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Little is known about expertise-related plasticity of neural mechanisms for

auditory feature integration. Here, we contrast two diverging hypotheses that

musical expertise is associated with more independent or more integrated

predictive processing of acoustic features relevant to melody perception.

Mismatch negativity (MMNm) was recorded with magnetoencephalography

(MEG) from 25 musicians and 25 non-musicians, exposed to interleaved

blocks of a complex, melody-like multi-feature paradigm and a simple,

oddball control paradigm. In addition to single deviants differing in frequency

(F), intensity (I), or perceived location (L), double and triple deviants

were included reflecting all possible feature combinations (FI, IL, LF, FIL).

Following previous work, early neural processing overlap was approximated

in terms of MMNm additivity by comparing empirical MMNms obtained with

double and triple deviants to modeled MMNms corresponding to summed

constituent single-deviant MMNms. Significantly greater subadditivity was

found in musicians compared to non-musicians, specifically for frequency-

related deviants in complex, melody-like stimuli. Despite using identical

sounds, expertise effects were absent from the simple oddball paradigm.

This novel finding supports the integrated processing hypothesis whereby

musicians recruit overlapping neural resources facilitating more integrative

representations of contextually relevant stimuli such as frequency (perceived
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as pitch) during melody perception. More generally, these specialized

refinements in predictive processing may enable experts to optimally

capitalize upon complex, domain-relevant, acoustic cues.

KEYWORDS

auditory perception, music, expertise, feature integration, mismatch negativity,
melody, pitch, magnetoencephalography

Introduction

The ability to distinguish and combine features of
sensory input guides behavior by enabling humans to engage
successfully with perceptual stimuli in their environment
(Hommel, 2004; Spence and Frings, 2020). While sophisticated
models exist for visual feature processing (Treisman and
Gelade, 1980; Nassi and Callaway, 2009; Di Lollo, 2012; Grill-
Spector and Weiner, 2014), auditory objects transform over
time and remain more elusive (Griffiths and Warren, 2004;
Shamma, 2008). Modality-specific divergences may therefore be
expected. Indeed, findings that auditory feature conjunctions
are processed pre-attentively (Winkler et al., 2005) and faster
than single features (Woods et al., 1998) and that the identity
features pitch and timbre sometimes take precedence over
location (Maybery et al., 2009; Delogu et al., 2014) deviate
from findings in visual perception (Campo et al., 2010; but
see Guérard et al., 2013). Although auditory feature integration
mechanisms are partly congenital (Ruusuvirta, 2001; Ruusuvirta
et al., 2003), yet subject to some individual variation (Allen et al.,
2017) and evolutionary adaptation (Fay and Popper, 2000), it
remains unknown whether they vary with auditory expertise
levels. Given its early onset and persistence throughout life
(Ericsson, 2006) and its strong reliance on predictive processing
mechanisms (Quiroga-Martinez et al., 2021), musicianship
offers an especially informative model of auditory expertise
(Vuust et al., 2005, 2022; Herdener et al., 2010; Herholz and
Zatorre, 2012; Schlaug, 2015).

Electroencephalography (EEG) and
magnetoencephalography (MEG) enable approximate
estimation of feature integration using the additivity of
the mismatch negativity response (MMN) and its magnetic
counterpart (MMNm), respectively. The MMN(m) itself
represents a deflection in the event-related potential or field
(ERP/ERF) peaking around 150–250 ms after presentation of
an unexpected stimulus (Näätänen et al., 1978). It results from
active cortical prediction rather than from passive synaptic
habituation (Wacongne et al., 2012). By comparing empirical
MMN(m)s to double or triple deviants (differing from standards
on two or three features) to modeled MMN(m)s obtained by
summing the MMN(m) responses for the constituent single
deviants, inferences have been made about the potential overlap

in neural processing (e.g., Levänen et al., 1993; Paavilainen
et al., 2001). Correspondence between empirical and modeled
MMN(m)s is interpreted to indicate independent processing
whereas subadditivity—where modeled MMN(m)s exceed
empirical MMN(m)s—suggests more overlapping, integrated
processing. In neurophysiological studies of multisensory
integration, this well-established approach has been referred
to as “the additive model” relying on the principle that
“[b]iophysical laws state that the electrical fields generated by
two generators add up linearly at any point measure” (Besle
et al., 2009, p. 144). Thus, any observed sub-additivity (or
super-additivity, for that matter) would point to an interaction
between the two unimodal processes.

Although transferring “the additive model” to a single
modality requires additional assumptions in terms of
separate neural sources, for example, MMN(m) additivity
has successfully been assessed within audition. Segregated
feature processing has thus been established for frequency,
intensity, onset asynchrony, and duration (Levänen et al., 1993;
Schröger, 1995; Paavilainen et al., 2001; Wolff and Schröger,
2001; Paavilainen et al., 2003b) with spatially separate neural
sources (Giard et al., 1995; Levänen et al., 1996; Rosburg,
2003; Molholm et al., 2005). MMN(m) is also additive for
inter-aural time and intensity differences (Schröger, 1996),
phoneme quality and quantity (Ylinen et al., 2005), and attack
time and even-harmonic timbral attenuation (Caclin et al.,
2006). Feature conjunctions occurring infrequently in the
local context, moreover, result in distinct MMN(m) responses
(Gomes et al., 1997; Sussman et al., 1998) that are separable
in terms of neural sources (Takegata et al., 2001a) and extent
of additivity from those elicited by constituent (Takegata
et al., 1999) or more abstract pattern deviants (Takegata et al.,
2001b).

Conversely, subadditive MMN(m)s occur for combinations
of lexical tones, vowels, and consonants in Cantonese speech
and non-speech (Choi et al., 2017; Yu et al., 2022), for direction
of frequency and intensity changes (Paavilainen et al., 2003a), for
aspects of timbre (Caclin et al., 2006), and between frequency
deviants in sung stimuli and vowels (Lidji et al., 2009) and
consonants (Gao et al., 2012). Generally, subadditivity is greater
for triple than double deviants (Paavilainen et al., 2001; Caclin
et al., 2006). While it is known that MMN(m) responses vary
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with expertise (Koelsch et al., 1999; Vuust et al., 2009), it remains
unknown whether the same is the case for MMN(m) additivity.

The current MEG study aims to investigate whether
MMNm additivity varies as a function of musical expertise.
Specifically, assuming that MMNm additivity is a reliable
proxy for independent feature processing, two hypotheses
are contrasted. First, the independent processing hypothesis
posits that expertise is associated with specialized feature
processing by separate neural populations, increasing access
to lower-level representations that have higher context-specific
relevance (Ahissar and Hochstein, 2004; Ahissar et al., 2009).
This would result in more similar empirical and modeled
MMNm responses in musicians compared to non-musicians
who, by contrast, would show greater subadditivity. Second, the
integrated processing hypothesis posits that expertise is associated
with processing of multiple features by shared neural resources,
manifesting as decreased overall neural activity (Jäncke et al.,
2001; Zatorre et al., 2012). This would manifest as smaller
empirical than modeled MMNm responses expressed more
prominently in musicians than in non-musicians.

Since expertise produces more accurate expectations
(Hansen and Pearce, 2014; Hansen et al., 2016) and shorter
MMN(m) latencies (Lappe et al., 2016) in musical contexts
specifically, these hypotheses will be tested using contrasting
paradigms with higher and lower levels of complexity and
corresponding musical relevance. Deviants on the three acoustic
features frequency, intensity, and location (in terms of inter-
aural time difference) will be probed as expertise-related
differences in MMN(m) responses to all these particular feature
deviants have previously been demonstrated, albeit to different
extent and with different levels of selectivity for the type of
musical specialization (Nager et al., 2003; Tervaniemi et al.,
2006, 2009; Brattico et al., 2009; Putkinen et al., 2014).
Because these features represent decreasing degrees of musical
relevance—with frequency being syntactically more important
than intensity, and intensity being expressively more important
than location—their inclusion will allow us to assess feature
selectivity for any observed expertise differences in auditory
feature integration.

Materials and methods

Participants

Twenty-five non-musicians (11 females; mean age:
24.7 years) and 25 musicians (10 females; mean age: 25.0 years)
were recruited through the local research participation system
and posters at Aarhus University and The Royal Academy of
Music Aarhus. Members of the musician group were full-time
conservatory students or professional musicians receiving
their main income from performing and/or teaching music.
The non-musician group had no regular experience playing

a musical instrument and had received less than 1 year of
musical training beyond mandatory music lessons in school. As
shown in Table 1, the two groups were matched on age and sex,
and musicians scored significantly higher on all subscales of
Goldsmiths Musical Sophistication Index, v. 1.0 (Müllensiefen
et al., 2014).

All participants were right-handed with no history of
hearing difficulties. Informed written consent was provided,
and participants received a taxable compensation of DKK 300.
The study was approved by The Central Denmark Regional
Committee on Health Research Ethics (case 1-10-72-11-15).

Stimuli

Stimuli for the experiment were constructed from standard
and deviant tones derived from Wizoo Acoustic Piano samples
from Halion in Cubase 7 (Steinberg Media Technologies
GmbH) with a 200 ms duration including a 5 ms rise time and
10 ms fall time.

Deviants differed from standards on one or more of
three acoustic features: fundamental frequency (in Hz), sound
intensity (in dB), and inter-aural time difference (in µs),
henceforth referred to as frequency (F), intensity (I), and location
(L), respectively. There are several reasons for focusing on
these specific features. First, unlike alternative features such
as duration (Czigler and Winkler, 1996) and frequency slide
(Winkler et al., 1998), the point of deviance can be established
unambiguously for frequency, intensity, and location deviants.
Second, these features have reliably evoked additive MMN(m)
responses in previous research; specifically, additivity has been
demonstrated for frequency and intensity (e.g., Paavilainen
et al., 2001) and frequency and location (e.g., Schröger, 1995),
but not yet for location and intensity or for all three features
together. Third, expertise-related selectivity for some of these
features over others has been demonstrated in other contexts
(Symons and Tierney, 2021). Finally, the restriction to three
features balances representability and generalizability with
practical feasibility within the typical timeframe of an MEG
experiment.

In total, seven deviant types, comprising three single
deviants, three double deviants, and one triple deviant, were
generated through modification in Adobe Audition v. 3.0
(Adobe Systems Inc.). Specifically, frequency deviants (F) were
shifted down 35 cents using the Stretch function configured
to “high precision.” Intensity deviants (I) were decreased by
12 dB in both left and right channels using the Amplify function.
Location deviants (L) resulted from delaying the right stereo
track by 200µs compared to the left one. These parameter
values were found to produce robust and relatively similar
ERP amplitudes in a previous EEG study (Vuust et al., 2016).
Double and triple deviants combining deviants in frequency
and intensity (FI), intensity and location (IL), location and
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TABLE 1 Demographics and musical sophistication of research participants.

Musicians Non-musicians Chi-square test

χ 2 p

Gender 10F, 15M 11F, 14M 0.082 0.774

Mann–Whitney U test

Mean (SD) Mean (SD) U p

Age 25.0 (3.9) 24.7 (2.9) 302.5 0.845

GMSI1: Active engagement 49.7 (5.3) 28.3 (10.6) 26.5 <0.001

GMSI2: Perceptual abilities 55.3 (4.5) 37.7 (6.7) 12.5 <0.001

GMSI3: Musical training 42.4 (3.1) 10.9 (3.2) 0.0 <0.001

GMSI4: Emotions 36.2 (4.0) 27.7 (5.0) 61.0 <0.001

GMSI5: Singing abilities 38.9 (5.1) 21.2 (5.7) 4.0 <0.001

GMSI6: General sophistication 104.9 (7.3) 49.4 (11.1) 0.0 <0.001

GMSI 1–6 designate the six subscales of Goldsmiths Musical Sophistication Index v1.0 (Müllensiefen et al., 2014).

frequency (LF), and frequency and intensity and location (FIL)
were generated by applying two or three of the operations
just described, always in the order of frequency, intensity, and
location.

Procedure

Two MMN paradigms were used in the experiment.
Specifically, as shown in Figure 1A, four blocks (M1–M4) of
the main complex paradigm, based on the musical multi-feature
paradigm (cf., Vuust et al., 2011), were interleaved with three
blocks (C1–C3) of a simpler control paradigm (cf., Näätänen
et al., 2004) with lower degrees of musical relevance.

The complex paradigm consists of repetitions of a
characteristic four-note pattern referred to as the Alberti bass.
In this pattern, the notes of a chord are arpeggiated in the
order “lowest-highest-middle-highest” (Figure 1A). Although
named after an Italian composer who used it extensively
in early 18th-century keyboard accompaniment, the Alberti
bass occurs widely across historical periods, instruments, and
musical genres (Fuller, 2015).

The studies introducing this paradigm (Vuust et al., 2011,
2016, 2012a,b; Timm et al., 2014; Petersen et al., 2015) have
typically modified every second occurrence of the third note in
the pattern (termed “middle” above) by changing its frequency,
intensity, perceived location, timbre, timing, or by introducing
frequency slides. In the present implementation, two extra
occurrences of the standard pattern were introduced between
each deviant pattern (Figure 1A) to minimize spill-over effects
from consecutive deviants some of which made use of the same
constituent deviant types due to the inclusion of double and
triple deviants. Independence of deviant types is an underlying

assumption of multi-feature mismatch negativity paradigms
(Näätänen et al., 2004).

Consistent with previous studies, individual notes of
the pattern were presented with a constant stimulus onset
asynchrony (SOA) of 205 ms. After each occurrence of all
seven deviants, the pitch height of the pattern changed pseudo-
randomly across all 12 notes of the chromatic scale. This resulted
in standard tones with frequency values ranging from 116.54 Hz
(A#2) to 220.00 Hz (A3). Each block of the musical multi-feature
paradigm comprised three such iterations of the 12 chromatic
notes (Figure 1A), resulting in a total of 144 trials of each
deviant type across the four blocks.

The same number of trials per deviant type was obtained
across the three blocks of the simple control paradigm, inspired
by Näätänen et al. (2004). This was achieved by incorporating
four rather than three iterations of the 12 chromatic notes
(A#2 to A3) for each deviant array in each block (Figure 1A).
Instead of the Alberti bass, the simple paradigm used standard
and deviant notes presented with a constant SOA of 400 ms,
corresponding to a classical oddball paradigm. This was a multi-
feature paradigm in the sense that it incorporated all seven
deviant types in each block; however, the number of standards
presented before each deviant varied randomly between 3 and
5, again to minimize spill-over effects from consecutive deviants
with the same constituent deviant types (Figure 1A).

During the complete experimental procedure (∼100 mins),
participants were seated in a magnetically shielded room
watching a silent movie with the soundtrack muted. Stimulus
sounds were presented binaurally through Etymotic ER2 insert
earphones using the Presentation software (Neurobehavioral
Systems, San Francisco, USA). Sound pressure level was set
to 50 dB above individual hearing threshold as determined
by a staircase procedure implemented in PsychoPy (Peirce,
2007). Participants were instructed to stay still while the sounds
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FIGURE 1

(A) Experimental procedure. Stimuli were presented in alternating blocks using the complex musical multi-feature paradigm (M1–M4) and the
simple control paradigm (C1–C3). Each block comprised three (M) or four (C) iterations of a sequence of standards and deviants presented at
twelve varying pitch levels (i.e., chromatic range of A#2–A3). At each pitch level, seven deviant types were used in permutation. These
comprised three single deviants differing in frequency (-35 cents), intensity (-12 dB), or location (right stereo track delayed by 200 µs), double
and triple deviants differing in frequency and intensity, intensity and location, location and frequency, or frequency and intensity and location.
Epoching of the magnetoencephalographic recordings was time-locked to the onset of the musical notes marked with S for standards and D
for deviants. (B) Additivity analysis. The additivity of neural mismatch responses was computed by subtracting modeled
MMNms—corresponding to the sum of the two or three constituent single-deviant MMNms—from the empirical MMNm obtained in response
to the relevant double or triple deviant. (C) The 18 combined gradiometers from the Elekta Neuromag TRIUX system that were used in analysis
centered on the two sensors—MEG1342 + 1343 and MEG0232 + 0233—exhibiting the peak grand-average MMNm amplitude across both
paradigms and across all participants and conditions.
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were playing, to ignore them, and to focus on the movie.
Complex musical multi-feature blocks (M1–M4) lasted 13 mins
47 sec whereas simple control blocks (C1–C3) lasted ∼11 mins.
Between each block, short breaks of ∼1–2 mins were provided
during which participants could stretch and move slightly while
staying seated. Prior to the lab session, participants completed
an online questionnaire that ensured eligibility and assessed
their level of musical experience using Goldsmiths Musical
Sophistication Index, v.1.0 (Müllensiefen et al., 2014).

Magnetoencephalography recording
and pre-processing

MEG data were sampled at 1,000 Hz (with a passband
of 0.03–330 Hz) using the Elekta Neuromag TRIUX system
hosted by the MINDLab Core Experimental Facility at
Aarhus University Hospital. This MEG system contains 102
magnetometers and 204 planar gradiometers. Head position
was recorded continuously throughout the experimental session
using four head position indicator coils (cHPI). Additionally,
vertical and horizontal EOG as well as ECG recordings were
obtained using bipolar surface electrodes positioned above and
below the right eye, at the outer canthi of both eyes, and on the
left clavicle and right rib.

Data were pre-processed using the temporal extension of
the signal space separation (tSSS) technique (Taulu et al.,
2004; Taulu and Simola, 2006) implemented in Elekta’s
MaxFilter software (Version 2.2.15). This included head
movement compensation using cHPI, removing noise from
electromagnetic sources outside the head, and down-sampling
by a factor of 4–250 Hz. EOG and ECG artifacts were
removed with independent component analysis (ICA) using the
find_bads_eog and find_bads_ecg algorithms in MNE Python
(Gramfort et al., 2013, 2014). These algorithms detect artifactual
components based on either the Pearson correlation between
the identified ICA components and the EOG/ECG channels
(for EOG) or the significance value from a Kuiper’s test using
cross-trial phase statistics (Dammers et al., 2008; for ECG).
Topographies and averaged epochs for the EOG- and ECG-
related components were visually inspected for all participants
to ensure the validity of rejected components.

Further pre-processing and statistical analysis was
performed in FieldTrip (Oostenveld et al., 20111;
RRID:SCR_004849). Data were epoched into trials of 500 ms
duration including a 100 ms pre-stimulus interval. As indicated
in Figure 1A, for both paradigms, only the third occurrence of
the standard tone after each deviant was included as a standard
trial. Trials containing SQUID jumps were discarded using
automatic artifact rejection with a z-value cutoff of 30. The

1 http://www.ru.nl/neuroimaging/fieldtrip

remaining 98.2% of trials on average (ranging from 91.0 to
99.8% for individual participants) were band-pass filtered at
1–40 Hz using a two-pass Butterworth filter (data-padded to
3 s to avoid filter artifacts). Planar gradiometer pairs were
combined by taking the root-mean-square of the two gradients
at each sensor, resulting in a single positive value. Baseline
correction was performed based on the 50 ms pre-stimulus
interval.

Experimental design and statistical
analysis

To reiterate the experimental design, 25 musicians and 25
non-musicians completed a total of seven blocks distributed
between the complex musical multi-feature paradigm (M) and
simple control paradigm (C) in the order M1–C1–M2–C2–M3–
C3–M4 (Figure 1A). Trials were averaged for each condition
(i.e., one standard and seven deviant types) separately for
each participant and separately for each paradigm. Magnetic
mismatch negativity responses (MMNm) were computed by
subtracting the same average standard (the third after each
deviant, cf. Figure 1A) originating from the relevant paradigm
from each of the deviant responses. These were the empirical
MMNms. Consistent with previous studies (Levänen et al., 1993;
Schröger, 1995, 1996; Takegata et al., 1999; Paavilainen et al.,
2001, 2003b; Ylinen et al., 2005; Caclin et al., 2006; Lidji et al.,
2009; Choi et al., 2017; Yu et al., 2022), modeled MMNms were
computed for the three double deviants and one triple deviant
by adding the two or three empirical MMNms obtained from
the relevant single deviants (Figure 1B).

The statistical analysis reported here focused on data
from the combined planar gradiometers. Our focus was on
the modulation of the neural signals as indexed by the
MMNm response. Seeing that previous research has shown
little to no added benefit in signal-to-noise ratio for source-
derived estimates of the MMN(m) response, likely because the
tangentially-oriented MMNm sources are optimally detected
by the planar gradiometers (Tervaniemi et al., 2005; Recasens
and Uhlhaas, 2017), we deemed that our research question
could be fully addressed in sensor space without making
further assumptions as required for source reconstruction.
Non-parametric, cluster-based permutation statistics (Maris
and Oostenveld, 2007) were used to test the prediction
that the additivity of the MMNm response would differ
between musicians and non-musicians. Because violation of
the additive model is assessed through demonstration of a
difference between empirical and modeled MMNm responses,
this hypothesis predicts an interaction effect between degree of
additivity and musical expertise. This was tested by running
cluster-based permutation tests on the difference between
empirical and modeled MMNm responses, comparing between
musicians and non-musicians. This approach for testing
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TABLE 2 Magnetic mismatch negativity response (MMNm).

Complex musical multi-feature paradigm Simple control paradigm

Musicians Non-musicians Musicians Non-musicians

Frequency (F) 0.0002*** 0.0002*** 0.0003*** 0.0014**

Intensity (I) <0.0001*** <0.0001*** <0.0001*** <0.0001***

Location (L) <0.0001*** <0.0001*** <0.0001*** <0.0001***

FI <0.0001*** <0.0001*** <0.0001*** 0.0003***

IL <0.0001*** <0.0001*** <0.0001*** <0.0001***

LF <0.0001*** <0.0001*** <0.0001*** <0.0001***

FIL <0.0001*** <0.0001*** <0.0001*** <0.0001***

Monte Carlo p-values from non-parametric, cluster-based permutation tests of deviant > standard. **p < 0.0050; ***p < 0.0005 (uncorrected alpha). Analysis was conducted on the
100–300 ms post-stimulus time window on nine supra-temporal combined gradiometer sensors in each hemisphere using the maxsum test statistic over 10,000 random permutations.

interaction effects within the non-parametric permutation
framework is advocated by FieldTrip.2

The test statistic was computed in the following way:
Independent-samples t-statistics were computed for all
timepoint-by-sensor samples. Samples that were neighbors
in time and/or space and exceeded the pre-determined
alpha level of 0.05 were included in the same cluster.
Despite its similarity to uncorrected mass-univariate testing,
this step does not represent hypothesis testing, but only
serves the purpose of cluster definition. To this end, a
neighborhood structure was generated that defined which
sensors were considered neighbors based on the linear distance
between sensors. Only assemblies containing minimum
two neighbor sensors were regarded as clusters. A cluster-
level statistic was computed by summing the t-statistics
within each cluster and taking the maximum value of
these summed t-statistics. This process was subsequently
repeated for 10,000 random permutations of the group
labels (musicians vs. non-musicians) giving rise to a Monte
Carlo approximation of the null distribution. The final
p-value resulted from comparing the initial test statistic with
this distribution. Bonferroni-correction was applied to the
two-sided alpha level to correct for the four comparisons
of modeled and empirical double and triple MMNms,
resulting in an alpha level of α = 0.025/4 = 0.00625. When
significant additivity-by-expertise interactions were discovered,
simple effects of additivity were assessed for musicians and
non-musicians separately.

Previous research shows that the MMNm usually peaks in
the 150–250 ms post-stimulus time range and is maximally
detected with gradiometers bilaterally at supratemporal sites
(Levänen et al., 1996; Näätänen et al., 2007). This was confirmed
for the current dataset by computing the grand-average MMNm
across all participants, all conditions, and both paradigms. This

2 http://www.fieldtriptoolbox.org/faq/how_can_i_test_an_
interaction_effect_using_cluster-based_permutation_tests

grand-average MMNm peaked in the combined gradiometer
sensors MEG1342 + 1343 (right) and MEG0232 + 0233 (left)
at ∼156 ms post-stimulus (with secondary peaks extending
into the 200–300 ms range). However, to account for possible
differences in peak latency and source location between
participants and between the various deviant types, the analysis
was extended to the 100–300 ms post-stimulus interval and
to also include the eight neighboring sensors around the peak
sensor in each hemisphere (Figure 1C). The final 2 × 9
sensors were located approximately over the superior temporal
lobe in each hemisphere. In this way, prior knowledge was
incorporated to increase the sensitivity of the statistical tests
without compromising their validity (Maris and Oostenveld,
2007). In that respect, it should be noted that the cluster-based
permutation framework does not allow inferences on the onset
or offset of specific effects nor of their exact spatial distribution
(Sassenhagen and Draschkow, 2019).

Before the main analysis, however, two sets of tests were
conducted to ensure the validity of the main analysis. To
this end, cluster-based permutation tests were run using
the parameters, sensors, and time window specified above
(except for the permuted labels, which were changed
according to the contrast of interest). First, the difference
between standard and deviant responses was assessed to
determine whether MMNm effects were present, i.e., whether
standard and deviant responses differed significantly in
the 100–300 ms post-stimulus range. These analyses were
carried out for each deviant type separately for musicians
and non-musicians and separately for the two paradigms.
Second, to establish that the possible MMNm effects were
potentially additive, nine pairwise comparisons were conducted
between relevant single and double deviants as well as
between relevant double and triple deviants (i.e., FI-FIL,
IL-FIL, LF-FIL, F-FI, I-FI, I-IL, L-IL, L-LF, F-LF). This was
done across all participants regardless of expertise level.
No Bonferroni-correction was applied to these secondary
validity checks.
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Results

To anticipate our results, significantly greater MMNm
subadditivity was found in musicians compared to non-
musicians for frequency-related features in the complex musical
multi-feature paradigm. These expertise effects were absent
from the simple control paradigm. Further details are reported
separately for the two paradigms below.

Complex musical multi-feature
paradigm

In the main experimental paradigm—the complex musical
multi-feature paradigm—all seven single, double, and triple
deviants elicited significantly larger responses than the
standards for musicians as well as for non-musicians (Table 2),
indicative of significant MMNm responses in all conditions
of this paradigm. Moreover, the triple deviant resulted in a
significantly larger MMNm than each of the double deviants
(Table 3). Except for a single comparison between the location
deviant and the double deviant combining location and
frequency, MMNms to all double deviants were significantly
larger than MMNms to single deviants, indicating that the
addition of an extra feature significantly increased the MMNm
amplitude.

The non-significant LF vs. L comparison as well as
the somewhat larger p-values for the comparisons between
responses elicited with and without the frequency component
(i.e., FIL vs. IL, FI vs. I) already indicated that a certain
extent of subadditivity was present specifically for the frequency
component. This is also suggested by the dissimilarity between
modeled and empirical responses in the first, third, and fourth
rows of Figure 2. The subsequent main analysis addressed
how this possible effect interacted with musical expertise
(see Supplementary Figure 1 for depictions of modeled
MMNm responses together with their constituent single-
deviant MMNms).

Indeed, the differences between modeled and empirical
responses were significantly greater in musicians than in
non-musicians for the FI and LF deviants (Table 4). This
demonstrated subadditivity was consistent with the integrated
processing hypothesis as formulated above. For the triple deviant
(FIL), this interaction effect approached significance whereas
it was absent for the IL deviant, which did not include the
frequency component. Consistent with this picture, follow-up
analyses of the significant interactions found simple additivity
effects only for musicians (Table 4 and Figure 2).

Simple control paradigm

In the simple control paradigm, significant MMNm effects
were also present for all deviant types (Table 2). Here,

TABLE 3 Potential additivity of the magnetic mismatch negativity
response (MMNm) response.

Complex musical
multi-feature paradigm

Simple control
paradigm

FIL > FI <0.0001*** <0.0001***

FIL > IL 0.0033** 0.0003***

FIL > LF <0.0001*** <0.0001***

FI > F <0.0001*** 0.0003***

FI > I 0.0203* 0.0005***

IL > I <0.0001*** <0.0001***

IL > L <0.0001*** <0.0001***

LF > L n.s. 0.0002***

LF > F <0.0001*** 0.0093*

Monte Carlo p-values from non-parametric, cluster-based permutation tests of
triple > double > single deviants. F: Frequency; I: Intensity; L: Location; *p < 0.0250;
**p< 0.0050; ***p< 0.0005 (uncorrected alpha). Analysis was conducted on the 100–300
ms post-stimulus time window on nine supratemporal combined gradiometer sensors in
each hemisphere using the maxsum test statistic over 10,000 random permutations.

additivity was more uniformly present in terms of significant
differences between all single and double deviants as well as
between the double deviants and the triple deviant (Table 3,
see Supplementary Figure 2 for depictions of modeled
MMNm responses together with their constituent single-
deviant MMNms). The main analysis showed no differences in
additivity between the two groups and across the various deviant
types (Table 4). This pattern also emerges from the plots of
event-related fields and scalp topographies in Figure 3.

Discussion

Expertise as integrated feature
processing

The current results provide the first neurophysiological
evidence consistent with more integrated processing of multiple
auditory feature deviants in musical experts compared to non-
experts. In a complex musical paradigm, magnetic mismatch
negativity responses (MMNm) elicited by double deviants
differing in multiple features (including frequency) were
lower than the sum of MMNm responses to the constituent
single-feature deviants. This selective subadditivity for the
musically relevant frequency feature was either absent or
present to a smaller extent in non-musicians, despite significant
MMNms in all conditions. In addition to the main finding of
expertise-related differences in frequency-related subadditivity,
the pattern of results between the two paradigms suggests that
these differences were context-specific. Specifically, the expertise
differences were absent when using identical sounds in a simpler
and less musically-relevant configuration as a control paradigm.

Following the additive model used extensively in
neurophysiological studies of multisensory interactions
(Besle et al., 2009) and adapted for studies of unimodal
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FIGURE 2

Modeled and empirical mismatch negativity (MMNm) in musicians and non-musicians in the complex musical multi-feature paradigm in
response to deviants differing in either frequency and intensity (FI), intensity and location (IL), location and frequency (LF), or frequency and
intensity and location (FIL). Modeled MMNms (dashed gray lines) correspond to the sum of the MMNms to two or three single deviants whereas
empirical MMNms (solid black lines) correspond to MMNms obtained for double and triple deviants. Comparing the plots for modeled and
empirical MMNms, significantly greater subadditivity was evident in musicians compared to non-musicians specifically in the double deviants
involving frequency (i.e., FI and LF). This expertise-by-additivity effect was marginally non-significant for the triple deviant (i.e., FIL). The
event-related field (ERF) plots depict the mean of the data from the peak sensor and eight surrounding sensors in each hemisphere [the peak
gradiometer pairs were MEG1342 + 1343 (Right) and MEG0242 + 0243 (Left)]. Low-pass filtering at 20 Hz was applied for visualization purposes
only. The topographical distributions depict the 100–300 ms post-stimulus time range for the difference waves between standard and deviant
responses, and p-values outside the boxes reflect simple effects of additivity separately for musicians and non-musicians.
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TABLE 4 Subadditivity of the magnetic mismatch negativity response (MMNm) response.

Complex musical multi-feature paradigm Simple control paradigm

(a)
Additivity-by-

Expertise

(b)
Subadditivity:
Modeled>Empirical

(a)
Additivity-
by-Expertise

(b)
Subadditivity:
Modeled>Empirical

Musicians Non-musicians Musicians Non-musicians

FI 0.0022# <0.0001*** n.s. n.s. (0.0027) (n.s.)

IL n.s. (0.0004) (0.0014) n.s. (n.s.) (0.0005)

LF 0.0005## <0.0001*** n.s. n.s. (0.0016) (n.s.)

FIL 0.0102 (<0.0001) (<0.0069) n.s. (0.0053) (n.s.)

Monte Carlo p-values from non-parametric, cluster-based permutation tests of (a) the interaction of additivity-by-expertise, and (b) simple effects of additivity for musicians and non-
musicians. F: Frequency; I: Intensity; L: Location; #p < 0.00625, ##p < 0.00125, (corrected alpha); ***p < 0.0005 (uncorrected alpha). Analysis was conducted on the 100–300 ms
post-stimulus time window on nine supratemporal combined gradiometer sensors in each hemisphere using the maxsum test statistic over 10,000 random permutations. p-values in
brackets are included for completeness but are not relevant due to statistically non-significant interaction effects.

feature integration (e.g., Levänen et al., 1993; Paavilainen
et al., 2001), we interpret these findings as support for the
integrated processing hypothesis by which musical expertise is
associated with enhanced processing by recruiting shared neural
resources for more complex representations of domain-relevant
stimuli. Importantly, our cross-sectional study design does
not allow us to determine whether musical training causally
induces more holistic processing or whether pre-existing
integration in processing benefits musicianship. A causal
interpretation, however, would contrast with formulations of
feature integration theory regarding feature processing as innate
or acquired through normal neurodevelopment and therefore
largely immutable (Treisman and Gelade, 1980; Quinlan,
2003). Findings that perceptual learning modulates attention,
thus determining whether specific features are considered for
binding (Colzato et al., 2006), have already questioned this
view. Indeed, Neuhaus and Knösche (2008) demonstrated more
integrative pitch and rhythm processing in musicians than
non-musicians manifested in expertise-related differences in
the P1 and P2 components. By extending these findings to
intensity and location and relating them to MMNm responses,
we consolidate the association of musical training with changes
in predictive neural processing (Skoe and Kraus, 2012).

Evidence for expertise-related effects on multimodal
integration of audiovisual and audiomotor stimuli has
steadily accumulated (Paraskevopoulos et al., 2012, 2014;
Paraskevopoulos and Herholz, 2013; Bishop and Goebl, 2014;
Proverbio et al., 2014, 2015; Pantev et al., 2015; Møller et al.,
2018; Sorati and Behne, 2020; Wilbiks and O’Brien, 2020).
While integration across modalities appears less prominent in
experts who may be better at segregating auditory features from
audiovisual compounds (Møller et al., 2018, 2021), our study
suggests that feature integration within the relevant modality
may simultaneously increase with training.

Consistent with a causal interpretation of our data in
the context of the integrated processing hypothesis, decreased

neural activity is observed for perceptual learning in audition
(Jäncke et al., 2001; Berkowitz and Ansari, 2010; Zatorre et al.,
2012) and vision (Schiltz et al., 1999; van Turennout et al., 2000;
Kourtzi et al., 2005; Yotsumoto et al., 2008). These changes
are sometimes associated with enhanced effective connectivity
between distinct cortical regions (Büchel et al., 1999). Enhanced
connectivity in auditory areas may also enable musicians to
rely more heavily on auditory than visual information in
audiovisual tasks (Paraskevopoulos et al., 2015; Møller et al.,
2018). This seems adaptive assuming that auditory information
is better integrated and thus potentially more informative
and relevant to musicians. Correspondingly, greater cortical
thickness correlation between visual and auditory areas have
been found in non-musicians compared to musicians (Møller
et al., 2021).

Potentially more integrative auditory processing may indeed
benefit musicians behaviorally. For instance, this may manifest
in terms of enhanced verbal and visual memory (Chan et al.,
1998; Jakobson et al., 2008). This would be consistent with
feature-based theories of visual short-term memory positing
that integrative processing allows experts to incorporate
multiple features into object representations, thus improving
discrimination of highly similar exemplars (Curby et al., 2009).

Frequency-related feature selectivity

Whereas MMNm subadditivity was present for double and
triple deviants comprising frequency, intensity, and location,
expertise only interacted with additivity for frequency-related
deviants. This aligns well with the different levels of musical
relevance embodied by these features, with frequency, intensity,
and location representing decreasingly common parameters of
syntactic organization in music. More specifically, frequency is
usually predetermined by composers in terms of unambiguous
notation of intended pitch categories, the spontaneous changing
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FIGURE 3

Modeled and empirical mismatch negativity (MMNm) in musicians and non-musicians in the simple control paradigm in response to double
deviants differing in either frequency and intensity (FI), intensity and location (IL), or location and frequency (LF), as well as to triple deviants
differing in frequency and intensity and location (FIL). Modeled MMNms (dashed gray lines) correspond to the sum of MMNms to two or three
single deviants whereas empirical MMNms (solid black lines) correspond to the actual MMNms obtained with double and triple deviants. In
contrast to the musical multi-feature paradigm, there were no significant differences in additivity between musicians and non-musicians when
comparing the modeled and empirical MMNms. The event-related field (ERF) plots depict the mean of the data from the peak sensor and eight
surrounding sensors in each hemisphere [the peak gradiometer pairs were MEG1342 + 1343 (Right) and MEG0242 + 0243 (Left)]. Low-pass
filtering at 20 Hz was applied for visualization purposes only. The topographical distributions depict the 100–300 ms post-stimulus time range
for the difference waves between standard and deviant responses, and p-values reflect simple effects of additivity separately for musicians and
non-musicians.
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of which would produce distinctly different melodies. Intensity
is subject to more flexible expressive performance decisions
(Palmer, 1996; Widmer and Goebl, 2004), and changing it
would usually not compromise syntax or melodic identity.
Sound source localization is relatively unimportant in the
professional lives of musicians and non-musicians, with the
possible exception of orchestral and choral conductors whose
more advanced sound localization skills are evident from
specialized neuroplasticity (Münte et al., 2001; Nager et al.,
2003). Given that our musician group, however, only comprised
a single individual with conducting experience, we can assume
that all members of this group had intensive pitch-related
training, that most members regularly used intensity as an
expressive means, but that sound source localization was overall
of secondary importance.

The prominence of pitch over intensity and location
may relate to the diverging potential for learning effects to
emerge within these features. For example, while learning
of frequency discrimination is ubiquitous (Kishon-Rabin
et al., 2001), adaptation to altered sound-localization cues is
only partial in the horizontal plane (Hofman et al., 2002;
Wright and Zhang, 2006). Indeed, recognizing and producing
pitch accurately is rehearsed intensively in musical practice
(Besson et al., 2007), and voice pedagogues regard pitch
intonation as the most important factor in determining
singing talent (Watts et al., 2002). Even beyond musical
contexts, musicians up-weight pitch compared to duration when
determining linguistic focus in speech (Symons and Tierney,
2021).

One possible interpretation following from the present
study is that musical learning may involve changes in feature
integration which, accordingly, would manifest most clearly
in the musically relevant and perceptually plastic pitch-related
domain. Indeed, musical pitch information has been shown
to be integrated with intensity (Grau and Kemler-Nelson,
1988; McBeath and Neuhoff, 2002) and timbre (Krumhansl
and Iverson, 1992; Hall et al., 2000; Lidji et al., 2009; Allen
and Oxenham, 2014), at least in parietal cortex (Sohoglu
et al., 2020), manifesting as nearly complete spatial overlap
in neural processing of frequency and timbre at the inter-
subject level (Allen et al., 2017). More broadly, the three
features included here exemplify both the “what” (frequency,
intensity) and “where” (location, intensity) streams of auditory
processing, which have been found to follow different patterns
of feature integration (Delogu et al., 2014).3 By mostly
recruiting participants with uniform expertise levels, many
previous studies have avoided systematic group comparisons

3 The coupling of frequency and intensity cues for determining the
identity of auditory objects may seem obvious. With regards to the
coupling of intensity and location cues, research by Hansen and Huron
(2019), for example, demonstrates how manipulating intensity can alter
perception of location and motion in physical space.

capable of demonstrating expertise-related differences in feature
integration.

In sum, although frequency, intensity, and location all have
relevance in music, frequency represents the most salient cue
for identifying and distinguishing musical pieces and their
component themes and motifs. Therefore, when musicians
show selectively affected frequency processing, we infer this
to be more likely due to their intensive training than to
innate predispositions (Hyde et al., 2009; Herdener et al.,
2010). Even if aspects of innately enhanced frequency-specific
processing are present, they are likely to require reinforcement
through intensive training, possibly motivated by greater success
experiences as a young musician. While these learning effects
may transfer to prosodic production and decoding (Besson
et al., 2007; Pastuszek-Lipińska, 2008; Lima and Castro, 2011),
they are of limited use outside musical contexts where sudden
changes in intensity or location are usually more likely than
frequency to constitute environmentally relevant cues.

Context-dependency of expert feature
processing

It is plausible that because superior frequency processing
is merely adaptive in relevant contexts, musicians showed
greater frequency-related feature integration for more complex,
musically relevant stimuli. This corresponds with stronger
MMNm amplitudes, shorter MMNm latencies, and more
widespread cortical activation observed in musically complex
compared to simple oddball paradigms (Lappe et al., 2016).
Crucially, “complexity” in this regard refers to degrees of
musical relevance (i.e., ecological validity) whereas increasing
the statistical complexity of the context in which deviants
are presented—for example, in terms of entropy—attenuates
mismatch responses for both musicians and non-musicians
(Quiroga-Martinez et al., 2020). Similarly, greater MMNm
amplitudes and shorter latencies typically emerge for spectrally
rich tones (e.g., realistic piano tones) compared to pure
tones that only rarely occur naturally (Tervaniemi et al.,
2000). Musical expertise, moreover, produces greater MMNm
amplitudes (Fujioka et al., 2004) and more widespread
activation (Pantev et al., 1998) for complex than for pure tones.
Enhanced processing of audiovisual asynchronies in musicians
is also restricted to music-related tasks, remaining absent for
language (Lee and Noppeney, 2014). Research in other expertise
domains has found comparable levels of domain-specificity (de
Groot, 1978; Ericsson and Towne, 2010).

Consistent with the context-specificity demonstrated here,
we have previously found in behavioral experiments that
musical stimuli activate more specific predictions in musicians
and thus evoke stronger reactions when expectations are
violated (Hansen and Pearce, 2014; Hansen et al., 2016). In
what may first appear to diverge from the current results, this
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previous work showed that expertise effects were sometimes
only detectable in stylistically simple conditions (Hansen and
Pearce, 2014). The notion of complexity does, however, not
directly translate to the current study in that the simple melodies
used by Hansen and Pearce (2014) were always substantially
more complex than the complex stimuli in the current MEG
paradigm. The psychological processes under investigation were
also much higher level (i.e., conscious expectations for discrete
pitches within a scale vs. pre-attentive, early neural responses
to mistuned pitches) and thus would have relied on (at least
partially) distinct neural mechanisms. Because the expertise-by-
complexity interaction already disappeared in a more implicit
task where listener uncertainty was inferred from probe-tone
ratings for multiple melody continuations, we would also not
expect this effect to transfer to early neural responses.

Observations that pitch and duration in melodies are
integrated when these dimensions co-vary—but not when they
contrast—and that such integration increases with exposure
(Boltz, 1999) suggest an interpretation of our results where
musicians are predisposed to capitalize more optimally upon
contextual cues. Note, though, that the two present paradigms
did not only differ on musical relevance, but also on stimulus
onset asynchrony, predictability of deviant location, and general
textural complexity. Although these differences between the two
paradigms do not compromise our main finding of expertise-
related subadditivity for frequency-related features, future
research should try to disentangle the individual contribution
of these factors.

Future research and unresolved issues

Some clinical studies have indeed measured neural
responses to multiple co-occurring auditory feature deviants
(e.g., Hay et al., 2015) and have found, for example, that MMNs
from double deviants combining duration and frequency–but
not their constitutive single-deviant MMNs–predict the time
to psychosis onset in individuals at high risk for schizophrenia
(Perez et al., 2014; Hamilton et al., 2022). These studies have,
however, not typically assessed MMN(m) additivity per se.
Thus, there may be an underused potential for extending the
methods and results applied and developed here to relevant
clinical populations in future work.

It is worth noting that the increased frequency-related
feature integration in musicians observed here seems
inconsistent with other behavioral and neuroimaging results.
For example, a behavioral study found that interference
of pitch and timbre was unaffected by expertise (Allen
and Oxenham, 2014). Conversely, findings that pitch and
consonants in speech produce sub-additive MMN responses
(Gao et al., 2012), but do not interact behaviorally (Kolinsky
et al., 2009), suggest that measures of behavioral and neural
integration do not always correspond (Musacchia et al.,

2007). Additionally, cross-modal integration often results
in increased rather than decreased neural activity (Stein,
2012). For instance, trumpeters’ responses to sounds
and tactile lip stimulation exceed the sum of constituent
unimodal responses (Schulz et al., 2003). When reading
musical notation, musicians dissociate processing of spatial
pitch in the dorsal visual stream from temporal movement
preparation in the ventral visual stream (Bengtsson and
Ullén, 2006) and show no neurophysiological or behavioral
interference of frequency and duration (Schön and Besson,
2002). This would suggest greater feature independence in
experts.

The Reverse Hierarchy Theory of perceptual learning
supports this view by asserting that expertise entails more
segregated representations of ecologically relevant stimuli, thus
providing access to more detailed lower-level representations
(Ahissar and Hochstein, 2004; Ahissar et al., 2009). This has
some bearing on musical intuitions. Specifically, segregated
processing would presumably better enable musicians to
capitalize upon the covariance of acoustic features, as
demonstrated for tonal and metrical hierarchies (Prince
and Schmuckler, 2014). Phenomenal accents in music are
indeed intensified by coinciding cues (Lerdahl and Jackendoff,
1983; Hansen, 2011), which may underlie musicians’ superiority
in decoding emotion from speech (Lima and Castro, 2011)
and segmenting speech (François et al., 2013, 2014) and music
(Deliège, 1987; Peebles, 2011, 2012). Given that individuals
with better frequency discrimination thresholds more capably
segregate auditory features from audiovisual stimuli (Møller
et al., 2018), it remains unknown whether musicians suppress
frequency-related feature integration whenever constituent
features are irrelevant to the task at hand. The interaction
of expertise with frequency-related feature-selectivity and
context-specificity observed here contributes crucial empirical
data to ongoing discussions of seemingly diverging findings
pertaining to integrated and independent musical feature
processing (Palmer and Krumhansl, 1987; Boltz, 1999; Waters
and Underwood, 1999; Tillmann and Lebrun-Guillaud,
2006).
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