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Electrodermal activity (EDA) sensor is emerging non-invasive equipment in affect

detection research, which is used to measure electrical activities of the skin. Knowledge

graphs are an effective way to learn representation from data. However, few studies

analyzed the effect of knowledge-related graph features with physiological signals when

subjects are in non-similar mental states. In this paper, we propose a model using deep

learning techniques to classify the emotional responses of individuals acquired from

physiological datasets. We aim to improve the execution of emotion recognition based on

EDA signals. The proposed framework is based on observed gender and age information

as embedding feature vectors. We also extract time and frequency EDA features in line

with cognitive studies. We then introduce a sophisticated weighted feature fusion method

that combines knowledge embedding feature vectors and statistical feature (SF) vectors

for emotional state classification. We finally utilize deep neural networks to optimize

our approach. Results obtained indicated that the correct combination of Gender-Age

Relation Graph (GARG) and SF vectors improve the performance of the valence-arousal

emotion recognition system by 4 and 5% on PAFEW and 3 and 2% on DEAP datasets.

Keywords: affective computing, electrodermal activity, knowledge graph, emotion recognition, MLP

1. INTRODUCTION

Emotions are vital for humans because they influence affective and cognitive processes (Sreeshakthy
and Preethi, 2016). Emotion recognition (Li et al., 2021) over the years has received large attention
from academic researchers and industrial organizations and has been applied in numerous sectors
including transportation (De Nadai et al., 2016), mental health (Guo et al., 2013), robotics
(Tsiourti et al., 2019), and person identification (Wilaiprasitporn et al., 2020). Emotions are
accompanied by physical and psychological reactions when an external or internal input is
introduced. Representative methods for emotion recognition can be categorized into two sectors,
physical-based and physiological-based. Physical-based signals include facial expressions (Huang
et al., 2019), body gestures (Reed et al., 2020), audio (Singh et al., 2019), etc. All these signals are
easy to collect and show good emotion recognition performance. However, the dependability of
the physical-based data can be equivocal as it can be easy for people to intentionally alter their
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reactions, which results in a false reflection of their real
emotions. Physiological-based signals on the other hand
include electroencephalogram (EEG), electrocardiogram (ECG),
electromyogram (EMG), electrodermal activity (EDA)/galvanic
skin response (GSR), blood volume pulse (BVP), temperature,
photoplethysmography (PPG), respiration (RSP), and so on
(Chen et al., 2021). While people may know the reasons
why their signals are being collected, physiological signals
relating to emotional states are hard to manipulate because they
are controlled by the autonomic nervous system (ANS) (Shu
et al., 2018). Compared to physical-based methods, emotion
recognition based on physiological signal is less sensitive to
societal and cultural differences amongst users and are acquired
in natural emotional states (Betella et al., 2014). Physiological
signals also perform better in detecting sounds than on beeps as
they primarily reflect emotional states (Stuldreher et al., 2020).

Emotion should be well defined and approached in a
quantifiable manner. Psychologists model emotions in two ways:
discrete and multi-dimensional continuous (Liu et al., 2018;
Mano et al., 2019; Yao et al., 2020). Discrete emotion theory
claims that there is a small number of core emotions. They
are usually limited and can barely differentiate heterogeneous
emotions and composite mental states. Multi-dimensional
emotion model on the other hand finds correlation among
different discrete emotions which correspond to a higher level
of a particular emotion. Valence-Arousal (V-A) space model
has been widely used in affective computing research as a
type of multi-dimensional continuous emotion model. Valence
stands for a negative to a positive level of emotion that ranges
from unpleasant to pleasant feelings. Arousal stands for low to
high level of emotion that ranges from drowsiness to intense
human excitement. The combination of valence and arousal
space model enables the creation of continuous emotion models
that captures both moderate and complex emotions needed for
building accurate emotion recognition systems (Zhang et al.,
2020). This study adopts the V-A space model for final emotion
state classification.

The electrodermal activity also known as galvanic skin
response is a non-stationary signal. Figure 1 shows the EDA
signal of participant #39 from the PAFEW dataset. Skin
conductance response occurs when there is an induction of
stimuli and may occur many times in short instances as shown in
the figure. Portable low-cost EDA sensors (Milstein and Gordon,
2020) have been developed and applied in a physiological
research context as signals become easier to collect. Prior works
have connected electrodermal activities with biofeedback in
diffusing brain activation as its cost effective and easy to apply
treatment options are with no known risk (Gebauer et al.,
2014). Researchers have begun combining and comparing the
sufficiency of traditional machine learning and deep learning
algorithms to predict users’ mental states from EDA (Ayata et al.,
2017).

Knowledge graph (KG) (Hogan et al., 2021) involves the
acquisition and integration of information from data, creating
relevant entities and relations, and predicting a meaningful
output. As a new type of representation, KG has gained a
lot of attention in the field of cybersecurity, natural language

FIGURE 1 | EDA signal of participant #39.

processing, recommendation systems, and human cognition (Jia
et al., 2018; Guan et al., 2019; Chen et al., 2020; Qin et al.,
2020; Yang et al., 2020). Wang (Wang et al., 2019) represented
cognitive relations between different emotion types using a
knowledge graph. Yu et al. (2020) studied a framework made
up of non-contact intelligent systems, knowledge modeling, and
reasoning to represent heart rate (HR) and facial features to
predict emotional states. Farashi and Khosrowabadi (2020) used
the knowledge of minimum spanning tree (MST) graph features
derived from computational methods to classify emotional states.
Wenbo et al. used knowledge embedding in a deep relational
network to capture and learn relationships between cartoon,
sketch, and caricature face recognition (Zheng et al., 2020).
Gender and age are important factors that affect human emotion.
To the best of our knowledge, there is no existing work on
emotion recognition that attempts to combine gender and age
with EDA/GSR statistical features (SF) to accurately model
emotional states. In this paper, we propose an effective knowledge
embedding graph model based on observed participants’ gender
and age to capture the relations between given entities. This has
been lacking in EDA-Based Emotion Recognition Systems where
researchers only focus on time, frequency, and time-frequency
statistical features (SFs). We further propose a sophisticated
feature fusion technique that exploits the knowledge embedding
vectors as a weight to SFs.We then utilized a deep neural network
to capture relevant complex information from participants’ age
and gender and predict emotional states.

The main contributions of this article is summarized as
follows:

1) We propose an effective knowledge embedding graph
model based on observed participants’ gender and age to capture
the relations between given entities.

2) We propose a sophisticated feature fusion technique that
exploits the knowledge embedding vectors as a weight to SFs.

3) The proposed model shows better recognition accuracy
when compared to other methods.
The overall implementation framework of this paper is illustrated
in Figure 2.
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FIGURE 2 | Overall implementation of the statistical features (SFs) and the observed knowledge graph features in accordance with the EDA signal. First, the network

is used to extract EDA time and frequency SFs, S. We then construct a Gender-Age Relation graph (GARG) in a form of triples to learn relations and get embedding

feature vectors. A transformation matrix P is introduced to exploit the graph embeddings. The fused feature F is gotten by combining the SFs and knowledge

embeddings Ĝ after dimension reduction for training, validation, and testing. Finally, a fully connected neural layer and SOFTMAX is used for emotion state

classification within the valence-arousal scale.

The rest of the paper is organized as follows: Section 2
presents related background and approaches to EDA signals and
knowledge graph and also presents our novel methodology and
algorithms. Section 3 reports the experimental results. Section 4
discusses the novel approach and compares them with previous
works. Finally, Section 5 concludes the study.

2. MATERIALS AND METHODS

2.1. Related Background
Electrodermal activity-based emotion recognition has become
popular in affective computing and cognitive developmental
studies. Knowledge graphs have also been applied to embed
entities in attempts to get more information from available
data. Both ideas are frequently used nowadays in a variety of
contexts and researchers have attempted to design frameworks
to accurately solve today’s problems.

2.2. EDA-Based Emotion Recognition
Electrodermal activity is a cheaper, easily collected physiological
signal that reflects internal reactions to yield exhilaration.
Deep learning algorithms (Yang et al., 2022) have become a
catalyst in emotion recognition to capture time, frequency,
and time-frequency information in EDA signals. Multilayer
Perceptron (MLP), Convolutional neural network (CNN), Deep
Belief Networks (DBN), Attention-Long Short Term Memory
(A-LSTM) are often used. These algorithms with processors
in the suggestive connection between neurons and layers can
learn to extract relevant features for a reference task. In the
study by Hassan et al. (2019), signals from EDA, Zygomaticus
Electromyography (zEMG), and Photoplethysmogram (PPG) are
fused using DBN for in-depth feature extraction to gear up a
feature fusion vector. The vector is used to classify five discrete

basic emotions, relaxed, happy, sad, disgust, and neutral. The
study also used FineGaussian Support VectorMachine (FGSVM)
together with radial basis kernel function to help classify the non-
linearity in the human emotion classification. Song et al. also
proposed an attention-long short term memory (A-LSTM) to
extract discriminative features from EDA and other physiological
signals to strengthen sequence effectiveness (Song et al., 2019).
These studies did not use the gender and age information
of participants as features to validate their results. Also, the
performance of their approach did not quantify the contribution
of the EDA signal but proves deep learning is effective in
extracting emotional features.

2.3. Knowledge Graph
An effective way to learn representation from data is through
embedding a KG into a vector space while maintaining its
properties (Li et al., 2020). It involves knowledge triples h, r, t
compiled of two entities h and t and a relation r. Face recognition
studies have tried to study representational gaps using deep
learning techniques to derive useful facial information (Cui
et al., 2020). KG embedding can also be used to find vector
representation of known graph entities by regarding them as
a translation of entities in space. Human knowledge allows
for a formal understanding of the world (Ji et al., 2022). For
cognition and human level intelligence, knowledge graphs that
represent structural relations between entities have become an
increasingly popular research direction. The performance of
these approaches shows that when KG is integrated, model
performance is enhanced. Graph convolutional network has been
studied for drug prediction in computational medicine (Nguyen
et al., 2022). KG has been used for image processing and facial
recognition but has never been used with physiological signals
for emotion recognition. We attempt to address this issue.
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2.4. Datasets
2.4.1. The PAFEW Dataset
For the PAFEW dataset (Liu et al., 2020), there are 57 healthy
students that participated in the experiment and each view
about 80–90 video clips in all 7 emotion categories. Participants
are aged between 18 and 39 years and were subjectively rated
to keep them focused. The dataset is summarized in Table 1.
Participants watched videos with one label continuously. This
encourages them to be fully dissolved into one emotion before
moving on to watching another video with a different label. The
initial dataset was collected in a multi-class fashion (shown in
Figure 3). From the figure, we can conclude that the PAFEW
dataset is highly overlapped resulting in class imbalance. To
tackle the imbalance issue, we subset target labels into the valence
and arousal dimensions (shown in Figure 4). This is to more
effectively capture both moderate and complex emotions. For
example, fear and anger are two separate emotions which may
differ from person to person but fall under high arousal and
negative valence. Also, to be able to assess the performance
metrics, we defined the total number of samples per emotion used
to train and test the performance of the proposed method (seen
in Table 2). Overall, we have a total of 3,554 data points.

2.4.2. DEAP Dataset
The DEAP dataset (Koelstra et al., 2012) is made up of 32
participants that watched 40 video clips while their physiological
signals and facial expressions are recorded. Participants are aged
between 19 and 37 (mean age 26.9). Participants’ rating was also
collected. We used the GSR data/channel to design an emotion
recognition system. A summary of the DEAP dataset is shown in
Table 3.

2.5. Methodology
In this section, we first illustrate the Gender-Age Relation Graph
(GARG) and SF structures that are used in conducting the
experiment. We also describe the weighted fusion representation
learning which is the keystone of our solution.

2.5.1. GARG Feature Learning Structure
Knowledge bases represent data by a directed graph with
labeled edges (relations) between nodes (entities). We attempt
to solve the problem of valence-arousal emotion recognition.
Usually, the directed graph is represented by triples in the
form (subject, predicate, and object). In our case, we use
the gender and age information of a participant to construct
the graph, so we have triples like (Participant,AgeIs, 28) and
(Participant,GenderIs, F/M).

Formally speaking, we define our knowledge graph G = E ×

R× E :

• E : a set of entities;
• R: a set of relations.

Let E = (e1, e2, ..., eNe ) represent the set of entities in the
knowledge graph and let R = (r1, r2, ..., rNr ) represent the set of
all relation types. We represent each triple as xa,b,c = (ea, rc, eb)
and model its presence with a binary random variable ya,b,c ∈

{0, 1} indicating whether a triple exists or not. In this paper, we

TABLE 1 | Summary of the PAFEW dataset.

Attributes PAFEW

Length of sequence 480–6,040 ms

No. of sequence 4023

No. of participants 57

Max. participants per clip 9

Min. participants per clip 2

Mean participants per clip 5.2

No. of sequence per expression

Happy 699

Surprise 362

Disgust 436

Anger 475

Fear 434

Sad 472

Neutral 676

extract latent embedding features by maximizing the existential
possibility of existing triples.

Following (Trouillon et al., 2016), we use complex embedding
features. The complex embeddings of the subject, object, and
their relation are denoted by es, eo, and wr ∈ C

k, respectively.
The scoring function of a triple is defined by:

f (s, o, r;2) = Re(< wr , es, ēo >)

= Re(<

K
∑

k=1

wrk, esk, ēok >)

= 〈Re(wr),Re(es),Re(eo)〉

+〈Re(wr), Im(es), Im(eo)〉

+〈Im(wr),Re(es), Im(eo)〉

−〈Im(wr), Im(es),Re(eo)〉, (1)

where Re(·) and Im(·), respectively, extract the real and imaginary
parts of a complex vector, and 2 denotes the parameters
corresponding to the model.

It is expected to score the correct triples (e1, r, e2) higher
than incorrect triples (e′, r, e2) and (e′, r, e1) which is not equal
to correct triples by one entity. Following Toutanova and Chen
(2015), the conditional probability p(e2 | e1, r) for the object
entity given the relation and the subject entity is defined as:

p(e2 | e1, rc;2) =
ef (xe1,e2,rc :2)

∑

e′2∈Neg(e1,rc ,?)
ef (xe1,e2,rc :2)

(2)

where (e1, r, ?) is a set of triples that do not match the object
position in the relation triple. Since the entity number of such
a set is large, the negative triples are randomly sampled from the
full set. Similarly, given the relation and object, the conditional
probability of the subject is defined as:

p(e1 | rc, e2;2) =
ef (xe1,e2,c :2)

∑

e′1∈Neg(?,rc,e2)
e
f (xe′1,e2,c

:2)
(3)
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FIGURE 3 | Imbalanced emotion class distribution in the PAFEW dataset.

FIGURE 4 | Valence-Arousal 2D Model: This is put into two separate groups.

The first group is high arousal and low arousal. High arousal contains surprise,

fear, anger, and happy. Low arousal contains disgust, neutral, and sad.

Second group is positive valence and negative valence. Positive valence

contains neutral, surprise, and happy. Negative valence contains fear, anger,

sad, and disgust (Liu et al., 2020).

Given the definition of conditional probability, we can maximize
the probability of existing triples. Our training loss function is

defined as the sum of the negative log-probabilities of observed
triples with L2 penalty. Suppose X denotes the set of observed
triples and λ is the trade-off parameter, the training loss is given
by:

L(X,2, λ) = −
∑

xe1,e2,rc∈X

log p(e2 | e1, rc :2)

−
∑

xe1,e2,rc∈Xtrain

log p(e1 | rc, e2 :2)

+λ2T2. (4)

The algorithm of graph feature extraction is summarized in
Algorithm 1.

2.5.2. SF Learning Structure

2.5.3. Preprocessing
In this paper, we used PAFEW and DEAP databases for analysis.
E4 wristband is used to collect EDA signals at a rate of 4 Hz in
the PAFEW dataset. Participants were asked to watch videos of
the same emotional label consecutively. We treat each emotion
category as continuous in time for normalization. Data obtained
varies significantly from 0 to 6.68 among participants. Min-
max normalization is applied to reduce in-between participant
differences. The 11-point median filter is used to remove noise,
smoothen signal sequence. For the DEAP dataset, we used
the preprocessed data. We also normalized the data to reduce
intra- and inter-individual differences associated with emotional
responses. The data is downsampled to 128 Hz. After, it is
segmented into 60 s trials and 3 s pre-trials, baseline is removed.
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TABLE 2 | List of independent data points for valence arousal classification.

Valence Arousal

Positive Negative High Low

Happy 699 Disgust 436 Happy 699 Disgust 436

Surprise 362 Anger 475 Fear 434 Sad 472

Neutral 676 Fear 434 Anger 475 Neutral 676

- - Sad 472 Surprise 362 - -

Total 1737 Total 1817 Total 1970 Total 1584

TABLE 3 | Summary of the DEAP dataset.

Array name Array shape Array contents

data 40 × 1 × 8,064 trial × channel × data

labels 40 × 2 trials × label

Algorithm 1 | GARG.

Input: Triples G = {(E ×R× E)}.
Output: Embedding Feature Vector.
Procedure:

1: Create entities (s and o) that will form a graph.
2: Initialize xa,b,c based on relationship between entities and

ensure its presence using ya,b,c ∈ {0, 1}.
3: loop
4: for each φabc do
5: Define the score triple using Equation (1).
6: Corrupt to generate Neg object triples G− = (E ×

R× E ′) at training for positive, or true triple.
7: Evaluate by defining filters to ensure no negative

statements generated by the corruption procedure are
actually positives by concatenating train and text sets.

8: end for
9: Update entity and relation embedding w.r.t gradients of

Equation (4).
10: end loop

2.5.4. Feature Extraction
We extract time and frequency signals which is listed in Table 4.
Features were extracted for the entire duration as participants
watch emotional videos. For the PAFEW data, extracted features
were categorized into three groups: basic statistical variables,
first-order differential variables, and second-order differential
variables. For the DEAP dataset, we used the toolbox for
emotional feature extraction from physiological signals (TEAP)
(Soleymani et al., 2017) to extract SFs. These features are in line
with the work of Shukla et al. (2019) that extensively studied
and reviewed EDA features across statistical domains relevant for
emotion recognition. Our choice of features is easy to compute
online, thus, making them advantageous in the future for real-
time recognition.

2.5.5. Graph Feature Weighted Fusion

Representation Learning
We present our proposed weighted feature fusion mechanism
for representation learning which effectively improves the
performance of our model.

After training with the loss function (4), we extract the real
part of the complex feature vector of the subjects as a graph
embedding feature, and the feature matrix of all entities is
denoted by G. High-dimensional space is required to embed
the entities so that they are adequately distinguished, but the
dimension is incompatible with the SF. Here, we use principal
component analysis (PCA) to reduce the dimension to be the
same as SF. The feature matrix after dimension reduction is
denoted by Ĝ.

To fuse SF S and graph embedding feature Ĝ, one naive
method is concatenation. Since they are extracted based on
a totally different viewpoint, simple concatenation may not
fuse them well. Here, we use a more sophisticated method
by exploiting the graph embedding feature as the weight of
the SF. Because the dimension order of the graph embedding
feature does not naturally match the dimension order of SF, we
introduce a learnable transformation matrix P. The fused feature
is given by:

F = S ⊗ (PĜ), (5)

where ⊗ denotes element-wise product. By taking F as the input
of a neural network, we can obtain the transformation matrix P
through training. Here, we use an MLP with the architecture of
three hidden layers and an output layer. The dimension for the
number of the hidden units is 64, 128, and 64. The output of the
network is 2-dimension vector. We use the mean square error
(MSE) criterion andAdamoptimizer. Dropout is set at 0.2, batch-
normalization and ReLU are applied after each hidden layer after
which Softmax is employed for final classification. The whole
procedure of our feature fusion learning method is summarized
in Algorithm 2.

3. RESULTS

We reported experimental results separately for each
experiment to have a clearer assessment of our knowledge
graph EDA-based approach.

Tables 5, 6 present the average results of classification recall,
precision, accuracy, and F1-scores on PAFEW and DEAP. We
also report the standard deviation of accuracy.

The results are based on leave-one-out training and
testing, i.e., training all but one subject data, and using that
one subjects data for testing. The results for SF features
are consistent with previous studies. However, the GARG
feature embeddings give a boost in model performance,
hence improvement in classification results. This is because
our graph embedding feature vectors can effectively learn
the representation between participants’ gender and age
and their respective emotional labels. Also, because the
GARG features are extracted differently and require a high
dimensional space to effectively mine related information.
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TABLE 4 | Features used in this research.

Dataset Features Parameters Discription

PAFEW

Basic statistical features

MeanEDA Mean of signal

KurtEDA Kurtosis of signal

SkewEDA Skewness of signal

MaxEDA Maximum of signal

MinEDA Minimum of Signal

StdEDA Standard deviation of signal

VarEDA Variance of Signal

First order differential features
MeanAbsDiff Mean of first order

MeanNegativeDiff Negative mean of first order differential

Second order differential features
MeanSecAbsDiff Mean of first order

MeanSecNegativeDiff Negative mean of second order differential

Graph embedded features
Gender Gender of participant

Age Age of participant

DEAP

Statistical Features

No. of Peaks Number of peaks in resistance

Amplitude of Peaks GSR peak amplitude

Rise time Time taken to reach peak

Statistical moments Mean and Standard deviation

Local minima No. of local minima in GSR signal

Graph Embedded Features
Gender Gender of participant

Age Age of participant

Algorithm 2 |Weighted SF-GARG.

Input: Graph embedding feature Ĝ and statistical feature S
Procedure:

1: Extract embedding feature using Algorithm 1 in high
dimension and denoted as G

2: Use PCA to reduce dimension of feature matrix then denote
as Ĝ

3: Extract statistical feature and denote as S
4: Introduce a learnable feature transformation matrix P
5: Compute the fused feature F using Equation (5)
6: Define the neural network architecture
7: Take the fused feature F as input and train the network

Output: P,W

Furthermore, directly combining them with the SF features
will be inappropriate. We, therefore, use PCA to match
their dimensional space to the SFs. Hereby, we used them
as a weight to the statistical features to enhance model
performance. The tables also clearly show that, a weighted
combination of SF-GARG features yield better performance
than those of the SF features alone. MLP clearly shows the
highest performance in all tables compared to SVM, KNN,
RF, and NB.

The Nemenyi test (Demšar, 2006) and Friedman test
(Friedman, 1937) are used to show statistical significance of our
method. To detect the differences between multiple methods
across multiple test results, the Friedman test, which is a non-
parametric statistical test, is used. Its null hypothesis states

that - all methods have the same performance. The Nemenyi
test is used to distinguish whether the performances of the
methods are significantly different if the null-hypothesis is
rejected. In the PAFEW dataset, on the arousal scale, we
calculated F(5,) = 3.57 for accuracy and F(5,) = 3.75 for
F1 score. On the valence scale, we calculated F(5,) = 3.69
for accuracy and F(5,) = 3.89 for F1 score. This showed
p < 0.05. Similarly, in the DEAP dataset on the arousal
scale, we calculated F(5,) = 3.63 for accuracy and F(5,) =

3.76 for F1 score. On the valence scale, we calculated F(5,) =

3.68 for accuracy and F(5,) = 3.74 for F1 score which
showed p < 0.05. The critical distance (CD) of the Nemenyi

test is defined as follows: CD = qα

√

k(k+1)
6N , where qα is

a default critical value of 0.05, k denotes the number of
methods (k = 5) in this work, and N the number of result
groups. For PAFEW, N = 57 and for DEAP, N = 32.
This resulted in no overlaps with methods suggesting that our
proposed methods are statistically different in performance with
compared methods.

Figure 5 is the confusion matrix for the classification results
on the PAFEW dataset and shows a clearer picture of our
model performance.

Figures 6, 7 show the training and validation loss on the
PAFEW dataset for both valence and arousal classification.
Our method reduces the complexity of the model with respect
to the reduction of dimension of the complex embeddings
and the number of layers in our neural network model. In
the training phase, the time taken to train the model is
relatively fast. The figures show that our model is able to
reduce variance of bias and finds real relationships between
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TABLE 5 | Classification results (%) on the PAFEW dataset.

Valence Arousal

Features Model Recall Precision Accuracy F1-Score Recall Precision Accuracy F1-Score

SF

SVM 0.623 0.623 0.634 ±0.064 0.623 0.714 0.733 0.614 ±0.059 0.723

KNN 0.752 0.752 0.763 ±0.057 0.752 0.713 0.713 0.690±0.060 0.713

Random forest 0.754 0.739 0.754±0.058 0.746 0.724 0.741 0.724±0.058 0.732

Naive bayes 0.612 0.663 0.612±0.063 0.636 0.691 0.691 0.654±0.061 0.691

MLP 0.812 0.812 0.794±0.052 0.812 0.753 0.753 0.744±0.057 0.753

SF-GARG

SVM 0.741 0.741 0.652±0.058 0.741 0.734 0.724 0.633±0.059 0.729

KNN 0.789 0.789 0.745 ±0.054 0.789 0.745 0.745 0.745 ±0.058 0.745

Random forest 0.778 0.778 0.778±0.055 0.778 0.756 0.767 0.745±0.056 0.761

Naive bayes 0.717 0.732 0.690±0.059 0.724 0.724 0.704 0.678 ±0.060 0.714

MLP 0.847 0.862 0.828±0.046 0.854 0.815 0.793 0.770±0.054 0.804

The bold values are the highest accuracy obtained.

TABLE 6 | Classification results (%) on the DEAP dataset.

Valence Arousal

Features Model Recall Precision Accuracy F1-Score Recall Precision Accuracy F1-Score

SF SVM 0.690 0.700 0.590±0.081 0.695 0.705 0.732 0.690±0.078 0.718

KNN 0.750 0.690 0.700±0.082 0.719 0.767 0.745 0.734 ±0.077 0.756

Random forest 0.754 0.702 0.733±0.081 0.727 0.752 0.752 0.713±0.076 0.752

Naive bayes 0.614 0.589 0.623±0.087 0.601 0.754 0.744 0.691±0.077 0.749

MLP 0.774 0.774 0.723±0.074 0.774 0.789 0.783 0.761±0.729 0.786

SF-GARG SVM 0.745 0.749 0.770 ±0.077 0.747 0.700 0.720 0.690±0.079 0.710

KNN 0.740 0.733 0.714 ±0.078 0.736 0.745 0.767 0.734±0.075 0.756

Random forest 0.740 0.740 0.720 ±0.078 0.740 0.750 0.756 0.714±0.076 0.753

Naive bayes 0.720 0.710 0.680 ±0.080 0.715 0.740 0.740 0.689 ±0.078 0.740

MLP 0.805 0.802 0.793 ±0.070 0.803 0.804 0.801 0.802±0.071 0.798

The bold values are the highest accuracy obtained.

FIGURE 5 | Sample confusion matrix of the classification accuracy on the PAFEW dataset, (A) is for Arousal Scale, (B) is for Valence Scale.
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FIGURE 6 | Visualization of training and validation loss on PAFEW dataset during the valence classification. Configuration consists of five layers trained for 700 epochs

with a learning rate of 0.001.

FIGURE 7 | Visualization of training and validation loss on PAFEW dataset during the arousal classification. Configuration consists of five layers trained for 700 epochs

with a learning rate of 0.001.
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TABLE 7 | Accuracy and F1-Score comparison with state-of-the-art-research using electrodermal activity (EDA) signals.

Valence score Arousal score

Paper Dataset Input signals Val Accuracy F1-Score Accuracy F1-Score

Ganapathy et al., 2020 DEAP EDA Leave-one-out 0.721 0.713 0.754 0.791

Koelstra et al., 2012 DEAP EEG, EOG, EMG, SKT, BVP, EDA, RSP Leave-one-out 0.631 0.613 0.574 0.533

Soleymani et al., 2017 DEAP EDA Leave-one-out 0.591 0.574 0.560 0.521

Zhang et al., 2020 DEAP EEG, EMG, EDA, RSP Leave-one-out 0.645 0.696 0.631 0.701

Liu et al., 2020 PAFEW EDA Leave-one-out 0.727 0.727 0.666 0.666

Our Work DEAP EDA, graph embedding Leave-one-out 0.793 0.803 0802 0.798

Our Work PAFEW EDA, graph embedding Leave-one-out 0828 0.854 0.770 0.804

The bold values are the highest accuracy obtained.

TABLE 8 | Taxonomy of the compared approaches to EDA-Based emotion

recognition.

Method Knowledge

graph

embedding

Deep

learning

Wearable

devices

Ganapathy et al., 2020 No Yes No

Koelstra et al., 2012 No No No

Soleymani et al., 2017 No No No

Zhang et al., 2020 No Yes No

Liu et al., 2020 No Yes Yes

SF-GARG Yes Yes Yes

graph and SF vectors from the EDA signal and their
emotional labels.

4. DISCUSSION

In this paper, we focused on two kinds of issues. 1) Knowledge
graph generation using participant’s gender and age information
and 2) Weighted feature fusion issue for EDA emotion
classification system. In generating a knowledge graph using
gender and age, we created triple entities and drew relationships
between EDA signals, participants’ gender and age, and their
respective emotion labels. The weighted feature fusion issue is an
algorithmic idea that exhibits the performance of the proposed
method in an effective way for EDA emotion applications. We
also deliberated the advantages of MLP over other machine
learning methods.

Regarding knowledge graph generation, results indicated
that our deep learning approach can capture relevant complex
information from participants’ gender and age and predict
emotional states correctly. On the contrary, SVM, KNN, RF, and
NB could not fully mine such complex information but averaged
consistent results higher than only SF features which also proves
GARG features as effective for learning representation in EDA.
The deep learning approach can also capture invisible features
that traditional methods cannot. The results also show that our
model can effectively identify true positive results (recall) than
previous EDA-based approach.

Pertaining to the weighted feature fusion issue, the proposed
sophisticated algorithm outruns existing methods. Unlike
previous methods where features from other signals are
directly concatenated, we introduced a transformation matrix
that exploits the gender-age graph embedding features as a
weight to the SF and performed element-wise multiplication.
Table 7 compares our work with previous studies. Our model
is able to reach an F1-measure of 85.4% and 80.4% for
valence and arousal, respectively, for PAFEW dataset. On the
DEAP dataset, our model reaches an F1-measure of 80.3%
on the valence scale and 79.8% on the arousal scale. In
comparison with Koelstra et al. (2012) and Soleymani et al.
(2017) that uses machine learning algorithms, the features
extracted did not particularly reflect participants’ affective
states. Our deep learning approach is data driven and based
on training data. Also, the GARG embedded features reflect
participants’ affective state in the valence-arousal scale. Hence,
the robustness of our method compared to theirs. Additionally,
Ganapathy et al. (2020), Zhang et al. (2020), and Liu et al.
(2020) uses DL but our model was manifestly superior
with regard to training speed with low SD in both valence
and arousal dimension. Table 8 summarizes all compared
methods with respect to some qualitative features. It is easily
observed that our proposed approach possesses two kinds
of qualities—integrating knowledge graph embedding vectors
and EDA features and excellent complexity order those other
methods do not.

The proposed knowledge graph and EDA-based method
take advantage of a single EDA module and graph
embedding tricks to improve fusion performance. Our
approach does not consume more computation time
compared with other methods that use multiple kernel
combination techniques. The introduction of the learnable
transformation matrix enables the feature space to form
an implicit combination. This is less computationally
expensive compared to other methods. The multilayer
neural network employed exhibits strength and flexibility in
representation learning hence superior performance regarding
fusion capabilities.

Finally, none of the previous works utilized participants’
GARG embeddings as weight to statistical features to optimize
their approach. This is an important advantage of our proposed
approach. Investigating GARG embeddings and accurately
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combining them with SFs lead to a 4% and 5% increase in
performance on the PAFEWdataset and 3% and 2% on the DEAP
dataset for valence and arousal, respectively.

In the future, we can try to explore more physiological
signals like EEG, EMG, and BVP with knowledge graph
embeddings and devise new fusion techniques to improve
emotion classification results.

5. CONCLUSION

This paper investigates the feasibility of employing GARG
embeddings features and EDA/GSR Statistical Features (SF) to
build an emotional state classification system. We proposed
an effective knowledge graph method that uses gender and
age information that is mostly ignored in feature analysis to
predict participants’ emotional states. We then extract SFs
from the EDA/GSR data consistent with cognitive research.
Finally, we introduced a weighted fusion strategy that uses
GARG embeddings as a weight to SFs to improve classification
performance. We evaluated our study on PAFEW and DEAP
datasets. The results obtained show the superiority of our
approach when compared to previous works.
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