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Aging is a process that leads to the deterioration in physiological functioning of the
brain. Prior research has proposed that hippocampal aging is accompanied by genetic
alterations in neural, synaptic, and immune functions. Nevertheless, interactome-based
interrogations of gene alterations in hippocampal aging, remain scarce. Our study
integrated gene expression profiles of the hippocampus from young and aged rats and
functionally classified network-mapped genes based on their interactome. Hippocampal
differentially expressed genes (DEGs) between young (5-8 months) and aged (21—
26 months) male rats (Rattus norvegicus) were retrieved from five publicly available
datasets (GSE14505, GSE20219, GSE14723, GSE14724, and GSE14725; 38 young
and 29 aged samples). Encoded hippocampal proteins of age-related DEGs and their
interactome were predicted. Clustered network DEGs were identified and the highest-
ranked was functionally annotated. A single cluster of 19 age-related hippocampal
DEGs was revealed, which was linked with immune response (biological process,
P = 1.71E-17), immunoglobulin G binding (molecular function, P = 1.92E-08), and
intrinsic component of plasma membrane (cellular component, P = 1.25E-06). Our
findings revealed dysregulated hippocampal immunoglobulin dynamics in the aging rat
brain. Whether a consequence of neurovascular perturbations and dysregulated blood-
brain barrier permeability, the role of hippocampal immunoregulation in the pathobiology
of aging warrants further investigation.

Keywords: hippocampus, aging, rat brain, differentially expressed genes, gene expression, immunoglobulins,
blood-brain barrier

INTRODUCTION

Aging is a ubiquitous yet inevitable biological phenomenon that drives the transient deterioration
in physiological functioning of the brain. Brain aging is associated with cognitive decline including
memory and executive function, perturbations which often correlate with age-driven structural
alterations that are accompanied by neuronal loss and synaptic dysfunction (Lopez-Otin et al.,
2013). Aging also constitutes the primary risk factor for many neurodegenerative diseases,
including Alzheimer’s and Parkinson’s disease, of which prevalence increases with advancing age
(Kennedy et al., 2014).

The hippocampus is a brain locus fundamental to cognition, with a profound role in learning
and memory consolidation (Jack et al., 1999). Prior research has documented that structural
and functional changes in the hippocampus correlate with development and disease severity
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of neurodegenerative disorders linked with cognitive decline.
Previous studies have revealed that hippocampal aging is similar
in humans and in animal models, with prominent genetic
dysregulation in neural, synaptic and immune functions.

Neurobiological alterations seen in the aging brain can
precede apparent histopathological degeneration of the brain,
suggesting that analysis of brain gene expression may offer unique
insights into the molecular mechanisms underlying age-related
changes (Lu et al., 2004). At present, interactome mapping and
network-based interrogations of gene-specific targets bearing
functional significance in hippocampal aging, remain largely
unexplored. In this study, we integrated publicly available gene
expression profiles of the hippocampus from young and aged
rats to identify putative alterations in hippocampal processes
underlying aging.

MATERIALS AND METHODS

Collection of Microarray Data

We screened the literature through the Gene Expression
Omnibus for relevant peer-reviewed datasets based on organism
type (Rattus norvegicus), expression profiling (microarray),
sample type (brain hippocampal tissue), and condition (aging),
using the search terms “aged” or “aging” or “old” or “young” and
“brain” or “hippocampus.” No restrictions based on language and
geographic origin were used in our search, while no exclusion
criteria in the baseline characteristics of animals from which
tissue sections were obtained, were applied. Duplicate gene
expression sample and series or those lacking expression data for
controls or with incompatible platforms, were excluded. Author
(PG) formulated the search strategy and in conjunction with a
second author (KP), the yielded datasets were screened and any
discrepancies in the literature search were resolved.

Identification of Differentially Expressed

Genes

Brain hippocampal samples from healthy young and aged rat
models were compared and differentially expressed genes (DEGs)
were retrieved using ImaGEO (Toro-Dominguez et al., 2019).
Significance analysis and integration were conducted using the
fixed effect model to identify those DEGs with the strongest
average effect across the collected datasets. This approach was
followed as both the treatment (i.e., aging) and expression
array platforms were orthogonal between datasets. Genes with
a P < 0.05 corrected by the Benjamini-Hochberg (BH) false
discovery rate (FDR) were regarded as significant. DEGs with
Z score > 1.96 were classified as upregulated, while those
with Z score < 1.96 as downregulated (corresponding to a
significance level of 5%).

Prediction of Network-Based Protein

Interactions

Encoded hippocampal proteins of the aging DEGs and their
interactome were predicted into a protein-protein interaction
(PPI) network using The Search Tool for the Retrieval of

Interacting Genes via a medium probabilistic confidence score
of >0.4 and mapped with Cytoscape (Szklarczyk et al., 2019).
A reasonably moderate cut-off score was ensued to amplify the
coverage of all potential protein interactions without inflating
their precision. Proteins lacking any interactions were excluded
from the network.

Identification of Clustering Modules and
Characterization of Gene Hubs

Central gene elements of the aging rat hippocampal network
were inferred by measuring network features from their
complex interactome and by identifying sub-networks and
hub objects (Giannos et al., 2021a,b, 2022). Highly clustered
DEGs or densely connected modules in the PPI network
were identified using the molecular complex detection (Bader
and Hogue, 2003). Cut-off selection was ensued based on
the default network scoring parameters: degree cut-off = 2,
haircut cluster finding, node score cut-off = 0.2, K-core = 2,
and max depth = 100. The interactome interference of module
DEGs in the PPI network was quantified using CytoHubba
(Chin et al,, 2014). Module DEGs were ranked based on
the intersection of 11 established topological algorithms,
as previously described: Degree, Closeness, Betweenness,
Radiality, Stress, EcCentricity, BottleNeck, Edge Percolated
Component, Maximum Neighborhood Component, Density
of Maximum Neighborhood Component, and Maximal Clique
Centrality.

Functional Annotation Enrichment
Analysis

Enrichment of aging DEGs in the rat hippocampus was
predicted using Gene Ontology (GO) annotations from the
Molecular Signatures Database (Liberzon et al., 2015). Functional
classification was ensued using a probability density P < 0.05
following BH FDR correction and categorized into three groups
of GO terms: biological process (BP), molecular function (MF),
and cellular component (CC).

RESULTS

Overview of Microarray Datasets

The search of the GEO database resulted in 4811 datasets, of
which 3981 contained gene expression data from organisms other
than rats. From these, 111 microarray datasets were retrieved
after exclusion of 717 datasets which included non-profiling by
array expression data from samples other than tissues. Further
exclusion of 106 studies with either duplicate gene expression
samples or series and incompatible gene expression platform
resulted in 5 eligible datasets: GSE14505 (Nagahara et al,
2009), GSE20219 (Blalock et al., 2010), GSE14723 (Haberman
et al.,, 2011), GSE14724 (Haberman et al., 2011), and GSE14725
(Haberman et al, 2011; Figure 1). The retrieved datasets
consisted of 38 young (5-8 months) and 29 aged (21-26 months)
male rat hippocampal tissue samples (Supplementary Table 1).
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GEO search

"((aged) OR (aging) OR (old) OR
(young)) AND (brain) or
(hippocampus)"

4811 datasets retrieved

3981 datasets,
other than rat samples

Y

546 datasets, other
than microarray

8 datasets,
duplicate GSE / GSM

830 datasets
retrieved

111 datasets
retrieved

171 datasets,
other than tissue

98 datasets,
incompatible platform

5 datasets retrieved:
GSE14505, GSE20219,
GSE14723, GSE14724,

GSE14725

FIGURE 1 | Search strategy for the selection of eligible gene expression datasets from the National Center for Biotechnology Information Gene Expression Omnibus.

Differentially Expressed Genes in
Hippocampal Aging

Integration analysis revealed a total of 527 aging DEGs,
of which 278 showed significantly increased hippocampal
expression while 249 DEGs decreased expression in the rat brain
(Supplementary Table 2).

Protein-Protein Interaction Network and
Functional Modules in Hippocampal

Aging

A PPI network of DEGs in the aging rat hippocampus was
constructed and consisted of a total of 474 encoded proteins with
1,862 interactions. A single highest-ranked clustering module
was retrieved and consisted of 19 upregulated aging DEGs
with 362 interactions among 92 genes: allograft inflammatory
factor 1 (AIF1), complement C1q A chain (C1QA), complement
Clq B chain (C1QB), complement Clq C chain (C1QC),
CD53 molecule (CD53), CD74 molecule (CD74), colony
stimulating factor 1 receptor (CSFIR), cathepsin S (CTSS),
Fc epsilon receptor Ig (FCER1G), Fc gamma receptor Ila
(FCGR2A), Fc gamma receptor IIb (FCGR2B), Fc gamma
receptor IIla (FCGR3A), fibrinogen like 2 (FGL2), integrin
subunit beta 2 (ITGB2), lysosomal protein transmembrane
5 (LAPTMS5), macrophage expressed 1 (MPEG1), pleckstrin
(PLEK), triggering receptor expressed on myeloid cells 2

(TREM2), and transmembrane immune signaling adaptor
TYROBP (TYROBP; Figure 2, Table 1, and Supplementary
Table 3). Multi-algorithmic topological analysis revealed MPEG1
as the highest ranked hub gene (Supplementary Table 4). DEGs
in the highest-ranked clustering module were most enriched
with immune response (BP, P = 1.71E-17), immunoglobulin G
binding (MF, P = 1.92E-08), and intrinsic component of plasma
membrane (CC, P = 1.25E-06; Supplementary Table 5).

DISCUSSION

Analysis of DEGs from hippocampal tissues from young (5-
8 months) and aged (21-26 months) rats, identified a single
highly clustered gene module consisted of 19 upregulated
DEGs: AIF1, C1QA, CIQB, CIQC, CD53, CD74, CSFIR,
CTSS, FCERIG, FCGR2A, FCGR2B, FCGR3A, FGL2, ITGB2,
LAPTMS5, MPEGI, PLEK, TREM2, and TYROBP. Functional
annotations of these DEGs revealed an association with
ontology processes of immune response and immunoglobulin
G binding, and properties of an intrinsic component of
plasma membrane. Our findings revealed dysregulated
hippocampal immunoglobulin dynamics both in terms of
expression and interactions in the aging rat brain, rendering
these DEGs as a potential marker of putative neurogenetic
alterations during aging.
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FIGURE 2 | Highest-ranked clustering gene module in the protein-protein interaction network of differentially expressed genes between young (5-8 months) and
aged (21-26 months) of the rat hippocampus. Red indicates upregulated and blue downregulated node genes. AlF1, allograft inflammatory factor 1; C1QA,
complement C1g A chain; C1QB, complement C1q B chain; C1QC, complement C1qg C chain; CD53, CD53 molecule; CD74, CD74 molecule; CSF1R, colony
stimulating factor 1 receptor; CTSS, cathepsin S; FCER1G, Fc epsilon receptor Ig; FCGR2A, Fc gamma receptor lla; FCGR2B, Fc gamma receptor llb; FCGR3A, Fc
gamma receptor llla; FGL2, fiorinogen like 2; ITGB2, integrin subunit beta 2; LAPTM5, lysosomal protein transmembrane 5; MPEG1, macrophage expressed 1;
PLEK, pleckstrin; TREM2, triggering receptor expressed on myeloid cells 2; and TYROBP, transmembrane immune signaling adaptor TYROBP.

Dysfunctions of the blood brain barrier (BBB) are often
linked with increased peripheral uptake of immunoglobulins
and other plasma proteins in the brain (Bake et al, 2009).
Post-mortem insights have demonstrated that breakdown of
BBB in response to neurodegeneration is characterized by
accumulation in hippocampal blood-derived immunoglobulins.

Dysregulated BBB permeability is characterized by perturbations
in the crosstalk among brain endothelial cells, pericytes, and
astrocytes of the neurovascular microenvironment (Montagne
et al., 2015). Aging related neurovascular unit dysfunction may
arise from normal cell senescence or pathologically under age-
related distress, such as cerebrovascular accident or reperfusion
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TABLE 1 | Characteristics of the highest-ranked clustering gene module in the
protein-protein interaction network of differentially expressed genes of the
hippocampus between young (5-8 months) and aged (21-26 months) rats.

Gene ID P-value Z-score Gene name

AIF1 1.32E-02 3.64 Allograft inflammatory factor 1

C1QA 3.47E-09 7.00 Complement C1g A chain

C1QB 5.43E-04 4.60 Complement C1qg B chain

c1QC 2.90E-06 5.79 Complement C1q C chain

CD53 3.98E-07 6.15 CD53 molecule

CD74 1.36E-08 6.75 CD74 molecule

CSF1R 4.79E-03 3.98 Colony stimulating factor 1 receptor

CTSS 8.61E-09 6.83 Cathepsin S

FCER1G 4.80E-10 7.34 Fc epsilon receptor Ig

FCGR2A 2.85E-02 3.35 Fc gamma receptor lla

FCGR2B 4.78E-09 6.93 Fc gamma receptor lib

FCGR3A 3.36E-02 3.29 Fc gamma receptor llla

FGL2 1.25E-05 5.46 Fibrinogen like 2

[TGB2 2.48E-03 4.18 Integrin subunit beta 2

LAPTM5 3.70E-06 5.73 Lysosomal protein transmembrane
5

MPEG1 5.75E-04 4.58 Macrophage expressed 1

PLEK 2.67E-03 416 Pleckstrin

TREM2 7.34E-04 4.52 Triggering receptor expressed on
myeloid cells 2

TYROBP 9.92E-09 6.80 Transmembrane immune signaling

adaptor TYROBP

injury (i.e., ischemic stroke) and predisposition to neurogenetic-
driven degeneration (i.e., Parkinson’s disease and Alzheimer’s
disease), with peripheral immune penetration leading disease
progression (Cai et al., 2017; Li et al., 2019).

Genomic stability is an essential requirement for the
maintenance of functional and structural integrity of the BBB.
Accumulation of DNA damage in terms of DNA breaks, cross-
links, and bases mismatches (McKinnon, 2013; Lodato et al.,
2018) and aberrations across the DNA repair machinery (Santos
et al., 2013; Chow and Herrup, 2015; Zhao et al., 2017), have all
been described during aging (Li et al., 2019). In this way, altered
DNA damage responses and repair signaling likely underlie the
penetration of blood-derived substances and the dysregulation
of immunity in the aging hippocampus, both of which are
intimately linked with neurodegenerative progression (Lucin and
Wyss-Coray, 2009). Whether a consequence of neurovascular
dysfunction and dysregulated blood-brain barrier permeability,
the role of hippocampal immunoregulation in the pathobiology
of aging warrants further investigation.

Strengths and Limitations

This is the first study that comprehensively examined the
potential role of DEGs and their interactome as gene biomarkers
in hippocampal aging using 5 publicly available datasets
with almost 70 included rat samples and using a multi-
algorithmic protein-interaction based functional approach that
was dependent on different levels of annotation. Nevertheless,
certain conceptual and methodological limitations exist.
Hippocampal tissue distribution from which gene expression

was derived in the included studies was sparsely heterogeneous,
ranging from whole hippocampus samples to those from
dorsal and ventral areas, the CA1/CA3 regions or the dentate
gyrus. Although histologically distinguishable subfields, these
likely share common genomic organizations and thus, aging
related accumulation of DNA damage from these subregions
may be overlapping (Van der Meer et al,, 2020). Moreover,
despite that the expression profiling platforms employed
by the included datasets were indifferent, lab effects due to
experimental variation are known to hinder statistical power
in DEGs detection, a challenge which remains even after
normalization (Johnson et al., 2007; Roberts et al., 2011; Hansen
et al., 2012; Dillies et al., 2013; Lyu and Li, 2016). Yet, an attempt
to address unknown cross-study heterogeneity was made by
integrating gene expression rather than considering their overlap
between datasets.

CONCLUSION

Immunoglobulin  dysregulation distinguishes hippocampal
gene expression between aged and young rat brains. Increased
awareness of the potential role of hippocampal-focused
immunity in the pathobiology of aging, may reveal whether
immunoglobulin dysregulation forms the culprit of hippocampal
aging and not merely an epiphenomenon of aging-related
alterations in BBB.
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