of
consciousness (DOC). Coma Recovery Scale-Revised (CRS-R) scores and EEG metrics
[brain network indicators, spectral energy, and normalized spatial complexity (NSC)]
were obtained before as well as fourteen days after undergoing HD-tDCS stimulation.
CRS-R scores increased in the responders (R +) group after HD-tDCS stimulation. The
R + group also showed increased spectral energy in the alpha2 and beta1 bands, mainly
at the frontal and parietal electrodes. Increased graphical metrics in the alpha1, alpha2,
and beta1 bands combined with increased NSC in the beta2 band in the R + group
suggested that improved consciousness was associated with a tendency toward
stronger integration in the alpha1 band and greater isolation in the beta2 band. Following
this, using NSC as a feature to predict responsiveness through machine learning,
which yielded a prediction accuracy of 0.929, demonstrated that the NSC of the alpha
and gamma bands at baseline successfully predicted improvement in consciousness.
According to our findings reported herein, we conclude that neuromodulation of the
posterior lobe can lead to an EEG response related to consciousness in DOC, and that
the posterior cortex may be one of the key brain areas involved in the formation or
maintenance of consciousness.

Keywords: transcranial direct current stimulation, disorders of consciousness, brain network,
electroencephalography, neuromodulation, minimal consciousness, vegetative state, graphy theory

INTRODUCTION

Disorders of consciousness (DOC) are states of loss of consciousness that are caused by a range of
severe brain injuries (Giacino et al., 2002; Wannez et al., 2017b). DOC lasting longer than 28 days
are considered chronic (prolonged) disorders of consciousness (pDOC), which are divided into
vegetative state (VS), minimal consciousness state (MCS), and emergence from MCS state (eMCS)
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presentations. Based on language processing, the MCS
entity is additionally divided into minimally conscious state
minus (MCS−) and minimally conscious state plus (MCS+)
subcategories; MCS- is characterized by visual pursuit and
fixation, localization to noxious stimuli, and/or automatic motor
responses, whereas in MCS + patients can follow instructions,
make understandable verbalizations, and/or communicate
intentionally but not functionally (Thibaut et al., 2019).

A widely accepted clinical tool for assessing patients’ level
of consciousness (LOC) is the Consciousness Recovery Scale-
Revised (CRS-R), which consists of six subscales assessing
auditory, visual, motor, oral motor, communication, and arousal
states. The total maximum score is 29 points, and the diagnosis
is determined by the best assessment of each of the subscales
(Wannez et al., 2017a; Kondziella et al., 2020).

In addition, transcranial direct current stimulation (tDCS) is a
non-invasive neuromodulation technique that increases neuronal
excitability by depolarizing resting potentials (Weber et al., 2014;
Lefaucheur et al., 2017; Shou et al., 2021). Previous studies
have partially demonstrated that tDCS can also be used as a
therapeutic tool to increase the LOC in patients with DOC
by stimulating the left dorsolateral prefrontal lobe (DLPFC),
though other studies have shown no meaningful benefit of tDCS
as a treatment modality (Giacino et al., 2014; Thibaut et al.,
2019; Feng et al., 2020). We note that Wu et al. demonstrated
that the strength of intrinsic functional connectivity in many
brain regions, particularly in the posterior cingulate cortex
and precuneus, correlated statistically significantly with LOC
and recovery outcomes in patients with DOC. Thus, the
posterior cortex could be used as a potential stimulation target
(Wu et al., 2015).

Neuroimaging allows for the objective recording of central
nervous system damage after acquired brain injury, providing
additional information about the diagnosis, prognosis, and
recovery process in regard to consciousness, and serving as a
potential marker for novel therapeutic interventions. Compared
to positron emission tomography (PET) and functional magnetic
resonance imaging (fMRI), electroencephalography (EEG)
is an ideal tool for monitoring brain function because
it can record the spontaneous and rhythmic electrical
activity of neuronal populations at the millisecond scale
in order to effectively study topological features in regard
to brain function (Laureys and Schiff, 2012; Edlow et al.,
2013).

In this study, we chose the posterior cortex as the stimulation
target, referring to previous studies, and used HD-tDCS as
the stimulation paradigm in order to evaluate the resulting
changes in multidimensional EEG metrics (Cai et al., 2019). We
aimed to elucidate changes in EEG metrics during recovery of
consciousness and to identify possible clinical markers thereof.
We consider these analyses to be exploratory and therefore
proposed two hypotheses. Firstly, we hypothesized that the
use of Pz (i.e., the midline parietal) as a stimulus target
would allow for large-scale functional network modulation and
a shift toward regularized networks. Secondly, we attempted
to build a predictive model to detect responsiveness in
patients with DOC.

FIGURE 1 | (A) Flowchart of study screening. (B) The model of transcranial
electric stimulation. Here we inject 2 mA at electrode Pz, and cathode is at
CPz, POz, P3, P4, displaying 3D rendering of the computed voltage and
electric field distribution.

MATERIALS AND METHODS

Patients
Forty-five patients with pDOC were recruited from the
Departments of Neurosurgery at the Fifth Affiliated Hospital
of Zhengzhou University and the Zhengzhou Central Hospital
(Zhengzhou University) between October 2016 and October
2020. Patients were classified as presenting in a VS or MCS
according to the CRS-R scale, using an awakening stimulation
protocol if necessary in order to determine these classifications.

Patient inclusion criteria were as follows: (1) no scalp lesions
or intracranial metal implants; (2) no history of neurological or
psychiatric disorders; (3) no acute illness or episodes of chronic
illness; and (4) patients with LOC lasting for more than 28 days.

Exclusion criteria were as follows: (1) the presence of
intracranial anterior and posterior lobe lesions, (2) meaningful
fluctuations in LOC in the week prior to stimulation with HD-
tDCS; (3) the previous presence of a pacemaker, aneurysm clips,
or other metallic devices; and (4) incomplete cranial bone.
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FIGURE 2 | Behavioral response to tDCS. (A) The proportion of each state of consciousness, before and after tDCS showed an increase in the higher states of
consciousness [emergence from minimally conscious state (eMCS) and minimally conscious state “plus” (MCS +)], at the expense of lower states of consciousness
[vegetative state (VS) and MCS “minus” (MCS−)]. (B) Individual patients’ CRS-R scores before and after tDCS are represented with the number of patients and their
state (symbols). Significant difference in scores before and after stimulation is found (p = 0.0066).

FIGURE 3 | The electrodes with a significant increase in spectral energy after stimulation compared to pre-stimulation in two groups of patients. The electrodes with
increased energy in the R + group were mainly concentrated in the alpha2 and beta1 bands, while the R− group only had increased energy in the alpha2 and beta1
bands of F8 electrodes.

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 903703

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-903703 June 21, 2022 Time: 12:47 # 4

Zhang et al. HD-tDCS Modifies EEG Indicators

FIGURE 4 | The graph theory results for both groups. α1 band: in the R + group, the area under the global efficiency curve increased after stimulation compared
with before, p = 0.047 (A), the area under the local efficiency curve increased compared with before, p = 0.033 (B), and its small-world index sigma increased after
stimulation, p = 0.026 (C), whereas in the R- group, the above three indexes did not change significantly, p = 0.679, 0.640, and 0.924, respectively. The cluster
coefficient of Cz nodes in the R + group increased compared with pre- stimulation, p = 0.003, while that of the R- group decreased after stimulation, p = 0.031 (D),
the cluster coefficient of Pz nodes in the R + group increased compared with that before stimulation, p = 0.003, while that of the R- group did not differ significantly,
p = 0.130 (E). Beta1 band: in the R + group, the small-world attribute sigma was elevated after stimulation compared to before, p = 0.011, while there was no
significant difference in the R- group, p = 0.392 (F). theta band: no significant difference was seen in the R + group between before and after stimulation for global
efficiency, p = 0.285, while the R- group was elevated after stimulation compared to before, p = 0.039 (G); local efficiency in the R + group decreased after
stimulation compared to before stimulation for local efficiency, p = 0.034; while no significant difference was seen in the R- group before and after stimulation,
p = 0.181 (H). *p < 0.05, **p < 0.01.

Study participants were enrolled for 2 weeks of HD-
tDCS stimulation. Forty-five patients completed this HD-tDCS
stimulation. The epidemiological characteristics of the enrolled
patients are provided in Supplementary Table 1.

The study protocol was approved by the Ethics Committees
of the Fifth Affiliated Hospital of Zhengzhou University
(approval number: KY2020024) and Zhengzhou Central
Hospital, Zhengzhou University (approval number: 201614),
and informed consent was obtained from all patients’ families
and caregivers. This word was conducted in accordance with the
principles of the Declaration of Helsinki. The flowchart depicting
the study process is shown in Figure 1A.

High-Density Transcranial Direct Current
Stimulation Protocol
Stimulation was performed in the Pz region using a transcranial
electrical stimulator (Soterix Medical Inc., New York, NY,
United States) with a current of 2 mA for 20 min; cathodic

electrodes were located at the CPz (centro-parietal), POz (midline
posterior), P3 (left parietal), and P4 (right parietal) electrodes.
The current was applied to the cortex through an Ag-AgCl
ring electrode. The anode was placed at Pz according to the
international 10/20 system. Four cathode electrodes, placed
symmetrically at a distance of 3.5 cm around Pz, approximately
corresponded to the four electrodes mentioned above (Huang
et al., 2018, 2019; Guo et al., 2019). A 14-day period of twice
daily stimulation was administered to all patients, in the morning
and the afternoon, and any adverse effects of HD-tDCS were
monitored and recorded. Due to the lack of individual T1 MRI
data, we visualized a 3D rendering of the voltage and electric field
distribution on an MNI152 averaged head. This protocol is shown
in Figure 1B.

Outcomes
The focus of the study was the effect of HD-tDCS on subsequent
changes in electrophysiological indices and LOC. We highlight
that, as mentioned above, any adverse effects were strictly
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FIGURE 5 | Results of normalized spatial complexity (NSC) for each frequency band. For the R- and R + group, the NSC of the all frequency band was not
significantly different between before and after stimulation, p = 0.206, 0.084 (A). Delta band did not differ between before and after stimulation, p = 0.708, 0.448,
respectively (B). Theta band was not significantly different for the R + group, p = 0.071; the R- group was higher after stimulation than before stimulation, p = 0.024.
(C). In the alpha1 band, no significant difference was found in the R + group between before and after stimulation, p = 0.608, and the R- group increased after
stimulation, p = 0.035 (D). Alpha2 band also showed no significant difference between before and after stimulation for the two groups, p = 0.504, 0.127, respectively
(E). In the beta1 band, no significant difference was found between the two groups before and after stimulation, p = 0.370 and 0.756, respectively (F). In the beta2
band, the R + group showed an increase compared to the pre-stimulation, p = 0.030, and the R- group showed no difference, p = 0.849 (G). In the gamma band,
no difference was observed between the two groups, p = 0.122 and 0.468, respectively (H). *p < 0.05.

monitored and recorded during the stimulation (Giacino et al.,
2004; Gerrard et al., 2014; Di et al., 2017).

Electroencephalography Recording and
Processing
The EEG equipment used herein included a Nicolet EEG
amplifier (Natus Neurology Inc., Middleton, WI, United States),
and the EEG cap used the 32 electrodes of the international
standard 10–20 system. The skin impedance of the electrodes was
kept below 5 k� before the experiment. The recording lasted
for 10 min. For some patients, the CRS-R arousal stimulation
protocol was applied immediately before the EEG recording,
and the patient remained awake during EEG acquisition. If a
patient closed his or her eyes for more than a few seconds
or showed sleep features (i.e., sleep spindles or K complex

waves in the EEG), the EEG recording was terminated and
the data was discarded. Following this, the CRS-R awakening
protocol (with EEG acquisition) was repeated. Patients did not
receive any enteral and parenteral nutrition before the 30 min
of EEG recording.

Offline preprocessing was performed using EEGLAB
running in a MATLAB environment (MathWorks, Natick, MA,
United States) with self-programmed scripts (Delorme and
Makeig, 2004). Firstly, the EEG data were bandpass filtered (0.5–
40 Hz), and the notched filter (48–52 Hz) was applied to the EEG
signal to eliminate the effect of the alternating current [AC; 50 Hz
intermediate frequency (IF) signal]. Next, the sampling rate was
downsampled to 500 Hz and the data were re-referred using an
average amplitude. The EEG signal was then divided into 5 s
repetition-free segments. In the next step, the bad segments were
removed through manual detection and the bad channels were
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complemented by spherical interpolation. The remaining EEG
data were evaluated using an independent components analysis.
Topography, weights in the epochs, and the spectrum were used
to detect and remove eye blinking/movement components. Data
with <80% retention was considered invalid (Straudi et al., 2019;
Zhang et al., 2020). In order to overcome the volume-conduction
of the EEG signals, we analyzed current source density (CSD)
before calculating the EEG features (Kayser and Tenke, 2006; Bai
et al., 2019).

Resting-State Electroencephalography Analysis
Resting EEG was analyzed using spectral energy, functional
network parameters based on graph theory, and normalized
spatial complexity (NSC). The EEG signal was divided into
seven frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha1
(8–10.5 Hz), alpha2 (10.5–13 Hz), beta1 (13–20 Hz), beta2 (20–
30 Hz), and gamma (30–40 Hz).

Spectral Power Analysis
Previous studies have demonstrated that spectral energy is
correlated with patients’ LOC. Spectral power in the 0.25 Hz
range was calculated using Welch’s method for the Fourier
decomposition of the data periods. In each channel, the power
values of the seven standard bands were converted to the relative
percentage contribution of the total power of all bands.

Graph Theory
The brain network was constructed based on patients’ resting-
state EEG signals. The network nodes were defined as the
electrodes. The connected edge of the network was defined
as the phase-locked value (PLV) of the EEG signal between
the two electrodes. The PLV used only phase information
in the calculation process, which can separate the phase and
amplitude components of the EEG signal and avoid the effect
of data amplitude. The phase-based connectivity analysis relied
mainly on the phase difference of the two individual electrode
signals. The PLV calculated by this method ranges from 0
to 1 and does not require parameter selection (Nunez et al.,
1997, 1999; Lachaux et al., 1999). The constructed brain
network was then quantitatively analyzed using graph theory
(Iakovidou, 2017; Sporns, 2018). Based on the Gretna toolbox,
we calculated the following properties: global efficiency, local
efficiency, small-world properties, and node attributes (node
clustering coefficients) (Wang et al., 2015). Prior to topological
characterization, a thresholding procedure was typically applied
to exclude the confounding effects of spurious relationships
in regard to interregional connectivity matrices. We chose
network sparsity as the thresholding method employed herein.
See Supplementary Material for more information about the
thresholding procedure.

The term clustering coefficient refers to the coefficient of
the degree of information aggregation in a node; the larger the
clustering coefficient, the stronger the ability of that node to
transmit information. Global efficiency is used to measure the
functional integration of the network and the global transmission
capacity of the network. The local efficiency of the network
indicates the efficiency of information transfer in regard to

sub-networks. The small-world property shows the optimal
balance between network separation and integration. Prior to
topological characterization, the method of sparsity thresholding
was invoked to calculate the area under the curve (AUC) for
different parameters since there is currently no explicit method
for selecting individual thresholds. In order to make the network
parameter calculation independent of the network size, 100 times
the random network size was used. The random network was
obtained by randomly resampling the nodes and connected edges
of the original network (Mancini et al., 2016; Iakovidou, 2017).

Normalized Spatial Complexity
The spatial complexity of neural signals, traditionally quantified
using omega complexity, was inversely proportional to the level
of functional connectivity in the region of interest (ROI), thus
providing a new approach to functional connectivity analysis.
The higher complexity value represents a more concentrated
level of connectivity and a more complex amount of information
transmitted within the network. However, the omega complexity
measure was sensitive to the number of neural signal time series.
Jia et al. (2018) proposed the use of principal component analysis
(PCA) and normalized entropy to effectively estimate the spatial
complexity of neural signals, defined as NSC, which could reflect
the global functional connectivity of brain signals and overcome
the limitations inherent to omega complexity.

Firstly, temporal PCA was performed on the EEG signals in
order to derive 30 principal components and eigenvalue spectra.
Secondly, in order to evaluate the relative contribution of each
principal component to the total variance, the eigenvalues of the
principal components were normalized to the unit sum. Finally,
the whole-brain spatial complexity of seven individual frequency
bands was calculated according to the method presented in the
study conducted by Gao et al. (2017) and Jia et al. (2018). The
NSC calculated above obtains values in an interval ranging from
0 to 1. The minimum value of 0 implies that the EEG signals
of all scalp channels consist of only one principal component or
spatial pattern, predicting a maximum functional link between
all channels. A maximum value of 1 indicates that the total data
variance is evenly distributed over all 30 principal components,
predicting either the greatest spatial complexity or the lowest
functional linkage across the brain.

Machine Learning for the Response to
Transcranial Direct Current Stimulation
Traditional modeling methods, such as linear and logistic
regression, place strict limitations on the number of features.
Herein, two groups were formed according to whether patients
presented with new consciousness representations. A machine
learning structure was designed to classify responders (R +)
and non-responders (R-). We selected seven bands representing
whole-brain spatial complexity as features and behavioral scale
responsiveness parameters as labels in order to build a model.
Nest structured machine learning was used to construct a binary
classification model (Shen et al., 2017; Bai et al., 2021). The first
layer consists of an inner loop for parameter estimation, and the
second layer consists of an outer loop for prediction evaluation.
Data were kept independent between the inner and outer loops.
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TABLE 1 | Performance of ML approaches for the estimation of predicted accuracy in patients to tDCS protocol.

Model Predicted accuracy AUC Sensitivity Specificity p-value
(Permutation test)

K-nearest neighbor 0.881 0.750 1.0 0.5 <0.001

Linear discriminant analysis 0.905 0.888 0.969 0.7 <0.001

Random forest 0.857 0.842 0.969 0.5 <0.001

Support vector classifier (linear kernel) 0.929 0.900 1.0 0.7 <0.001

MLmachine-learning; tDCS transcranial direct current stimulation.

FIGURE 6 | (A) The confusion matrix of diagnosed consciousness classification generated by the SVM (linear kernel). The classifier was trained on the NSC metrics
derived from the Resting-EEG. (B) Receiver operating characteristic curves for SVM (linear kernel) prediction models.

Different models and parameters were tested within the inner
loop, and the best model and best parameters were selected. In
the outer loop, the selected model and parameters were applied
to the independent data and prediction was performed. We
evaluated model performance using accuracy evaluations, the
confusion matrix, and the AUC. We assessed the significance of
the predictive power using permutation tests (1,000 iterations).

The choice of modeling algorithms included support
vector machine (SVM), linear discriminant analysis (LDA),
random forest (RF), and K-nearest neighbor (KNN) algorithms
(Pedregosa et al., 2011). The details of these methodologies are
provided in the Supplementary Material.

STATISTICAL ANALYSES

Statistical analyses of behavioral data and EEG indicators
were performed using R statistical software (The R Project
for Statistical Computing, Vienna, Austria). A Wilcoxon rank-
sum test (WR-test) was used for behavioral data. For spectral
energy, global properties derived through graph theory, and
spatial complexity, paired t-tests were used to test the statistical
significance of the differences caused by stimulation. For
nodal properties derived through graph theory, including node
clustering coefficients, paired t-tests were used to test the
statistical significance of the differences caused by stimulation

at the electrode level. A false discovery rate (FDR) correction
(Q = 0.05) was used to correct the resulting p-values after
conducting comparative evaluations of the involved electrodes
(Bai et al., 2019; Martens et al., 2019).

RESULTS

Behavioral Response After High-Density
Transcranial Direct Current Stimulation
After 14 days of HD-tDCS stimulation, the total CRS-R score
increased in 32/42 patients compared with the score at baseline
(from 8.26 ± 3.52 to 11.07 ± 5.16, p = 0.007). Patients were
divided into two groups based on whether they presented with
new conscious representations: responders (R +) and non-
responders (R-); the EEG indicators of the two groups were
analyzed separately. The behavioral response to HD-tDCS is
shown in Figure 2.

Spectral Power
In the R + group, by comparing the spectral energy of seven
bands at pre- and post-stimulation, we found that the energy of
some electrodes in the alpha1, alpha2, beta1, beta2, and gamma
bands increased (mainly in the alpha 2 and beta1 bands); the main
increase was detected in the frontal and parietal electrodes. The
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electrodes with increased energy were as follows: alpha1 band:
Fpz, F3, F4, C3, FC1, and CP1; alpha2 band: FP1, FP2, F3, F4, C3,
C4, P3, O1, F7, F8, T7, Fz, Pz, FC5, Cz, FC1, FC2, FC6, CP1, CP2,
CP6, Fpz, FOz, and Oz; beta1 band: FP2, F3, F4, C3, C4, P3, P4,
C4, P3, P4, O1, O2, F7, Fz, Pz, FC5, Cz, FC1, FC2, FC6, CP1, CP2,
CP6, Fpz, POz, and Oz; and beta2 band: F3, C3, C4, P4, Fz, Pz,
Cz, FC1, FC2, CP1, CP2, and POz; gamma band: C3, P4, Cz, FC1,
FC2, CP1, and CP2. No electrodes with increased energy were
found in the delta and theta bands. In the R- group, in evaluations
of the spectral energy of the seven bands at T1 as compared with
that at T0, we found that the F8 channel showed an increase
in energy only in the alpha2 and beta1 bands, while no energy
increase channels were seen in the alpha1, beta2, delta, theta, or
gamma bands. The above results are depicted in Figure 3.

Graph Theory
Regarding the global properties in the R + group, the area under
the global efficiency curve in the alpha1 band increased after
stimulation compared with that before stimulation (p = 0.047),
the area under the local efficiency curve increased compared
with that before stimulation (p = 0. 033), and the small world
property sigma increased after stimulation compared with that
before stimulation (p = 0.026). In contrast, in the R- group,
the above three indices did not change at the level of statistical
significance, with resulting p-values of 0.679, 0.640, and 0.924,
respectively. In the beta1 band, the small-world property sigma
increased in the R + group after stimulation as compared to pre-
stimulation (p = 0.011), while there was no statistically significant
difference in the R- group (p = 0.392). In the theta band, the global
efficiency of the R + group did not differ at the level of statistical
significance before and after stimulation (p = 0.285), while that
in the R- group increased after stimulation as compared to pre-
stimulation (p = 0.039). In addition, the local efficiency of the
R + group decreased after stimulation compared to that before
stimulation (p = 0.034), while the local efficiency in the R-
group did not differ statistically significantly before and after
stimulation (p = 0.181).

In terms of node properties, the cluster coefficient for Cz nodes
in the R + group in the α1 band increased compared to pre-
stimulation (p = 0.003), while that in the R- group decreased
(p = 0.031); the cluster coefficient for Pz nodes in the R + group
increased compared to pre-stimulation (p = 0.003), while the
cluster coefficient in th R- group did not differ statistically
significantly before and after stimulation (p = 0.130). The above
results are shown in Figure 4.

Normalized Spatial Complexity
We additionally calculated the full-band NSC and found that
no statistically significant differences were observed between the
R + and R- groups (p = 0.206, 0.084). Moreover, we calculated
the NSC for each frequency band. No difference was found
in the delta band before and after stimulation in two groups
(p = 0.708, 0.448). In the theta band, no statistically significant
difference was seen in the R + group before and after stimulation
(p = 0.071), whereas the NSC in the R- group increased after
stimulation compared to pre-stimulation (p = 0.024). In the
alpha1 band, no statistically significant difference was observed

for the R + group (p = 0.608), while the R- group showed
an increase in NSC compared to pre-stimulation (p = 0.035).
In the alpha2 band, no statistically significant difference was
observed for the two groups before and after stimulation
(p = 0.504, 0.127). In the beta2 band, there was an increase
in the R + group compared to pre-stimulation (p = 0.030),
while no difference was observed in the R- group (p = 0.849).
In the gamma band, no difference was observed for either of
the groups (p = 0.122, 0.468). The above results are shown in
Figure 5.

Predictive Model
To predict the responsiveness of patients after 2 weeks of the
evaluated tDCS stimulation protocol, we chose the NSC of seven
frequency bands at the baseline as features for model training
and used SVM (linear kernel), SVM (Gaussian kernel), RF,
LDA, and KNN methods, respectively. The SVM (linear kernel)
was found to work best. The area under the receiver operating
characteristic curve was 0.9 and its accuracy was 0.929. Sensitivity
and specificity were 100 and 70%, respectively.

We calculated the p-value of the permutation test as the
proportion of sampled permutations greater than or equal to the
true prediction labels. The number of iterations was 1,000. A p-
value (<0.001) was obtained by the abovementioned permutation
test. The seven band weights were 0.139, 2.563, 6.707, 4.150,
2.445, 1.457, and 11.602. The alpha and gamma bands had the
highest weights, indicating that alpha and gamma band NSC
was most important in predicting treatment responsiveness.
The accuracy, sensitivity, specificity, AUC, and permutation test
p-values of the evaluated models are shown in Table 1. The
receiver operating characteristic curve and confusion matrix of
the SVM are shown in Figure 6.

DISCUSSION

In this study, we divided patients into R + (32 patients) and
R- (10 patients) groups according to the observed improvement
in their CRS-R scores. The CRS-R showed that some patients
presenting in a VS improved after the long duration stimulation,
while some patients presenting in an MCS showed no change
in responsiveness. Response heterogeneity in HD-tDCS suggests
that behavioral scales alone do not accurately assess stimulus
effects and predict patient responsiveness, which may be partially
attributable to underlying functional network deficits.

We innovatively chose Pz as the anodic target and the
surrounding four electrodes as the cathodic targets. With this
stimulation protocol, we obtained a stimulation electric field
more concentrated in the posterior cortex. To investigate the
potential modulatory effects of the stimulation protocol on
neural activity in patients with DOC, this study analyzed three
quantitative metrics in regard to resting-state EEG: power
spectrum, graph theory, and NSC. Finally, a prediction model was
built using the NSC of individual frequency bands as features to
assess the DOC response.

In the R + group, the spectral power of multiple electrodes
in the alpha2 and beta1 bands was increased. These electrodes
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were mainly placed in the frontal and parietal regions. In terms
of brain networks, we chose the PLV to build a functional
brain network and calculated graph theory metrics based on
the brain network to assess the stimulation effect. In regard
to global metrics, we found that the global efficiency, local
efficiency, and small-world property sigma in the alpha1 band
of the R + group were higher than before stimulation, as was
the small-world property sigma in the beta1 band, suggesting
that the patient’s brain network had changed to a regular brain
network rather than an irregular network after the administered
stimulation. In contrast, for the R- group, there was no difference
detected before and after the stimulation. In the theta band,
local efficiency decreased after stimulation for the R + group,
while no difference was seen in global efficiency and small-world
attribute sigma; in contrast, for the R- group, global efficiency
increased compared to before stimulation. Similarly, in terms
of node properties, the alpha1 frequency band Cz and Pz node
clustering coefficients increased in the R + group compared to
pre-treatment, while no differences were seen in the R- group.
The prediction model suggested that the NSC of the alpha and
gamma bands best determines patient responsiveness to the
evaluated stimulation protocol.

In our study, we stimulated a posterior parietal lobe
stimulation target using HD-tDCS. The posterior parietal
lobe is thought to play an important role in the generation
of consciousness. In recent years, many consciousness studies
have debated the role of the prefrontal and posterior parietal
cortex in the formation of consciousness; however, a growing
number of studies suggests that the posterior cortex may be a
more decisive brain region for consciousness, as consciousness
can be preserved even if most of the patient’s prefrontal
cortex is removed (Laureys and Schiff, 2012; Koch et al.,
2016; Boly et al., 2017; Mashour, 2018). It is particularly
important to identify the possible origin of consciousness
as a stimulus target and to clarify the network changes
induced by the modulation of this target in order to explore
the mechanisms underlying HD-DCS and consciousness
generation. This study demonstrated that the evaluated
stimulation protocol could modulate spectral power in the
alpha, beta, and gamma bands, mainly through frontal and
parietal electrodes.

Moreover, to explore the effect of network modulation, this
study conducted a graph-theoretic analysis of the functional
network. Our results showed that the protocol could improve the
nodal efficiency of Pz and Cz in the alpha1 band and improve
the information transfer properties of the nodes; all of this may
improve the global efficiency and local efficiency of the alpha1
band, enable easier mutually connect between brain regions, and
enable brain networks to consume less energy in communication.
The above changes may transform the brain network to a
normal network. This is demonstrated by the increased small-
world property of the alpha1 band seen herein. We note that a
small-world network that can handle complex tasks and provide
near-optimal local and global functional connectivity.

For the R- group, an increase in local efficiency was observed
only in the theta band. Moreover, an elevated NSC in the beta2
band could be observed in the R + group; this was inversely

proportional to functional connectivity. More specifically, the
higher the value, the more information the channel presented
and the more intensive the local network connection. Only
a few electrodes in the beta2 band showed an increase in
spectral power, which may be lateral proof of this concept.
All of the above suggests that, in the higher bands, brain
network connectivity is concentrated in fewer nodes. This tends
to lead to an exchange of information within a local range. In
contrast, in the lower bands, there is a tendency for long-distance
connectivity of the network. The VS changes to a wide range
of cortical functions and network impairments, which tend to
disrupt small-world properties more severely (Cai et al., 2020b).
We therefore hypothesize that promoting information clustering
of network nodes in the higher bands and restoration of long-
range links in the lower bands may be an underlying mechanism
for this protocol.

At the same time, the key role of the posterior parietal lobe
in the origin of consciousness was also laterally demonstrated.
A growing number of studies have shown that many brain
disorders involve changes in brain network features, such
as integration and dissociation, that are often based on a
modular approach. Cai et al. found that the brain network
of patients with DOC exhibited more integration and less
dissociation compared to controls (Cai et al., 2020a). Chen
et al. (2013) demonstrated that, when moving from VS to
MCS, the aggregation coefficient in the alpha network had an
increasing effect that tended to have an increased likelihood
of generating positive clinical outcomes. In addition, the
increased Pz and Cz clustering coefficients in the alpha1
band detected in this study indicate an increase in local
information processing capacity. Moreover, according to the
previous study, the configuration of brain networks follows
two major principles: one tends to minimize overall wiring
costs and facilitate module formation (isolation), and the other
promotes efficient global communication (integration). These
two principles compete, and the trade-off between the principles
determines the efficient organization of the network (Chen et al.,
2013; Avena-Koenigsberger et al., 2015; Sporns and Betzel, 2016;
van den Heuvel and Sporns, 2019; Cai et al., 2020a). Considering
that random networks exhibit higher integration and lower
segregation than real networks, patients in the R + group showed
less randomness with higher levels of consciousness, as well
as exhibiting more segregation and less integration, which is
consistent with the elevated NSC of the beta2 band in the
R + group. By including NSC in the model, we obtained a
relatively satisfactory result. The alpha and gamma bands had
higher weights, indicating that the retention of higher NSC
in two bands predicted the recoverability of brain networks
in DOC. There is no doubt that combining machine learning
with EEG metrics to determine if a patient may respond to a
neuromodulation protocol at baseline will benefit clinicians in
optimizing protocols.

The natural next step in this field of research includes
clarifying how multidimensional EEG metrics evolve during
stimulation. If EEG metrics can be detected during the
baseline period (i.e., when implementing the tDCS modulation
protocol) or before behavioral scale scores improve, EEG
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multidimensional metric analysis can be used to provide
useful feedback informing clinical decisions and optimizing
neuromodulation protocols for individual patients. However,
determining whether the EEG multidimensional changes
observed herein are specific to HD-tDCS or are more
generalizable to other brain stimulation protocols is an important
issue to resolve in determining the potential clinical utility
of these methodologies. Taken together, the current study
adds to the preliminary evidence base suggesting that EEG
multidimensional metrics are altered in patients who respond
to HD-tDCS stimulation. This represents a step toward a better
understanding of DOC-related network defects and how these
defects are modulated by HD-tDCS modulation.

In addition to the substantial strengths of our study, we
acknowledge some limitations to this research. First, a control
group was not included in this study, and our findings
may simply reflect a more general response of improved
consciousness that is confounded by placebo effects, rather than
purely reflecting neuromodulation-induced changes. Moreover,
medication administration and etiology were not assessed
as covariates affecting changes in EEG metrics. Secondly,
the small statistical sample size and the imbalance between
etiologies (eight strokes, 12 cases of trauma, two cases of
hypoxia) and diagnoses (MCS, 29; VS, 13) of the patients
included in this study reduces the validity of our study
findings. In addition, this study lacked a follow-up evaluation
to validate long-term modulatory effects. Although EEG is
used a functional neuroimaging tool, some results may be
limited by effects of functional connectivity and/or metabolism
within brain regions, and we can thus additionally explore
mechanisms using multimodal techniques (including fMRI and
PET) in order to establish more typical multidimensional
quantitative metrics, explore mechanisms, and detect brain
imaging biomarkers.

CONCLUSION

In conclusion, we used Pz as a target to quantify changes
in brain networks in multiple dimensions and combined
the derived information with machine learning techniques to
build a model with high accuracy that allows for predicting
modulatory responsiveness. The changes in multidimensional
EEG metrics seen herein may suggest the existence of a common
neuromodulatory mechanism and may provide a basis for clinical
EEG consciousness improvement as well as for the proposal of
neuromodulatory markers. At the same time, we conclude that
modulation of the posterior parietal lobe can lead to an EEG
response related to consciousness in DOC, and the posterior

cortex may be one of the key brain regions involved in the
formation and maintenance of consciousness.
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