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Recordings of complex neural population responses provide a unique

opportunity for advancing our understanding of neural information processing

at multiple scales and improving performance of brain computer interfaces.

However, most existing analytical techniques fall short of capturing the

complexity of interactions within the concerted population activity. Vine

copula-based approaches have shown to be successful at addressing

complex high-order dependencies within the population, disentangled from

the single-neuron statistics. However, most applications have focused

on parametric copulas which bear the risk of misspecifying dependence

structures. In order to avoid this risk, we adopted a fully non-parametric

approach for the single-neuron margins and copulas by using Neural

Spline Flows (NSF). We validated the NSF framework on simulated data of

continuous and discrete types with various forms of dependency structures

and with di�erent dimensionality. Overall, NSFs performed similarly to existing

non-parametric estimators, while allowing for considerably faster and more

flexible sampling which also enables faster Monte Carlo estimation of copula

entropy. Moreover, our framework was able to capture low and higher

order heavy tail dependencies in neuronal responses recorded in the mouse

primary visual cortex during a visual learning task while the animal was

navigating a virtual reality environment. These findings highlight an often

ignored aspect of complexity in coordinated neuronal activity which can be

important for understanding and deciphering collective neural dynamics for

neurotechnological applications.

KEYWORDS

neural dependencies, higher-order dependencies, heavy tail dependencies, vine

copula flows, Neural Spline Flows, mixed variables

1. Introduction

Coordinated information processing by neuronal circuits in the brain is the basis of

perception and action. Neuronal ensembles encode sensory and behavior-related features

in sequences of spiking activity which can exhibit rich dynamics at various temporal

scales (Gao and Ganguli, 2015). Acquiring an understanding of how multivariate

interactions in neural populations shape and affect information transmission is not only

important for neural coding theory but will also inform methodological frameworks for
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clinically translatable technologies such as Brain Computer

Interfaces (BCIs). Both of these research programs have

enjoyed a surge of activity as a result of recent advances

in imaging technologies (Chen et al., 2012) and high-yield

electrophysiology both for human (McFarland and Wolpaw,

2017) and animal studies (Jun et al., 2017). Brain Computer

Interfaces can mediate neural signal transduction for moving

prosthetic limbs or external robotic devices in paralyzed

patients or they can aid communication with patients suffering

from locked-in syndrome (Chaudhary et al., 2016). Therefore,

successful clinical use relies on accurate reading and relaying

of information content transmitted via population spiking

responses. Doing so can be quite challenging from a data analytic

perspective as moderate to high-dimensional brain activity can

be considerably complex, exhibiting non-trivial multivariate

neural dependencies (Hurwitz et al., 2021). Moreover, the

resulting behavioral output variables (e.g., limb movement)

might display vastly different statistics to neural variables like

spike trains or event-related potentials (ERPs). These challenges

highlight the importance of developing novel analytical tools

that can handle the complexity within neural population activity

and its relation to behavior. Such tools should also have broad

applicability over different types of data (e.g., spike counts, local

field potentials, EPRs).

The present need for novel methods stems from the fact that

the majority of past work on neural dependencies has focused

on pairwise shared response variability between neurons, also

known as noise correlations (Zohary et al., 1994; Brown et al.,

2004; Moreno-Bote et al., 2014; Kohn et al., 2016). Neural

responses are known to exhibit considerable variability even

when repeatedly presented with the same stimulus, but this

might be part of collective dynamical patterns of activity in

a neural population. The typical assumption in this line of

research is that the noise in neural responses is Gaussian,

and thus, firing rates are modeled with multivariate normal

distributions where a certain covariance matrix specifies all

pairwise linear correlations (Averbeck et al., 2006; Ecker

et al., 2010). While this approach may provide a reasonable

approximation for correlations in coarse time-scales, its validity

can be disputed for spike-counts in finer time-scales. First of

all, real spike counts are characterized by discrete distributions

and they exhibit a positive skew instead of a symmetric shape

(Onken et al., 2009). Also, spike data do not usually display

elliptical dependence as in the normal distribution but tend to

be heavy tailed (Kudryashova et al., 2022), which geometrically

translates to having probability mass concentrated on one of the

corners. Finally, although themultivariate normal distribution is

characterized by only second-order correlations, recent studies

have indicated that higher order correlations are substantially

present in local cortical populations and have a significant effect

on the informational content of encoding (Pillow et al., 2008;

Ohiorhenuan et al., 2010; Yu et al., 2011; Shimazaki et al., 2012;

Montangie and Montani, 2017) as well as on the performance

of decoding models (Michel and Jacobs, 2006). Therefore,

dissecting the structure of multivariate neural interactions is

important to the study of neural coding and clinical applications

such as BCIs that rely on accurate deciphering of how neural

activity translates to action. This calls for an alternative approach

that goes beyond pairwise correlations.

A statistical tool which is suited for the study of

multivariate dependencies is that of copulas. Copula-based

approaches have enjoyed wide usage in economics for

modeling risk in investment portfolios (Jaworski et al.,

2012), but have received limited attention in neuroscience.

Intuitively, copulas describe the dependence structures between

random variables, and in conjunction with models of the

individual variables, they can form a joint statistical model

for multivariate observations. When observations come from

continuous variables their associated copulas are unique,

independent from marginal distributions, and invariant to

strictly monotone transformations (Faugeras, 2017). However,

data in neuroscience research are often discrete (e.g., spike

counts) or they may contain interactions between discrete and

continuous variables with vastly different statistics (e.g., spikes

with local field potentials or behavioral measurements such as

running speed or pupil dilation). Despite the indeterminacy

of copulas in these cases, they are still valid constructions

for discrete objects and mixed interactions and one can

apply additional probabilistic tools to obtain consistent discrete

copulas (Genest and Nešlehová, 2007). Previous work has

successfully applied copula-based methods to discrete or mixed

settings (Song et al., 2009; de Leon and Wu, 2011; Panagiotelis

et al., 2012; Smith and Khaled, 2012; Onken and Panzeri,

2016) using copulas from parametric families that assume a

certain type of interaction. Although parametric models are

a powerful tool for inference, their application can bear a

risk of misspecification by imposing rather rigid and limiting

assumptions on the types of dependencies to be encountered

within a dataset with heterogeneous variables or multiscale

dynamical processes. This risk is especially amplified for

dependencies between more than two variables as available

multivariate copulas are quite limited in number and assume a

particular type of dependence structure for all variables which

can ignore potentially rich interaction patterns. As the set of

commonly used bivariate parametric copulas is much larger, a

common alternative is to decompose multivariate dependencies

into a cascade of bivariate copulas organized into hierarchical

tree structures called vines or pair copula constructions (Aas

et al., 2009). Nodes of the vines correspond to conditional

distributions and edges correspond to copulas that describe their

interaction. This formulation allows for a flexible incorporation

of various dependence structures in a joint model. Previous

studies that employed vine copulas in mixed settings used

parametric models (Song et al., 2009; de Leon and Wu, 2011;

Panagiotelis et al., 2012; Smith and Khaled, 2012; Onken and

Panzeri, 2016). For the present study, given the aforementioned
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intricacies of neuronal spiking statistics, we aim to explore

the potential of non-parametric methods as a more flexible

alternative for estimating discrete and continuous vine copulas.

Existing non-parametric approaches have focused on kernel-

based methods (Racine, 2015; Geenens et al., 2017) or jittering

and continuous convolutions with specified noise models to

obtain pseudo-continuous data (Nagler et al., 2017; Schallhorn

et al., 2017).

Another model-free method that shows promise is that

of normalizing flows, a class of generative models for density

estimation that allow for flexible sampling (Rezende and

Mohamed, 2015; Papamakarios et al., 2021). Recently, some

authors have attempted to employ normalizing flows for non-

parametric modeling of copulas using simulated and standard

benchmark datasets (Wiese et al., 2019; Kamthe et al., 2021).

An application of these models to recordings from neural

populations is still missing and has the potential to shed light on

the structure of coordinated neural activity, thereby potentially

improving BCIs that take this structure into account.

In this study, we aimed to conduct a thorough investigation

into flow-based estimation of vine copulas with continuous

and discrete artificial data in various settings with different

but known dependence structures and number of variables.

Furthermore, we sought to demonstrate the potential of this

framework to elucidate interaction patterns within neural

recordings that contain heavy tails and extend beyond bivariate

dependencies. For this reason, we chose to investigate neural

responses in the mouse V1 while the animal is navigating

in a virtual reality environment. Studying neural interfaces in

rodents has been important for pre-clinical testing of BCIs

to probe potential limitations that can inform applications in

humans (Widge and Moritz, 2014; Bridges et al., 2018). The test

case we chose serves as a proof-of-concept study but it can also

provide meaningful insights on how spatial navigation related

cues and/or behavioral variables modulate visual activity, which

can inform future clinical research on BCIs.

2. Materials and methods

2.1. Copulas

Multivariate neuronal interactions can be described

probabilistically by means of copulas, which embody how

spiking statistics of individual neurons, i.e., the marginal

distributions, are entangled in intricate ways to produce the

observed joint population activity. The central theoretical

foundation for copula-based approaches is Sklar’s theorem

(Sklar, 1959). It states that every multivariate cumulative

distribution function (CDF) Fx can be decomposed into its

margins, in this case the single-neuron distributions F1, ...Fd,

and a copula C (Figure 1A) such that:

Fx(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (1)

Copulas are also multivariate CDFs with support on the unit

hypercube and uniform margins and their shape describes the

dependence structure between random variables in a general

sense which goes beyond linear or rank correlations (Faugeras,

2017). Following Sklar’s theorem, it is possible to obtain copulas

from joint distributions using:

C(u1, . . . , ud) = Fx(F
−1
1 (u1), . . . , F

−1
d

(ud)), (2)

Conversely, it is also possible to construct proper joint

distributions by entangling margins with copulas. These

operations rely on the probability transform F and its

generalized inverse, the quantile transform F−1. The probability

transform maps samples to the unit interval: : F(X) →

U ∼ U[0,1], where U[0,1] denotes the uniform distribution on

the unit interval. Since copulas for discrete data depend on

margins and are not unique (Genest and Nešlehová, 2007),

additional tools are required to obtain consistent mapping to

copula space. We employed the distributional transform:

G(X,V) = Fx−(x)+ V(Fx(x)− Fx−(x)) (3)

where Fx−(x) = Pr(X < x) as opposed to the regular

expression for the CDF, Fx(x) = Pr(X <= x), and V is a

random variable uniformly distributed on [0,1] independent of

X. This extension to the probability transformation effectively

converts a discrete copula to a pseudo-continuous variable

by adding uniform jitter in between discontinuous intervals

in the support of discrete variables and makes it possible to

use non-parametric estimators designed for continuous data.

When one is interested in the dependence structures within

joint observations of multiple variables, copula densities are the

object to work with, instead of their CDF. An example with

continuous and discrete observations is illustrated in Figure 1A.

This case of a mixed interaction is described by a Clayton copula

which displays an asymmetric heavy tail. The empirical copula

density can be discovered by subjecting the variables to the

probability transform with an added distributional transform

for the discrete one. This operation dissects the dependence

information that is embedded in the joint probabilities of these

two variables.

2.2. Pair copula constructions

The curse of dimensionality encountered in large datasets

can pose considerable challenges for copula modeling. Pair

copula constructions (Bedford and Cooke, 2002) offer a flexible

way of scaling copula models by factorizing the multivariate

distribution into a cascade of bivariate conditional distributions

that can be described by bivariate copulas. The latter can be

modeled parametrically, as previous studies have already done
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FIGURE 1

Mixed vine copula flows. (A) Samples from mixed variables of any joint probability density function (pdf) can be decomposed into their margins

and a copula. Copulas are extracted by transforming continuous and discrete samples to uniform through the probability integral transform. (B)

Graphical illustration of a C-vine for four variables. Nodes and edges of the first tree denote the variables and bivariate dependencies,

respectively. Edges of subsequent trees denote dependencies that condition on one or more variables. (C) Illustration of forward and inverse

normalizing flow transformation f of base distribution Z and target distribution Y.

(Panagiotelis et al., 2012; Onken and Panzeri, 2016) or with

non-parametric tools, which is the present study’s approach.

The space of possible factorizations is prohibitively large so

vine copula structures, a special type of pair copula constructions

can be employed to facilitate inference and sampling (Aas et al.,

2009). They can be represented as hierarchical sets of trees

which account for a specific graph of multivariate interactions

among elements of the distributions and assume conditional

independence for the rest. In the present study, we focused on

the canonical vine or C-Vine (Figure 1B) in which each tree in

the hierarchy has a node that serves as a connection hub to all

other nodes. The C-Vine decomposes the joint distribution f

into a product of its margins and conditional copulas c.

fX(x1, ..., xd) =

d
∏

k=1

f (xk)

d−1
∏

j=1

d−j
∏

i=1

cj,i+j|1,...,j−1(F(xj|x1, ..., xj−1),

F(xi+j|x1, ..., xj−1)) (4)

where ci,j|A denotes the pair copula between elements i and j

given the elements in the set A, which is empty in the surface

tree but it increases in number of elements with deeper trees.

2.3. Copula flows

We modeled the margin and copula densities non-

parametrically using a specific class of normalizing flows, that is

called Rational-Quadratic Neural Spline Flows (NSF) (Durkan

et al., 2019). In general, normalizing flows are a class of

generative models that construct arbitrary probability densities

using smooth and invertible transformations to and from

simple probability distributions (Rezende and Mohamed, 2015)

(Figure 1C). In essence, this is an application of the change of

variables formula:

px(x) = pu(T
−1(x))det

∣

∣

∣

∣

∣

∂T−1(x)

∂x

∣

∣

∣

∣

∣

, (5)

where px(x) is the density of the observations and pu is the

base density of random variable U = T−1(X), which is a

known and convenient distribution such as the normal or

the uniform distribution. The transformation T is usually a

composition of invertible transformations that can be perceived

and implemented as an artificial neural network with a

certain number of layers and hidden units. Its parameters

have to be learned through training in order to achieve an

invertible mapping between the two distributions, while scaling
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appropriately by the determinant of the Jacobian matrix which

keeps track of volume changes induced by T.

Since our main goal was to apply normalizing flows on

a copula-based framework for neural dependencies, it was

natural to choose the uniform distribution on [0,1] as a base

distribution, so that backward and forward flow transformations

for the margins approximate the probability transform and

its inverse, the quantile transform, respectively, so as to map

observations to copula space and back. Furthermore, a uniform

base distribution for copula flows can be leveraged to generate

new (simulated) observations via inverse sampling. Monte Carlo

simulation with inverse sampling is much more flexible than

with rejection sampling used in kernel-density based non-

parametric estimators which are much harder to invert. We

expected this flexibility to translate into faster sampling for NSF

compared to the other estimators. Different types of normalizing

flows exist in the literature which involve simple affine or

more flexible non-affine transformations albeit with the cost of

sacrificing invertibility in some cases (Papamakarios et al., 2021).

Our choice of employing NSF (Durkan et al., 2019) in this study

for modeling both margin and copula densities was in virtue of

the fact that they combine the flexibility of non-affine flows while

maintaining easy invertibility by approximating a quasi-inverse

with piecewise spline-based transformations around knot points

of the mapping.

2.4. Sequential estimation and model
selection

To fit the C-vine model with NSF to data, we applied the

Inference for Margins procedure, which first fits the margins

and then fits the copulas deriving from pairs of margins and

conditional margins. For the first step, we fit each margin

with NSF and then proceeded with the copulas of a particular

canonical vine formulation (Aas et al., 2009). Fitting NSF to

bivariate copulas in the vine was conducted sequentially starting

with the copulas of the surface layer of the tree. Subsequently,

conditional marginals for the tree in the layer next in depth were

estimated using the copulas of the previous layer via h-functions

(Czado, 2019). Then, copulas for the conditional margins were

constructed by transforming these margins in the same layer

according to Equation (2). This procedure was followed until all

copulas in the vine decomposition were estimated. We followed

the simplifying assumption (Haff et al., 2010) according to

which copulas of conditional margins are independent of the

conditional variables but depend on them indirectly through

the conditional distribution functions at the nodes of the vine.

In other words, conditional margins do vary with respect to

the conditioning variables but they are assumed to map to

the same conditional copula. This assumption helps evade

the curse of dimensionality when investigating multivariate

dependence structures. For each copula, we used a random

search procedure (Bergstra and Bengio, 2012) to determine

the best performing NSF hyperparameter configuration on a

validation set containing 10% of the data. The hyperparameters

that were tuned during training were the number of hidden

layers and hidden units as well as the number of knots

for the spline transforms. This sequential estimation and

optimization scheme for NSF-based vine copulas was followed

in both our analyses with artificial data as well as data from

neuronal recordings.

2.5. Other non-parametric estimators

The other non-parametric estimators used for comparisons

against NSF included four versions of Kernel Density Estimators

(KDE), namely one with log-linear local likelihood estimation

(tll1), one with log-quadratic local likelihood estimation (tll2),

one with log-linear local likelihood estimation and nearest

neighbor bandwidths (tll1nn), and one with log-quadratic

local likelihood estimation and nearest neighbor bandwidths

(tll2nn) (Nagler et al., 2017). Lastly, an estimator based on

Bernstein polynomials (Sancetta and Satchell, 2004) was also

used for the comparisons. The implementations for all these

five non-parametric estimators are from kdecopula package

(Nagler et al., 2017).

2.6. Artificial data

The NSF framework for vine copulas was validated

on artificial data with known dependency structures and

was compared against other non-parametric estimators. We

constructed several test cases where data was continuous or

discrete, consisting of four (low dimensional) or eight (higher

dimensional) variables exhibiting weak or strong dependencies

that were characterized by different copula families, namely

either Clayton, Frank, or Gaussian copulas. These three types

of parametric copulas display different behavior in the tail

regions (Nelsen, 2007). Clayton copulas have an asymmetric

tail dependence whereby probability mass is concentrated in

one corner of the copula space indicating a single heavy tail

region (see example copula in Figure 1A). On the contrary,

Frank copulas do not have heavy tails and probability mass

is allocated uniformly and symmetrically along the correlation

path. Gaussian copulas are also symmetric and without

particularly heavy tails, but probability mass concentration in

the tail regions is larger compared to Frank copulas. The

strength of dependencies was determined by varying the θ

parameter for Clayton (θ = 2 for weak and θ = 5 for

strong dependence) and Frank copulas (θ = 3 for weak and

θ = 7 for strong dependence) and the off-diagonal entries

of the 2 × 2 correlation matrix for Gaussian copulas (0.4
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for weak dependence and 0.8 for strong dependence). We

constructed and drew simulated samples from all vines with the

aforementioned specifications using the mixed vines package

developed by Onken and Panzeri (2016). Training for all the

estimators was conducted with 5,000 simulated samples for

each variable in the artificial data. The training procedure was

repeated 10 times. Performance was measured with Kullback-

Leibler (KL) divergences of 8,000 copula samples generated by

each of the estimators to an equal number of ground truth

copula samples from the mixed vines package (Onken and

Panzeri, 2016). To estimate the KL divergences from sample

data, a k-nearest neighbor algorithm was used (Wang et al.,

2009), which was implemented inHartland (2021). The resulting

KL divergences from the 10 repetitions and the different copulas

in each vine were aggregated tomeasure the overall performance

of the framework in each test case. We statistically compared

performances by all estimators via Kruskal-Wallis significance

tests at level of significance equal to 0.05. Bonferonni correction

was used for multiple comparisons. Moreover, we calculated

copula entropies from the NSF copula densities via classical

Monte Carlo estimation:

h(c(u1, u2)) = Ec[− log2 c(u1, u2)] ≈ −
1

k

K
∑

k=1

(log2 c(u
k
1, u

k
2)),

(6)

where h denotes the entropy and Ec denotes the expectation

with respect to the copula c. The expectation is approximated

by summing over a K number of samples which needs to be

sufficiently large (K = 8, 000 in our study). Negative copula

entropy provides an accurate estimate of mutual information

between variables which does not depend on the marginal

statistics of each variable (Sklar, 1959; Jenison and Reale, 2004)

and is ameasure of the degree to which knowing one variable can

reduce the uncertainty of the other one. All analyses including

sampling and entropy calculations were conducted on an ASUS

laptop with Intel(R) 4 Cores, i5–8,300 CPU, 2.30 GHz.

2.7. Experimental data

In order to assess our framework’s applicability to neuronal

activity we used two-photon calcium imaging data of neuronal

activity in the mouse primary visual cortex, that were was

collected at the Rochefort lab (see Henschke et al., 2020 for

more details). Briefly, V1 layer 2/3 neurons labeled with the

calcium indicator GCamP6s were imaged while the animal

was headfixed, freely running on a cylindrical treadmill and

navigating through a virtual reality environment (160 cm). Mice

were trained to lick at a specific location along the virtual

corridor in order to receive a reward. In addition to neuronal

activity, behavioral variables such as licking and running speed

were monitored simultaneously. Over the course of 5 days, mice

learned to lick within the reward zone to receive the water

reward. This visual detection task was used to investigate V1

neuronal activity before, during and after learning (Henschke

et al., 2020). The goal of the experiments was to elucidate how

repeated exposure to a stimulus modulates neural population

responses, particularly in the presence of a stimulus-associated

reward. Our analysis was based on deconvolved spike trains

instead of the calcium transients. Spiking activity had been

reconstructed using theMLspike algorithm (Deneux et al., 2016)

(see Henschke et al., 2020 for more details). The data we used in

this study were limited to one mouse on day 4 of the experiment

when the animal was an expert at the task. Moreover, in order to

provide a proof-of-concept example and illustrate the complete

vine copula decomposition as well as the performance of the

NSF framework, we selected a subset of five neurons out of the

102 V1 neurons that were monitored in total for that particular

mouse. Each of the five selected neurons showed non-negligible

positive or negative rank correlation with every other neuron in

that subset (Kendall’s τ > 0.3 or Kendall’s τ < −0.3), suggesting

that they might be part of a module warranting a more detailed

investigation of the dependence structures within.

3. Results

3.1. Validation on artificial data

In order to demonstrate the potential of the NSF vine copula

framework to capture multivariate dependencies of arbitrary

shape and data type (continuous vs. discrete) we conducted a

simulation study. The set of generated samples that were used

for training the NSF (n = 5,000) included cases with three

different types of copulas (Clayton, Frank, and Gaussian) with

each dictating a different set of dependence structures for weak

and stronger dependencies, continuous and discrete data as

well as four and eight dimensions. This ensemble provided a

wide range of settings from simpler symmetric dependencies to

skewed and heavy tailed interactions that can be encountered in

neural population spiking responses.

Overall, performance of NSF as assessed by the KL

divergence of the NSF-generated copula samples with those

from the ground truth copulas was broadly within comparable

levels to that of the KDE estimators while Bernstein estimators

often performed the worst (Figures 2, 3). However, it is worth

noting that relative performances varied slightly on a case-

by-case level. For example, with weaker dependencies in four

dimensional data with all copulas, NSF performed slightly but

significantly worse than the other estimators (Kruskal-Wallis

tests, p < 0.05) except Bernstein estimators (Figure 2). The

latter even outperformed NSF in one exceptional case with

weakly dependent 4D discrete data with Frank copulas. This

trend of slightly worse NSF performance relative to all else

except Bernstein estimators was also observed in 4D continuous

and discrete data for all copulas with stronger dependencies
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FIGURE 2

NSFs perform comparably to existing non-parametric estimators. Boxplots of performance of NSFs on all bivariate copulas from artificial data

compared to Kernel Density Estimators with either log-linear local likelihood estimation (tll1), log-quadratic local likelihood estimation (tll2),

log-linear local likelihood estimation and nearest neighbor bandwidths (tll1nn), log-quadratic local likelihood estimation and nearest neighbor

bandwidths (tll2nn), and Bernstein estimator. Simulations shown in this figure had weak dependencies described by Clayton (θ = 2), Gaussian

(0.4 in the o�-diagonal), and Frank copulas (θ = 3) for four and eight dimensional vines with continuous and discrete variables.

(Figure 3). However, NSF closed that gap and performed

similarly with the group of KDE estimators in cases where

data was 8D, either continuous or discrete and was entangled

with Clayton copulas with weak dependencies or Frank copulas

with both weak and stronger dependencies (Kruskal-Wallis

tests, p > 0.05). Notably, in the case of Clayton copulas with

stronger dependencies for 8D data, NSF outperformed all other

estimators (Kruskal-Wallis tests, p < 0.05). These findings

might suggest that the flexibility of the NSF framework can be

more beneficial with higher data dimensionality and dependence

structures that are characterized by heavier tails.

As copulas offer a detailed and invariant to marginal

statistics view into multivariate dependencies, their negative

entropy provides an accurate estimate of mutual information

between variables. Thus, calculating copula entropies can be

useful not only in understanding coordinated information

processing but also in BCI settings where dependencies might

be an important feature needing to be accounted for. Despite

the largely similar performance to KDEs, NSFs showed a

remarkable advantage regarding drawing samples from the

trained models and estimating copula entropies. Inverting the

kernel transformation in KDE estimators and rejection sampling

in Bernstein estimators are considerably more computationally

expensive compared to a flexible and substantially faster

sampling scheme in NSFs which directly approximate the

CDF and inverse CDF of margins and copulas (Figure 4).

Flexible and fast sampling is an attractive property useful for

estimation of information theoretic quantities and compensates

for the cases where NSF performs slightly worse compared to

the rest.

Plotting the copula entropies from all the estimators

against the KL divergence for every particular iteration of

fitting in every bivariate copula from the vine revealed an

inverse relationship between the two quantities. Namely, better

performance appeared to relate to higher copula entropy

and thus mutual information for all distinct copulas, vine

dimensions, and data types (Figure 5). This could mean that

bivariate copulas with higher KL divergence were overfit

to the point of diminishing the informational content of

the interaction captured by the copula. It is noteworthy

that Clayton copulas from 8D vines that were well fit by

NSFs exhibited significantly higher copula entropy compared

to the other estimators (Kruskal-Wallis, p < 0.01). This

could indicate an potential advantage of NSFs over the other

estimators with heavy-tailed data, which might warrant further

future investigation.
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FIGURE 3

Same conventions as Figure 2 but for simulations with strong dependencies described by Clayton (θ = 5), Gaussian (0.8 in the o�-diagonal), and

Frank copulas (θ = 7).

FIGURE 4

NSFs vastly outperform other non-parametric estimators on sampling. (A) Boxplots of time (mins) required to sample from trained NSF

compared to the other non-parametric estimators. The vertical axis is plotted on logarithmic scale. (B) Boxplots of time (min) required to

estimate copula entropy from the trained NSF compared to the other non-parametric estimators.

3.2. NSF elucidate dependence structures
in rodent V1 spiking activity and behavior

Having validated the vine flow copula framework with

artificial data, we subsequently focused on spiking activity from a

subset of 5 V1 layer 2/3 neurons while the animal was navigating

a virtual reality corridor (Figure 6A) (Henschke et al., 2020).

A parametric vine copula framework with Gaussian processes

(Kudryashova et al., 2022) was recently applied to calcium

transients from the same V1 layer 2/3 neurons (Henschke et al.,

2020). In the present study, we focused instead on modeling

the deconvolved spiking activity with flow-based vine copulas.
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FIGURE 5

Scatter plots of performance against copula entropy for NSFs vs. other non-parametric estimators on artificial data. All other conventions are

the same as Figures 2, 3. Simulations shown in this figure had strong dependencies.

Our use of a non-parametric tool aimed at escaping potentially

restricting assumptions that parametric copula families might

place on the dependence structures among neurons. Our

analysis aimed to detect such dependencies both as a function

of time and position since previous findings indicate that V1

neuronal activity can be modulated by behaviorally relevant

variables such as a reward being given at a particular location.

Raster plots across all trials on day 4 for the subset of the

selected five neurons in Figure 6A illustrate how some of the

neurons were more active for a short span of the virtual corridor

within and after the reward zone (120–140 cm) while the activity

of others was more spread out across the corridor and fell off at

the onset of the reward zone. The strength of rank correlation

between pairs of these neurons can be assessed by measuring the

Kendall’s τ from their spiking activities. However, this approach

reduces the study of dependencies into single numbers that only

provide a limited description of the interactions. In contrast,

a copula-based approach can provide a detailed account of

the actual shapes of neuronal dependencies which are usually

characterized by a concentration of probability mass in the

tail regions.

In similar fashion to the analysis on artificial data, we fit a

C-vine whereby NSFs were fit to the spiking distributions of the

neurons binned with respect to position (bin size was 20 cm),

i.e., the margins as a first step and then NSFs were sequentially

fit to the empirical copulas (blue scatter plots in Figure 6B) from

the surface tree level to the deeper one. These empirical copulas

were obtained by transforming the data with the distributional

transform. The five neurons were ordered according to the

degree to which they exhibited statistical dependence with the

other neurons as measured by the sum of Kendall’s τ for each

neuron. The copula densities (Figure 6C) and samples (red

scatter plots in Figure 6D) from the trained NSFs were able

to accurately capture the dependence structures between the

neurons. All interactions were characterized by the presence

of heavy tails in different corners of the uniform cube. Heavy

tail dependencies at the top right part of the cube signified

neurons that were more co-dependent when both neurons were

active compared to other activity regimes (e.g., Figure 6C top

row 1, 2 and 1, 5). For example, neurons like neuron 1 and

neuron 2 displayed weak or no significant interaction until their

activity was modulated by experimental or behavioral variables

that are associated with the reward zone. Conversely, heavy tails

at the bottom right (Figure 6C 2, 3|1) or top left (Figure 6C

4, 5|1, 2, 3) signified inverse relations of spiking activity between

these neurons, i.e., being active at different locations in the

corridor. Furthermore, it is worth noting that the probability

mass concentration in the tail regions was different among

neurons, with some pairs displaying lighter tails than others

(e.g., Figure 6C 3, 4|1, 2).
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FIGURE 6

Tail dependencies in position dependent V1 activity are captured by NSF vine copulas. (A) Illustration of mouse navigating a virtual environment

with grating stimuli until it reaches the reward zone (120–140 cm) where it is required to lick in order to receive water reward. Raster plots for

five neurons in V1 rodent data across trials and position (a smaller bin size of 2.5 cm is used here for illustration purposes) in the virtual corridor.

Gray region denotes the reward zone. (B) Scatter plots of empirical copula samples (blue dots) in a 5D vine extracted from the spike data. Axis

labels denote which unconditional or conditional neuron margins have been transformed to copula space. Margin indices after vertical slash

denote those in the conditioning set. (C) Copula densities of the 5-D vine from the trained NSF. (D) Simulated samples (red dots) from the

trained NSF copula densities of the 5-D vine.

As neuronal activity in V1 is modulated by introducing a

reward in a certain location of the virtual corridor, it is also

interesting to investigate neural responses and dependencies in

time around that reward. Therefore, we also analyzed neural

interactions as revealed by the spike counts of the same five

neurons 3.5 s before and after the reward (bin size was 300 ms).

Only successful trials where the mouse licked within the reward

zone were included in this analysis. Raster plots in Figure 7A

show a variety of spiking patterns relative to the timing of

the reward across trials. The copula densities (Figure 7C) and

samples (red scatter plots in Figure 7D) from the trained

NSFs closely captured the dependence structures as before

(Figure 7B). Moreover, as before, these dependence structures

were characterized by heavy tailed regions either in the top

right (e.g., 1, 2 in Figure 7C) or top left corners (e.g., 2, 5|1 in

Figure 7C) indicating stronger neuronal interactions for some

regimes of spiking activity and not others. The more apparent

block structure in this case compared to the previous one was

a result of the fewer states of spike counts with the bin size

we chose. For example, probability mass in the copula space
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FIGURE 7

Tail dependencies in time dependent V1 activity are captured by NSF vine copulas. (A) Raster plots for same five neurons in V1 rodent data

across trials and time with respect to reward (3.5 s before until 3.5 s after reward) in the virtual corridor. Gray vertical line denotes reward

acquisition. (B) Scatter plots of empirical copula samples (blue dots) from the 5-D vine. All other conventions are the same with Figure 6. (C)

Copula densities of the 5-D vine from the trained NSF. (D) Simulated samples (red dots) from the trained NSF copula densities of the 5-D vine.

for neurons that would fire from 0 to 5 spikes in a given time

bin, would have to be assigned to blocks that correspond to the

relative proportions of jointly observed spike counts.

A copula-based approach can also offer a tool for studying

dependencies of neuronal activity with behavioral variables

which might exhibit vastly different statistics, such as running

speed and number of licks. In Figure 8 we showcase how copulas

modeled with NSFs can elucidate the shape of interaction of

running speed and licks with the spiking activity of an example

neuron (neuron 16 from the dataset, which is not included in

the five neurons in the previous analysis) binned with respect

to position (bin size was 20 cm) in the virtual corridor. This

neuron increased its activity considerably within the reward

zone (Figure 8B) which coincided with greatly reduced running

speed (Figure 8A) as the mouse stopped to lick (Figure 8C) and

receive the reward. Licking was thus positively co-dependent

with spiking activity, τ = 0.4, p < 0.001 for number of licks and

running speed was negatively co-dependent with spiking activity

τ = −0.27, p < 0.001. Transforming the variables to copula

space revealed regions of mostly uniform probability mass

concentration with a relatively heavier tail in the bottom right

for running speed (copulas in Figure 8A) and in the top right for

licking (copulas in Figure 8C). This finding indicated that these

behavioral variables had a rather weak or no interaction for most

of the span of the virtual corridor except for the part when the

neuron was mostly active, which was the reward zone.
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FIGURE 8

Dependencies of spiking activity with behavioral variables. (A) Left: Color plot of running speed (cm/s) across the virtual corridor for all trials.

White vertical lines denote beginning and end of reward zone. Center: Empirical copula of neuron 16 spiking activity (discrete) with running

speed (continuous). Right: Copula density from the trained NSF. (B) Raster plot of neuron 16 spiking activity across trials and position in the

virtual corridor. (C) Left: Grayscale-coded plot of number of licks across the virtual corridor for all trials. Red vertical lines denote beginning and

end of reward zone. Center: Empirical copula of neuron 16 spiking activity (discrete) with number of licks (discrete). Right: Copula density from

the trained NSF.

Considering all the aforementioned, the flow-based vine

copula framework shows remarkable promise for flexibly

capturing complicated interaction patterns within neural

populations. The rich picture of these interactions and potential

insights into neural circuit function would have remained

undetected by only measuring pairwise rank correlations or

pairwise Pearson correlations which would not have indicated

any heavy tailed interactions.

4. Discussion

In this study, we proposed a fully non-parametric approach

for estimating vine copula densities for both continuous and

discrete data using NSF, a subtype of normalizing flows.

Overall, the framework performed comparably to existing non-

parametric approaches on artificial data while benefiting from

more flexible and faster sampling. There were some cases

where NSF performed slightly worse than the other estimators.

We mostly observed this in vine models with dependencies

characterized by lighter tails (Frank, Gaussian) compared to

those with heavy tail dependencies (Clayton). These findings, in

combination with NSF being superior in the eight dimensional

Clayton vine, might potentially point to performance differences

between the estimators in different regimes. The added flexibility

provide by NSF might come at the cost of fitting noise to some

extent and simpler cases like the vines described by Frank and

Gaussian copulas might be more easily captured by the other

estimators. Conversely, complex dependencies induced by more

interacting components and heavier tails might benefit from that

flexibility Furthermore, we demonstrated how flow-based vine

copulas can shed light on the structure of dependencies in neural

spiking responses.

The intricate shapes in bivariate copulas of spikes involving

skewness and heavy tails would have been assumed as non-

existent in a conventional approach based on pairwise linear

correlations. Additionally, the arrangement of the discovered

copulas into block structures (Figure 6B) would have been

harder to capture by commonly applied parametric copula

models (e.g., Clayton, Frank, or Gaussian copulas) and thus
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lead to misleading conclusions. Therefore, we showed that non-

parametric modeling with normalizing flows can be a valuable

tool especially in the case of copula-based methods for discrete

data and mixed data.

The development of such tools is crucial for understanding

how coordinated neural activity transmits information about

external stimuli or internal signals that guide planning and

action. Copula-based methods have the capacity to provide a

description of neural activity that includes the intricacies of

dependencies and allows for higher-order interactions to occur

within a certain set of conditions specified by the vine structure.

Such descriptions can potentially offer significant insights that

will aid and inform the development of neural coding theory.

At the same time, decoding models that take into account the

aforementioned features elucidated by copula methods, could

potentially be valuable for the development of reliable Brain-

Computer Interfaces. Some lines of evidence suggest that higher-

order interaction patterns might have a significant presence

and role in shaping collective neural dynamics and conveying

information (Ohiorhenuan et al., 2010; Yu et al., 2011; Shimazaki

et al., 2012) but further research needs to be conducted to gain a

deeper understanding of the processes involved.

A limitation of our study is that the type of normalizing flows

we used was designed to model variables with continuous data.

We therefore included an additional rounding operation for

discrete margins that were generated by trained NSF. This issue

with discrete margins could be addressed in future work that

can improve upon the framework by incorporating normalizing

flow models that are more naturally suited to handle discrete

or mixed data and do not need the ad hoc modifications

that were employed in the present project. SurVAE flows

that were developed recently (Nielsen et al., 2020) as an

attempt to unify variational autoencoders and normalizing

flows might potentially be better suited for discrete data as

the kind of surjective transformations may better account for

discontinuities in discrete CDF. Another limitation derives from

the fact that our analysis was based on deconvolved spikes. Due

to the slow time constant of the underlying calcium traces, spike

deconvolution is unlikely to reconstruct any potential short

time scale dependencies that might have existed within a neural

population. Thus, the resulting copulas are very likely to look

uniform if bin size is not sufficiently big. We were therefore

confined to consider only larger bin sizes in our analyses.

Future directions include the analysis of entire neural

populations as opposed to small subsets of a population.

A possible extension to modeling population dependencies

with vine copula methods can also involve leveraging the

power of dimensionality reduction methods. A well-established

trait of neural population activity is that latent collective

dynamics that drive responses occupy a subspace that is

much lower in dimensionality than the number of neurons

recorded (Cunningham and Byron, 2014). Thus, dimensionality

reduction methods could be applied prior to copula modeling

so that the latter can be employed on a set of low dimensional

latent factors that capture the most prominent latent processes.

Combining such methods can potentially provide even less

computationally demanding frameworks that can be useful for

clinical translation.
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