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In humans, the presence of a neural mechanism triggered by anticorrelated

random-dot stereograms have been theorized based on animal models from

invasive studies, but have not been experimentally verified with the use

of electroencephalography. In this study, we employed a phase-consistent,

temporally modulated alternating depth stereogram stimulus, where we

created anticorrelation by inverting the contrast between the eyes. We

recorded the electrical response of the resulting brain oscillations of our four

participants using EEG in both the correlated and anticorrelated conditions

and whether they perceived depth movement. Our analysis found that the

correlated stereograms elicited a strong coherency at the even harmonics of

the depth alternation, and the anticorrelated stimulus created lower coherency

peaks at the first harmonic of the depth alternation, even when participants

did not report the depth movement to be visible. While both conditions

created a diminishment of spectral power in the beta band, we found

that the anticorrelated condition created increased spectral power in the

alpha band. We experimentally verified the presence of a neural mechanism

triggered by anticorrelated random-dot stereograms in the human brain with

our coherency analysis and that it would not have been detected with the

conventional spectral analysis due to the weakness of the response. We

hypothesize that the decreased beta oscillations are related to either visual

discomfort and visual attention to our stimulus, and that the increased alpha

oscillations in the anticorrelated condition is a response to the incorrect depth

information created by the stereogram.
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1. Introduction

Stereopsis is a very unique function of human vision:

while being non-essential for survival, it is one of the most

computationally intensive features (Brown et al., 2003) that not

only was discovered much later than other aspects of vision

(Crone, 1992), but it also develops the latest in life (Giaschi et al.,

2013). It is evolved to process binocular disparity information,

largely independently of the luminance of the presented visual

stimulus. A popular method to study this mechanism is with

the use of Bela Julesz’s random-dot stereograms (Julesz, 1971),

where once the observer’s visual system has solved the stereo

correspondence problem, a simple pattern may be perceived

(Scharstein and Szeliski, 2002). The dynamic correlated random-

dot stereogram (dCRDS) can be rendered using a computer, by

updating the locations of the dots in each subsequent frame.

This type of stimulus works with humans (Lehmann and Julesz,

1978) and primates, and the underlying neural circuitry is well

documented (Orban et al., 2006). Compared to the dCRDSs,

the use of anticorrelated dynamic random-dot stereograms

(dACRDS) where one eye’s image has the contrast inverted, is a

more subtle stimulus. The dACRDS does not create a sensation

of depth (Hibbard et al., 2014) in the normal sense when the

correlation alone is changed with the same depth information

preserved. Figure 1 shows the same depth information (encoded

as binocular disparity) rendered into a CRDS in the top and

an ACRDS in the bottom, but none of the observers asked

could identify the pattern shown in the ACRDS in the lower

part of the figure. In order for a dACRDS to provide any

sort of sensation of depth, special measures need to be taken:

for example, for it to produce reversed depth at all, the dot

density must be below 2% (Cumming et al., 1998); reversed

depth perception can also occur when a dACRDS disk is shown

surrounded by a dCRDS annulus in the central visual field

(Aoki et al., 2017), but this reverse perception of depth also

depends on the size of the gap between the two visual stimuli

(Asher and Hibbard, 2018). Further, depth perception can be

reversed when the temporal aspects of vision are exploited:

when dACRDS mixed with zero-disparity dCRDS dot noise has

been demonstrated to modulate (augment or degrade) depth

perception, when it is flashed very briefly in the central visual

field and the correlation turns during this short time (Zhaoping,

2021). Moving away toward the peripheral visual field where

the spatial resolution drops considerably, dACRDS has also

been demonstrated to elicit reversed depth perception when the

stimulus is intentionally projected into this area (Zhaoping and

Ackermann, 2018).

Neural response was detected for dACRDS visual stimuli

using functional magnetic resonance imaging (Preston et al.,

2008) in the visual cortex (V1, V3) and in the lateral occipital

area in humans. In primates, it was detected in the primary visual

cortex using extracellular single-unit recording (Cumming and

Parker, 1997).

FIGURE 1

Anaglyph stereograms, rendered to be viewed with red-green

glasses. Top: A correlated stereogram. Bottom: An

anticorrelated stereogram. Both of these stereograms have the

same horizontal bars encoded as depth information.

While the above studies have demonstrated inverse depth

perception with special measures taken, comparatively few

studies employed temporally modulated dACRDS visual stimuli,

and even fewer conducted psychophysics studies using dACRDS

as a depth movement stimulus.

In humans, the cortical response for binocular disparity has

previously been studied with Electroencephalography (EEG).

One particular approach for studying the neural mechanism

that processes it is called frequency tagging: this technique uses

a rendered stereogram that is temporally modulated, creating

some sort of alternation of depth. Allowing for the event-related

potential (ERP) generated at the onset of the visual stimulus

to settle, the steady-state visual evoked potential (SSVEP) is

analyzed further. In the SSVEP waveform, following a time-

frequency transform, the temporal modulation frequency (or

a harmonic of it) of the visual stimulus can be detected in

the frequency domain. The visual stimulus can be a single

frequency (Norcia and Tyler, 1984), or a combination of

multiple frequencies (Skrandies and Jedynak, 1999). When

multiple frequencies are used together, statistical analysis focuses

on the beating (intermodulational) products of the stimulus

frequencies (Baitch and Levi, 1988; Skrandies and Jedynak,

1999; Kamphuisen et al., 2008; Scherbaum et al., 2011; Norcia

et al., 2015). For example in Baitch and Levi (1988), the

absence of these intermodulational products was found to be
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correlated with “stereo blindness,” where the neural mechanism

responsible for processing binocular disparity never developed

due to untreated strabismus or amblyopia during childhood.

1.1. Signal processing in
frequency-tagged EEG

It is important to note, however, that most of the above

studies only analyzed their EEG waveforms in the time

and frequency domains. In practice, they sampled the EEG

waveforms using some sort of data acquisition device, and

marked the timestamp of the trials for each channel. After

they segmented their data knowing where the trials are in the

continuous recording, they executed the fast Fourier transform

(FFT) (Cooley and Tukey, 1965) on the segments for each

channel. Then, they computed the spectrum from each channel’s

data. The magnitudes of the Fourier components at given

frequencies is used to detect elevated spectral power, calculated

with the use of various noise models and statistical methods.

Unfortunately, this spectral analysis method is not very

sensitive. In order to detect the presence of a frequency-tagged

signal in the spectrum, its spectral powermust be higher than the

noise power. The probability of successful detection of the signal

is inversely proportional to the signal-to-noise ratio (SNR).

1.1.1. Phase space and phase coherency: How
the SNR is boosted at weak signals

Since all EEG signals are inherently very noisy, it is

worthwhile considering how the noise is contaminating our

signal. Some noise sources are easier to eliminate than others:

we can do the EEG recording in a Faraday-cage, we could

move away or turn off non-essential equipment to reduce the

electrical noise at the input. Some noise is originating from

the participant, and we can do something about it: we can tell

the participant not to move the arms, not to wiggle the foot,

or not to blink during the trials. Other participant-originated

noise sources, such as the presence of cardiovascular pulses or

irrelevant brain activity, are beyond our control. Eliminating

these would be catastrophic to the participant andmost probably

to the experimenter as well.

At this point, we should consider the noise problem from

one step further away. When calculating the spectrum of the

digitized EEG signal, the output of the FFT is a series of complex

numbers, with every complex number representing a Fourier

component corresponding to a temporal frequency. If we know

the sampling rate, and the temporal frequency we are looking

for, we can select the appropriate component and calculate the

spectral power by taking the magnitude of the complex number.

If it is higher than our noise threshold (see Figure 2A), then we

detected our signal in the frequency domain. The vast majority

of the frequency tagging studies cited above employ this method.

FIGURE 2

Signal detection methods with spectrum and coherency at a

particular temporal frequency. (A) The spectral power is

significantly elevated, when the vector reaches the red annulus.

The noise threshold is set by the radius of the gray circle. (B) The

signal is phase-locked to the stimulus, when the normalized

vector’s angle is inside the orange interval. The noise threshold

is determined by the gray interval.

As complex numbers can be represented as vectors, the

length of a chosen vector will determine the magnitude of the

spectral power, and the argument (angle) of the vector will

determine the phase of the component in question. At this point,

we can split the noise phenomena described above to two parts:

the amplitude noise (1) which changes the vector’s length; and

the phase noise (2) which changes the direction of the vector.

During the calculation of the spectrum both of these noise

sources are preserved, and they decrease the SNR, which in turn

reduces the probability of successful detection.

However, under the assumption that the temporal frequency

of the stimulus is constant and the signal propagation time inside

the brain is (near) constant across the trials, we can just keep

the phase angle of the vector, and ignore its amplitude. When

grouping several trials together, for example by segmenting the

trials and aligning them to stimulus onset, the vectors at a

temporal frequency that is phase-locked to the stimulus due

to an oscillation triggered by it will have similar phase angles

throughout. Additionally, if we take the confidence interval of

the phase angles across the trials instead of the phase angle values

themselves (this is shown in Figure 2B), and express them as a

fraction of the full circle, we will have a single metric, the phase

coherency, which tells us which frequency components will be

more likely phase-locked and thus related to the stimulus. A

phase coherency of 0 means that the phase of the frequency

in question is effectively random across trials, and a phase

coherency of 1 means that the frequency in question is always in

the exact same phase across trials. This method not only rejects

the amplitude noise component, but also diminishes the phase

noise component as well, thereby making this technique far

(more than 4 times) more sensitive than the spectral evaluation.

The first frequency tagging application of this

technique was done by Norcia and Tyler (1984), with
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parts of the signal processing being done using discrete

analog components.

In addition to being more sensitive, there are two additional

benefits of the coherency analysis: an artificially generated data

set is perfectly suitable for control trials (1), because in phase

space, the noise is always uniformly distributed by principle.

Any signal that is not phase-locked to the stimulus will have

a uniformly distributed random phase at each trial (and a

coherency value of 0 or at least a low value), irrespective of

what type of process generated it. Therefore, for the purpose

of the analysis, a simple white noise distribution can be used,

provided that the number of trials matches the number of trials

in the experimental data set. Any signal that will have a direct

relationship with the stimulus will have a greater coherency

value than what one would get from the artificially generated

data. However, this should be used with caution, because this

technique fails to detect incoherent oscillations caused by the

stimulus. Luckily, it is easy to create the spectrogram with

continuous wavelet transforms (Daubechies, 1990), as they are

readily available in common EEG analysis packages, such as

EEGLAB (Delorme and Makeig, 2004).

Furthermore, to improve the chance of detecting the signal,

the recorded trials from several participants may be pooled

together at the trial level to make a large data set (2): unlike

with the spectral power or time-domain analysis, there is no

risk of one powerful outlier driving the mean values of the

distributions, because the phase coherency analysis effectively

ignores the magnitudes of the Fourier components. In phase

space, every vector carries the weight of 1, because the vectors

are essentially normalized. However, due to the different signal

propagation times for each individual (Norcia and Tyler,

1984), pooling the data together at the trial level carries

the risk of having lower coherency values. Provided that the

stimulus frequency is low enough, the probability of detecting

the signal can actually be improved due to the lower noise

threshold created by the higher number of trials, making this

controversial type of data pooling a worthwhile trade-off in this

particular application.

The temporal waveform of the stimulus may be sinusoidal,

which will result in a single frequency after computing the

spectrum. However, if a non-sinusoidal periodic waveform is

used as a stimulus, the spectrum will contain several harmonics,

which we can turn to our advantage: in this case, if the phase

of the base harmonic of the stimulus is constant across trials,

so will be the phases of all the subsequent harmonics as well.

If a special type of square wave is used, where the two half-

periods are identical in length (as in, the signal having a “50%

duty cycle”), the signal will only contain the odd harmonics,

with the magnitudes of the harmonics strictly monotonically

decreasing for every subsequent harmonic. This way, a single

temporal frequency is enough for a frequency tagging study, as

it is possible to detect the presence of the harmonics themselves.

With the added redundancy of this method, we can investigate

the maximum bandwidth for a stimulus response, or estimate

the SNR based on how many harmonics were found, or even

find out whether any non-linear operation happens that may

be linked to processing as the stimulus signal travels toward the

EEG set through the participant’s brain.

Another key difference between coherency and spectrum

from a frequency tagging study point of view is that the

coherency describes the closeness of the relationship between

the neural response and the stimulus. A spectral peak, unlike a

coherency peak, may be less likely related to the stimulus, and

special measures need to be taken to eliminate false positives.

All the above, together with an example code is discussed in

greater detail in Derzsi (2021), where two different coherency

formulae are given for different situations. An explained

mathematical proof that describes the relationship between

common processing techniques, the SNR and the probability

of successful detection is given in the Appendix of Derzsi

(2017) and Derzsi (2020), with all of these being based on the

detection probability of a multi-channel phase shift-keyed signal

in communications engineering (Proakis and Salehi, 2008).

Additionally, also in Derzsi (2021), a separate formula is given

to calculate the number of trials required for a given SNR, which

may be useful in estimating how many trials will be needed for a

weak signal.

In this paper, we combine the use of temporally modulated

dCRDS, dACRDS with human electroencephalography (EEG).

We created a frequency tagging experiment similar in spirit

to Norcia and Tyler (1984) study, but with anticorrelated

stereograms.We aim to find out whether we will be able to detect

phase-locked activity in frequency tagged dACRDS in humans,

and compare how the signals relate to the conscious detection of

binocular disparity-defined depth movement.

2. Methods

We created a 3D display from two identical Dell P992

monitors that were built into a Wheatstone-stereoscope set-

up using commercially available mirrors and 3D-printed parts.

A schematic of this arrangement is shown in Figure 3. To the

participant, the fused image of the monitors was 45 cm away,

and covered 40-by-30 degrees visual angle. The monitors were

driven at a refresh rate of 100 Hz, and the random dots were

rendered with Psychtoolbox (Brainard, 1997; Pelli, 1997; Kleiner

et al., 2007) at 100 frames per second. Each dot was seen under

a 0.05 by 0.05 degree angle. The stereogram was rendered with

a 50% gray background. Fifty percent of the rendered dots were

black and 50% of the dots were white. The dot density was 0.16%,

and the mean luminance output was 57.5 cd/m2.

We recorded EEG from 4 adult participants (2 males, 2

females, age 23.5 ± 3.5 years) who had normal or corrected

to normal vision and verified to be able to perceive depth

from binocular disparity, in short, 5–6 s trials. The randomly
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interleaved two conditions were dCRDS and dACRDS that

showed a single alternating plane at 2.1 Hz, with identical (0.05◦)

positive and negative disparity values. The middle of the screen

had nonius lines and a fixation cross that were always rendered

with zero disparity.

Using EGI’s 128-channel Geodesic Sensor Net (Electrical

Geodesics, Inc, Eugene, OR, USA), we collected a total of 534

good trial recordings using dCRDS, and a total of 540 good trial

recordings from dACRDS. The signal has been preprocessed

using EGI’s proprietary software, Net Station. We analyzed the

waveforms for a single channel in the medial occipital area that

is nearest to the visual cortex.

Experimental design

The execution of the experiment was built up from 320 short,

5–6 s trials. To minimize the effect of fatigue, the participants

FIGURE 3

The stereoscopic display hardware made with computer

monitors and mirrors. The participant sits in front of this

assembly with the electrode cap attached to the head. As the

position of the head is critical with respect the display apparatus,

the participant had the head placed on the chin rest in front of

the mirror.

started each trial, and they could have a break as often as they

saw fit. Once a trial was started, a zero disparity dCRDS was

presented for a randomized time between 1 and 1.5 s.

Then, immediately afterwards, either a dCRDS or a dACRDS

was presented for a randomized time between 5 and 6 s. The

temporal modulation of the disparity plane was a 50% duty cycle

square wave, and the timing pattern is shown in Figure 4. The

participants were instructed to look at the screen, stay still, not

to blink and not to move the eyes or any muscle for the duration

of the trials. At the end of each trial, the participants were asked

whether there was depth movement detected perpendicular to

the screen plane in the stereogram presented in the trial.

The dCRDS presented was an alternating uniform depth

plane of +/− 0.05 degrees, and the alternation frequency was

2.1 Hz, or at every 48 frames. The dACRDS had the same

parameters, but the contrast was inverted on one screen. The

examples of a disparity grating for both types of RDS are

rendered in Figure 1.

2.1. EEG hardware and signal
pre-processing

The 128-channel electrode cap we used in the experiment

has silver-chloride electrodes, and each of them is coupled to

the participant using sponges that were soaked in a saline-based

electrolyte. All channels were kept below the impedance of 50

k�. Electrically, the system measured the voltage between a

reference electrode at the apex and each channel separately, and

the system operated at a sampling rate of 1 kHz. The timing

of the stimulus was annotated using a photodiode attached

to a dedicated area on the screen which was invisible to the

participant. After recording, the EEG signal was band-pass

filtered between 0.1 and 70 Hz, and a notch filter (48–52 Hz) was

applied to reduce interference from the 50 Hz mains hum. Then

FIGURE 4

After the participant started the trial, before t = 0, the trial had zero disparity random dots displayed for 1...1.5 seconds. Then at t = 0, the dots

had their disparity applied, exactly in the same frequency and phase in each trial. This alternating depth plane was displayed for a further 5-6

seconds.
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FIGURE 5

The depth movement perception ratio for each participant in each condition. The labels next to the data points are individual participant codes.

the continuous recording was segmented using the timing data

of the onset of the stereogram with disparity within the trials.

This way, the temporal depth alternation was exactly the same

frequency and in the same phase across all the trials. If a trial had

an eye blink or eye movement artifact or more than 13 channels

were noisy or it was marked as a bad trial during recording for

any reason, it was excluded from further analysis. There was a

time limit of 60 min per recording session for each participant.

2.2. Data processing and analysis

After exporting the preprocessed data from the EEG

software, we processed and analyzed the data further using our

own script in Matlab and with EEGLAB (Makeig et al., 1996). In

each recorded good trial, we took the Fast-Fourier Transform of

5 s of the EEG signal from the moment the alternating grating

had appeared on the screen, and we calculated the inter-trial

coherency (Norcia and Tyler, 1984; Derzsi, 2021) across trials

for the spectrum between 1 and 15 Hz.

We also imported the data to EEGLAB, and generated

the time-frequency transforms of trials, using the built-in

continuous wavelet transform (Daubechies, 1990) method. We

also used EEGLAB’s built-in statistical functions for the time-

frequency transform.

2.3. Statistics

For each condition, we analyzed the inter-trial coherency of

the signal of a single channel measured at the medial occipital

area at the first six harmonics (2.1, 4.2, 6.3, 8.4, 10.5, and 12.6

Hz) of the depth alternation frequency of the stereogram. We

compared the inter-trial coherency distributions of the EEG

trials against the noise threshold line. This line was generated

using a process similar to bootstrapping in statistics: we created

10,000 synthetic data sets containing white noise for the same

number of trials as our data, calculated the coherency values, and

took the 95th percentile of the resulting distribution for every

frequency. While the probabilities can be computed precisely

using the ratio of howmany coherency values are above the noise

threshold and how many were used in the analysis, as a rule of

thumb, if a coherency value is above the noise threshold at a

harmonic of the stimulus frequency, it has a significance level

of smaller than 0.05.

In EEGLAB, we used the built-in statistical thresholding on

the time-frequency transform. The threshold was also set to be

the same probability as our analysis, 0.05.

3. Results

3.1. Psychophysics

The proportion of trials where depth movement was

detected is shown in Figure 5. Participants AT and LN detected

the depth movement in almost every (97.5 and 98.75%,

respectively) trial in the correlated condition, but did not see

depth movement in almost any (1.8 and 4.37%, respectively)

trial. Participant SA saw some depth movement in the correlated

condition, but it is below chance (33.75%), and reported

absolutely no depth movement in the anticorrelated condition

at all. Participant AO also reported depth movement below

chance (31.25%) in the correlated condition, and similarly this

participant reported the highest proportion of depth movement,

but still below chance (25.62%) in the anticorrelated condition.

3.2. Coherency of the harmonics of the
stimulus alternation frequency

While there are individual variations, we detected the second

and fourth harmonics of the depth alternation frequency for all

participants in the correlated condition. The coherency values at

these frequencies range between 0.2 and 0.5. For the participants

who are more sensitive (see the top plots in Figure 6 for
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FIGURE 6

Coherency values from participant SA. The stars above the

peaks indicate successful detection of the harmonic of the

stimulus frequency. Note that the coherency plots are in phase

space, and that they are not showing spectrum: a higher

coherency value imply a stronger relationship to the stimulus.

The “Noise threshold” is created with 10,000 data sets having the

same number of trials, with the trials containing only white

noise. The line shows the 95th percentile of the coherency

values created from these synthetic data sets.

participant SA and Figure 7 for participant LN) the coherency

values are higher, and more harmonics are detected than for our

less sensitive participants (top plots of Figure 8 for participant

AT and Figure 9 for participant AO).

When pooling the data together at a trial level (Figure 10, top

plot), the second, fourth and sixth harmonics are significantly

elevated. Despite the overall coherency values being lower, the

coherency peaks look more marked, because the noise threshold

fell from approximately 0.15 to 0.08.

In the anticorrelated condition, while the noise threshold

is nearly identical due to the similar number of trials being

used, the coherency values are marginally lower than for the

FIGURE 7

Coherency values from participant LN. The stars above the

peaks indicate successful detection of the harmonic of the

stimulus frequency. Note that the coherency plots are in phase

space, and that they are not showing spectrum: a higher

coherency value imply a stronger relationship to the stimulus.

The “Noise threshold” is created with 10,000 data sets having the

same number of trials, with the trials containing only white

noise. The line shows the 95th percentile of the coherency

values created from these synthetic data sets.

correlated condition. For the more sensitive participants (in the

bottom plots of Figure 6 for participant SA and Figure 7 for

participant LN), the first harmonic is detected in both cases,

and one higher harmonic has a weak coherency value. From

the participants with worse SNR, we either could not detect

the signal at all (Figure 8, bottom plot), or it was borderline

(Figure 9, bottom plot).

While the pooled data (see Figure 10’s bottom plot) also

show a set of reduced coherency values, the presence of the first,

second and third harmonics of the depth alternating frequency is

being detected. There is also a band ofmarkedly lower coherency

values, between 9 and 11 Hz.
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FIGURE 8

Coherency values from participant AT. The stars above the peaks

indicate successful detection of the harmonic of the stimulus

frequency. Note that the coherency plots are in phase space,

and that they are not showing spectrum: a higher coherency

value imply a stronger relationship to the stimulus. The “Noise

threshold” is created with 10,000 data sets having the same

number of trials, with the trials containing only white noise. The

line shows the 95th percentile of the coherency values created

from these synthetic data sets.

Interestingly, there seem to be other frequencies, especially

in the anticorrelated condition (around 3 Hz, 7 Hz, and others

in the pooled data) where the calculated coherency values are

above the level of the noise distribution which are close to, but

not at the harmonics of the signal.

3.3. Time-frequency transform of the
trials

In Figures 11, 12, we plotted the event-related spectral

perturbations (ERSPs) in the top plots, and the inter-trial

FIGURE 9

Coherency values from participant AO. The stars above the

peaks indicate successful detection of the harmonic of the

stimulus frequency. Note that the coherency plots are in phase

space, and that they are not showing spectrum: a higher

coherency value imply a stronger relationship to the stimulus.

The “Noise threshold” is created with 10,000 data sets having the

same number of trials, with the trials containing only white

noise. The line shows the 95th percentile of the coherency

values created from these synthetic data sets.

coherency (ITC) in the bottom plots for our data, pooled at

a trial level. Additionally, by setting EEGLAB’s bootstrapping

method, we masked the statistically insignificant parts in the

plots. In both conditions, we see a slight, but significant, 1 dB

decrease of spectral power in the 13–30 Hz (beta) band. For

the anticorrelated condition (Figure 12, top plot), there is also

a similarly small, but also significant, 1 dB elevation in the 8–12

Hz (alpha) band.

Further, in the correlated condition of the pooled data (see

Figure 11), we see that the ERSPs in the temporal frequencies of

2 and 4 Hz increased, which corresponds with the elevated inter-

trial coherency at the second and fourth harmonics of the depth
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FIGURE 10

Coherency values of the pooled trials from four participants.

The stars above the peaks indicate successful detection of the

harmonic of the stimulus frequency. Note that the coherency

plots are in phase space, and that they are not showing

spectrum: a higher coherency value imply a stronger

relationship to the stimulus. The “Noise threshold” is created

with 10,000 data sets having the same number of trials, with the

trials containing only white noise. The line shows the 95th

percentile of the coherency values created from these synthetic

data sets.

alternation frequency of the stimulus. Interestingly, unlike with

our analysis method, EEGLAB failed to detect the coherency

of the second harmonic of the stimulus in the anticorrelated

condition (Figure 12, bottom plot).

4. Discussion

4.1. Coherency analysis

There is a strong coherency measured in the correlated

condition. Since this stimulus is very similar to what was in

Norcia and Tyler’s (1984) study, we expected even stronger

coherency values (0.8–1) at the second harmonic of the signal. In

our analysis, we detected generally lower coherency values, but

at more harmonics. We attribute this difference to the way the

data was processed. Norcia and Tyler used discrete filters on the

actual signal itself for the second harmonic of the stimulus before

recording, whereas we extracted the same data using our own

signal processing techniques. Since our recording bandwidth

was much higher, we found reduced coherency values for several

even harmonics for the correlated condition. Since the disparity

modulation was essentially a 50% duty cycle square wave,

we know that spectrum of the modulated disparity stimulus

signal only contained odd harmonics. Therefore, we suggest

that the coherency values measured at the even harmonics

are the result of temporally modulated activity in the human

visual system, and the odd harmonics present in the EEG

recordings are either some intermodulational products, or

simply the frequency tagged signal passing through the human

visual system.

The effect of pooling is also visible: for example, the mean

coherency value of the second harmonic is 0.34 across our

participants, and a mean noise threshold of 0.15 yields an SNR

of about 2.6 in the coherency data for the correlated condition.

While pooling across participants reduced the coherency value

at this harmonic from 0.34 to 0.29, we have observed a

considerable reduction of the noise threshold, from 0.15 to 0.08.

This yields a coherency SNR of 3.6, which is almost a 40%

increase. In this case, pooling across trials was a worthwhile

trade-off especially for the anticorrelated condition, where we

were only able to detect a harmonic in just 3 of the 4 participants.

Most probably we would have been able to detect the signal in

all our participants, if we had more trials in the experiment.

However, this was not possible due to participant fatigue, and

due to hardware limitations such as the saline-based electrolyte

drying out in the electrode cap. Additionally, the anticorrelated

condition’s frequency tagged signal is extremely weak, which

makes the coherency values at the harmonics very low (shown

in Figure 10’s bottom plot), it would have been impossible to

detect the frequency tagged signal with the traditional spectral

analysis with the same number of trials. The absence of any

relevant harmonics in the time-frequency plots in Figure 12

further confirms this.

4.2. Signal-to-noise ratio types

Calculating the SNR directly from the coherency data is

unfair: the EEG signal has been previously filtered; trials marked

as “bad” were selectively rejected; and only a part of each trial

was used in the analysis where we knew that the frequency-

tagged signal was presented. All these measures improve the

chance of detecting the signal, and calculating the SNR after

these steps gives a far more optimistic value than what it actually

is in the raw recording.
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FIGURE 11

The EEGLAB output for our pooled data, for the correlated condition: The ESRP plots show relative spectral power density changes as a function

of time, and the ITC plots show the coherency values as a function of time. The green area is a mask to hide statistically insignificant data. The

band at the low frequencies in both plots show a strong neural response at the second and fourth harmonics of the stimulus. The ESRP plot also

shows a marked decrease in the beta (13–30 Hz) band.

A much fairer comparison is to estimate the SNR in the

time domain using the minimal number of trials required for

detection, as it includes every possible noise source the EEG

set can pick up. Based on our data, we can approximate that

around only 60–80 trials are required to detect the second

harmonic in the correlated condition, and around 120–150

trials are required to detect the signal in the anticorrelated

condition. Therefore, we can estimate (Derzsi, 2021) that

the time-domain SNR is around 0.5 (the signal is about

half the power of noise) for the correlated condition, and

around 0.1 (the signal is ten times below the noise) for the

anticorrelated condition at the second harmonic of the stimulus

frequency. For contrast, spectral evaluation even with taking

the phase angles into account, would need approximately

100 trials for the correlated, and around 500 trials for the

anticorrelated condition to achieve a 0.05 significance level.

The SNR values are far smaller for every subsequent harmonic,

as the Fourier-transform of the depth alternation waveform

has strictly monotonically decreasing amplitudes for subsequent

harmonics. These weak harmonics potentially require thousands

of trials to be successfully detected with the conventional spectral

analysis, and would be practically impossible to achieve with a

single participant in the same experiment.

4.3. “Birdie” signals

In engineering, the term “birdie” refers to an unrelated,

parasitic oscillation in the system. In our EEG study, the signals

with lower coherency peaks between the harmonics that are

above the noise threshold are considered birdies. These signals

may have originated from a separate phase-locked oscillation

related to our stimulus or occurred by chance. We indeed

observed similar peaks at the synthetic noise trials as well but

with much lower magnitudes. We speculate that the presence of

these peaks between the two harmonics, especially in the pooled

data, is either the signal passing through partially processed by

the human visual system, or is being generated by the means

of intermodulation originated from the non-linear nature of

the medium the signal is traveling through. Some other peaks

are more difficult to explain: in Figure 10, we can see these

peaks at 6.2 Hz in the correlated condition and at 3 Hz in the

anticorrelated condition. We hypothesize that some of these

non-harmonic “birdie” frequencies are either intermodulational

products, or evidence for some sort of synchronized oscillation

in the human visual system originated from a processing

mechanism we do not yet understand. Analyzing the data

using wavelet transforms with EEGLAB (see the ERSP plot in
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FIGURE 12

The EEGLAB output for our pooled data, for the anticorrelated condition: The ESRP plots show relative spectral power density changes as a

function of time, and the ITC plots show the coherency values as a function of time. The green area is a mask to hide statistically insignificant

data. While the ESRP plot shows the marked decrease of spectral power in the beta (13–30 Hz) band, it also shows a marked increase of spectral

power in the alpha (8–12 Hz) band. As ITC plot shows nothing significant, these oscillations do not appear to be phase-locked to our visual

stimulus.

Figure 12) clearly shows a significant level of oscillations in

the alpha (8–12 Hz) band emerging from time zero onwards

in the anticorrelated condition. This may suggest that the

oscillation, while being incoherent, is related to the presented

stimulus. Perhaps we are measuring the two sides of the same

system: a series of incoherent oscillations that may contain some

coherent components. Interestingly, the alpha band has one of

the lowest coherency values in both plots of Figure 10, which

further suggests that its presence might be the result of the

visual stimulus.

4.4. ERSPs and EEGLAB’s coherency

In the correlated condition, we can see that the second (4Hz)

and fourth (8 Hz) harmonic of the signal’s ERSP is significantly

increased. Based on this, along with the increased coherency

values, we suggest that this is due to the disparity alternation in

the stimulus, i.e., the harmonics of the “tagged” frequency. In

the anticorrelated condition, the time-frequency analysis shows

a significantly increased ERSP in the alpha (8–12 Hz) band.

However, it is important to consider that EEGLAB’s plotting

function uses a relatively broad, 1 Hz frequency resolution,

even if it uses continuous wavelet transform instead of FFT.

For comparison, our coherency analysis used a higher, 0.2 Hz

frequency resolution. Since the harmonics themselves are very

precisely set in frequency, using a lower frequency resolutionwill

result in the lowering of the spectral (and through the spectrum,

the coherency) peaks, and this is the reason that EEGLAB does

not show several harmonics in the time-frequency transform

of the pooled data to be significantly elevated in the correlated

condition, and it shows no significant results at all for the

harmonics in the anticorrelated condition. However, the two

results of the two independent analysis methods are similar, and

it does not change our findings.

4.5. Di�erences between reported depth
movement and signal detection in the
EEG recordings

Based on the psychophysics data shown in Figure 5 and

the principles of frequency tagged EEG processing, one would

imply that there is a proportionality between the likelihood
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of depth movement perception and the strength of coherency.

This is not the case. Participant LN and participant AT almost

exclusively saw depth movement in the correlated condition.

While we successfully detected the frequency tagged signal

in LN’s recordings in the anticorrelated condition, they were

practically absent in AT’s data. We believe this is due to a

challenge every EEG experimenter has to face day-by-day: AT

had considerably longer hair than LN, which made it more

difficult to maintain a low electrode impedance throughout the

experiment, which in turn reduced the SNR in the recording.

When comparing the peak coherency values of the second

harmonic between LN’s (see Figure 7 top plot at 4.2 Hz: 0.54)

and AT’s (see Figure 8 top plot at 4.2 Hz: 0.33) data at the second

harmonic, we can see that AT’s values are marginally smaller, but

the noise threshold is around the same, approximately 0.15. We

imply that this relatively small drop in the effective SNR made

the signal undetectable in the anticorrelated condition. Had we

obtained more trials with participant AT, there would have been

a good chance that the signal would have been detected in the

anticorrelated condition as well.

Participant SA worked differently: this participant did

not detect depth movement above chance in the correlated

condition, and unlike any other participant, did not detect

depth movement in the anticorrelated condition at all. At the

same time, SA’s coherency plots (see Figure 6) clearly show

that the signal was detected in both cases, implying that SA’s

visual system did indeed process the frequency tagged signal.

We believe that this participant has been overly cautious when

giving depth perception responses, and this would explain the

lower proportion.

Then, there is participant AO. This participant responded

with the lowest proportion at the correlated condition, and the

highest score at the anticorrelated condition. Both of them,

below chance. Participant AO’s coherency responses were weak

(see Figure 9, top plot at 4.2 Hz: 0.33) at the second harmonic’s

frequency in the correlated condition, and shows it to be barely

significant (see Figure 9, bottom plot, at 2.1 Hz: 0.155) at the

base harmonic of the temporal modulation frequency in the

anticorrelated condition. We believe that this participant did

not pay due attention to the experiment and at the task at

hand, and the psychophysics responses were below chance

due to the general lack of enthusiasm from the participant’s

side. At the same time, the coherency data clearly shows

that the signal did make the way through the visual system,

although with considerably more attenuation than with every

other participant.

4.6. Broader implications

While the correlated condition essentially replicates the

findings of Norcia and Tyler (1984), the choice of the waveform

enabled us to estimate the maximum temporal bandwidth of

human stereopsis. It is considerably slower than the flicker

fusion threshold (Landis, 1954) or luminance-based apparent

motion detection thresholds (Tyler, 1973; Anstis et al., 2000), but

due to the complexity of stereopsis in the human visual system,

this is not a surprise. For the correlated condition, where the

sixth harmonic (12.6 Hz - period time: 79.4 ms) was detected

would imply that the peak disparity angular velocity where

neural response could be detected is 1.26 degrees per second.

For the anticorrelated condition, where only the third harmonic

(6.3 Hz–period time: 158.7 ms) was found, the peak disparity

angular velocity where neural response could be detected is

considerably lower, 0.63 degrees per second. In reality, these

peak velocities will probably be higher, and will likely depend

on the actual disparity magnitude as well - in a similar way to

apparent motion.

Depth motion in temporally modulated dACRDS was

generally not consciously detected by our participants. This is

despite the low dot density and net luminance output constancy.

Perceptually, both to the experimenter and the participants,

dACRDS felt like it forces convergence on vision, potentially

rendering the monitors at a small positive (far away) disparity,

and there was no distinct feeling of depth pulsation one would

get with the dCRDS. Sadly there was no vergence-capable eye

tracker employed during the experiment, which is why this was

not reported in the results.

Another interesting and unexpected finding is the presence

of alpha oscillations in the anticorrelated condition. These

oscillations are difficult to trace because they are not produced

by a single source in the brain (Nunez et al., 2001), but they

have been shown to be involved when optical illusions are

presented (Lange et al., 2013, 2014). If we consider that a

dACRDS as a type of stimulus that one should never see in

a natural environment and that it triggers an inverse response

in the disparity-sensitive neurons in the visual cortex, then

one can infer that this erroneous triggering will result in the

human visual system trying to restore the malformed signal

it was supplied with. From this point of view, the dACRDS

is in fact an optical illusion, because it can create a false (in

some cases, inverted depth) perception. With this in mind,

the presence of alpha oscillations may be considered as an

indicator of an “error correction” process in response to the

dACRDS: these oscillations have been shown to be related to

an inhibitory process (Klimesch et al., 2011; Klimesch, 2012),

which periodically resets the visual information processing

pathway. In computer networks, this is a well-known feature

(Tanenbaum, 2002), and is implemented in a large number

of different protocols to prevent the collision of messages on

the same channel or to prevent the hosts from falling out of

sync with each other. With the incomplete information that

the dACRDS carries, perhaps part of the human visual system

is forced into the human stereopsis equivalent of “connection
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reset” state for the duration of the stimulus. However, even

for the visual system, the same oscillation may represent

simultaneous and opposite processes from different areas in the

brain (Clayton et al., 2018), which will make further analysis

of this phenomenon near-impossible. Perhaps, in a real life

situation, this anomalous nature of the stimulus is one of the

reasons why diamonds are considered to be so mesmerisingly

shiny: the shape of the crystal can reflect light at very narrow

angles, making it possible to project a beam into one eye, with no

beam projected into the corresponding visual angle in the other

eye. The effect is more powerful when the crystal is illuminated

from a spot light and presented with a dark background, which

essentially creates the anticorrelation.

Unlike with alpha oscillations, both conditions also seem to

have created a diminishment of spectral power (see Figure 12,

top plot) in the Beta band. Without other studies replicating

this finding, the presence and reason for this oscillation

remains to be unanswered. It may be related to visual

discomfort (Cho et al., 2012), or visual attention (Wróbel,

2000; Kamphuisen et al., 2008). Since the visual stimulus in

this experiment was rather more functional than aesthetic,

it is impossible to tell from this data which played a more

significant role. Anecdotally both the experimenter and all

the participants reported the visual stimulus as boring, dull

and generally numbing. Unfortunately this is unavoidable in

order to create a visual stimulus which only carries a singular

visual cue.

5. Conclusion

In this paper, we have shown that a uniform plane

of binocular disparity presented in the form of a dynamic

correlated random-dot stereogram can elicit a strong enough

response in the human visual system, that even the sixth

harmonic of the temporal modulation frequency can be

detected with the EEG frequency-tagging method. When

the temporally modulated dynamic anticorrelated stereogram

is presented at the same temporal frequency, the response

measured in the human visual system diminished greatly,

but is still detectable when the inter-trial coherency of

electroencephalogram is analyzed.

Based on the presence of coherent oscillations at the

harmonics of the stimulus frequency, and the incoherent

oscillations in the alpha band emerging from the onset of

the stimulus, we suggest that we have detected a response for

anticorrelated dynamic random-dot stereograms in the human

visual system.
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