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Action recognition is an exciting research avenue for artificial intelligence since

it may be a game changer in emerging industrial fields such as robotic visions

and automobiles. However, current deep learning (DL) faces major challenges

for such applications because of the huge computational cost and ine�cient

learning. Hence, we developed a novel brain-inspired spiking neural network

(SNN) based system titled spiking gating flow (SGF) for online action learning.

The developed system consists of multiple SGF units which are assembled

in a hierarchical manner. A single SGF unit contains three layers: a feature

extraction layer, an event-driven layer, and a histogram-based training layer. To

demonstrate the capability of the developed system, we employed a standard

dynamic vision sensor (DVS) gesture classification as a benchmark. The results

indicated that we can achieve 87.5% of accuracy which is comparable with

DL, but at a smaller training/inference data number ratio of 1.5:1. Only a

single training epoch is required during the learning process. Meanwhile,

to the best of our knowledge, this is the highest accuracy among the

non-backpropagation based SNNs. Finally, we conclude the few-shot learning

(FSL) paradigm of the developed network: 1) a hierarchical structure-based

network design involves prior human knowledge; 2) SNNs for content-based

global dynamic feature detection.

KEYWORDS

spiking network, few-shot learning, online learning, gesture recognition, brain-

inspired computation

1. Introduction

Deep learning (DL) nowadays exerts a substantial impact on a wide range of

computer vision tasks such as face recognition (Hu et al., 2015) and image classifications

(Krizhevsky et al., 2012). But, it is still facing major challenges when processing

information with high dimensional spatiotemporal dynamics such as video action

recognition. This is because of two reasons: 1) the huge computational cost: the deep

neural networks have to capture dynamic information across timing dimensions, which
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FIGURE 1

The spike gating flow (SGF) system concept. It consists of

multiple SGF units. Each SGF unit involves three layers: 1) a

feature extraction layer, 2) an event-driven layer, and 3) a

training layer. On the top left, there is an example of a four-event

classification SGF system: A, B, C, and D are four event types.

requires significant computational resources for the training

stage (He et al., 2016) and 2) inefficient learning: events contain

significant global dynamic features that are seldom captured by

the DL, but these can be easily recognized by biological systems

(Purves et al., 2014). One promising technology of sparsity (Liu

et al., 2015, 2021; Wen et al., 2016) can relieve the first issue of

the intensive computation to some extent, but the training cost

is still enormous. Recently, few-shot learning (FSL) is proposed

to tackle this problem. With prior knowledge, FSL can quickly

generalize to new tasks with only a few labeled training samples

(Sung et al., 2018; Wang et al., 2020; Chen et al., 2022).

Fortunately, spiking neural networks (SNNs) are an

alternative candidate to perform spatiotemporal related tasks

(Lobo et al., 2020) with FSL capability. By taking the natural

characters of computing with time and in an event-driven

manner, real-world event information will be encoded into

spike trains as inputs along with timing frames. With a brain-

inspired hierarchical network processing, the output spike

patterns are interpreted as inference results via neural decoding

methods (e.g., spike timing coding, rank coding, and spike

count coding). Therefore, this could be an efficient technique for

such applications, and another potential path toward the next

generation AI (Furber and Temple, 2008).

However, employing SNNs for action recognition remains

challenging since it lacks an efficient learning algorithm.

Recently, SNN-based learning systems can be classified into

three levels: a micro-level, a middle-level, and a macro-level

system. A micro-level system emphasis place on utilizing low-

level spiking neuron computing characters such as the temporal

process and in an integration-and-fire manner (Caporale and

Dan, 2008; Lee et al., 2016; Amir et al., 2017; Wu et al., 2018;

Zhang and Li, 2019). For instance, Wu et al. (2018) proposed

an SNN-based spatiotemporal back-propagation (BP) for a

dynamic N-MINST event classification, the developed algorithm

successfully combined spatial and temporal domain kernels and

achieved inference accuracy of 98.78%. Also, Amir et al. (2017)

illustrated a convolution neural network (CNN)-based SNN

for gesture classification. By employing an event-driven sensor

and the TrueNorth neuromorphic chip, the system shows 178.8

mW power consumption and 96.49% of accuracy. Meanwhile,

a reservoir layer-based SNN utilizes the spike-timing dependent

plasticity (STDP) rule to update weights. Such a novel network

can achieve top-3 accuracy of 95% on IBM DVS gesture task

(Amir et al., 2017). However, the higher-level computing entities

in SNN such as attractor dynamics are missing in the system,

which results in inefficient learning.

A middle-level system indicates that SNNs apply global

dynamic behaviors in the learning process (Eliasmith, 2005;

Sussillo and Abbott, 2009; Bekolay et al., 2014; Voelker

et al., 2019; Luo and Chen, 2020; Chilkuri et al., 2021).

A FORCE learning method (Sussillo and Abbott, 2009)

is able to convert network chaos patterns into a desired

one by modifying synaptic weights. Also, a neural engine

framework (NEF) develops a method to build dynamic

systems based on spiking neurons (Bekolay et al., 2014).

Such an approach leverages neural non-linearity and weighted

synaptic filters as computational resources. Compared to the

first SNN type, a middle-level based SNNs place emphasis

on global network dynamics rather than individual spiking

neurons characters. Therefore, such systems demonstrate much

better learning behaviors regarding scalability (Voelker et al.,

2019) and model sizes (Chilkuri et al., 2021) in some

particular scenarios.

A macro-level system includes advantages of both micro-

level and middle-level systems (Sussillo and Abbott, 2009;

Imam and Cleland, 2019). It combines detailed spiking neuron

characters and network dynamics together to form a unique

learning system. For instance, an olfactory SNN is largely

based on the mammalian bulb network architecture, and

with a line attractor-based neural plasticity rule for online

learning odorants (Imam and Cleland, 2019). The developed

system shows great one-shot learning behavior compared to

the DL. Meanwhile, Wu et al. (2022) proposed a spike-based

hybrid plasticity model for solving FSL, continual learning,

and fault-tolerance learning problems, and it combines both

local plasticity and global supervise information for multi-

task learning.

In this work, we developed a novel macro-level system titled

spike gating flow (SGF) for action recognition as shown in

Figure 1. The system consists of multiple SGF units that are

connected in a hierarchical manner. An SGF unit consists of

three layers: 1) a feature extraction layer for global dynamic

feature detection; 2) an event-driven layer for generating

event global feature vectors; 3) a supervise-based histogram

training layer for online learning (redlines in Figure 1). By

employing a dynamic vision sensor (DVS) (Posch et al., 2011)-

based gesture dataset (Amir et al., 2017) as a benchmark,
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the results demonstrated that the developed SGF had great

learning performance: 1) the system can achieve the same level

of accuracy of 87.5% as the DL but with a training/inference

sample ratio of 1.5:1. More importantly, only one epoch is

required during the training; 2) to our best knowledge, this is the

highest accuracy among the non-BP based SNNs; 3) the system

consumes only 9 mW and 99 KBmemory resources on an FPGA

board at the inference stage. In summary, the contributions are

as follows:

• Algorithm aspect: we developed an efficient FSL system

for gesture recognition, which behaves like biological

intelligence: FSL, energy efficient, and explainable.

• Application aspect: the SGF-based hardware showed

reasonable memory size (99 KB) and power consumption

(9 mW), which was suitable for the edge/end-device

scenarios.

• Learning theory aspect: we concluded one FSL paradigm:

1) a hierarchical structure-based network design involves

prior human knowledge; 2) SNNs for global dynamic

feature detection.

2. The spike gating flow

The Spike Gating Flow (SGF) is a new learning theory

to achieve online few-shot training, which is inspired from

the neural engineering framework (NEF) (Paulin, 2004) and

brain assemble theories (Papadimitriou et al., 2020). In brief,

the FSL capabilities rely on the prior knowledge embedded in

the hierarchical architecture and global feature computing. The

online computing benefits from using dynamic spike patterns

to encode both data and control flow. Therefore, different level

nodes in the network are served as gates to pass or stop input

data information, and spikes are served as gate control signals.

We have concluded the key principles of SGF as below:

• Global feature representations: Network representations

are defined by the combination of different global

movement features rather than local pixel features.

• Tailor designed hierarchical network structure: A

hierarchical structure-based network for conditional

data-path execution. Depending on inputs, SGF unit

spike patterns are served as gate commands to manipulate

data-paths.

• Histogram based training algorithms: A global feature-

based histogram training adjusts output layer weights based

on historical information.

Based on such principles, we designed three SGF units and

carefully connected them into a two-level network, particularly

for online gesture recognition. Such an architecture could be

considered as a pre-designed learning rule, and each SGF unit

FIGURE 2

The spiking gating flow (SGF) network architecture. It mainly

consists of three SGF units: a spatial SGF unit A and temporal

SGF units B and C. A spatial SGF unit A has four SNNs with

feature ID index A-D (A: intensive activities at constrained left

areas; B: mild activities at plateau left areas; C: mild activities at

plateau right areas; D: intensive activities at constrained right

areas). A temporal SGF unit B has two SNNs with feature ID E,F

(E: clockwise movement; F: counter-clockwise movement). A

temporal unit C has four SNNs with feature ID index H-K (H:

top-down; I: bottom-up; J: left-right; K: right-left). Also, the

developed network has 10 output neurons corresponding to 10

action types.

was designed based on the cell assemble theories (Müller et al.,

2020), and it responded to unique content-based global dynamic

features. These units could be assembled into hierarchical levels

according to prior human knowledge, which facilitated the

learning efficiency of the system. As shown in Figure 2, the top

area of the developed network was a spatial SGF unit A, and the

bottom areas were temporal SGF units B and C. We designed

the SGF network by breaking the complex gesture features into

spatial and temporal domains in sequence. For example, the

SGF unit A captured spatial features, such as action ranges and

intensities, and generated a coarse-grained classification. The

SGF units B and C are in charge of refining them into final results

by detecting the temporal information. Typically, an SGF unit

consisted of three layers: a feature extraction layer, an event-

driven layer, and a histogram-based training layer. Also, there

can be some structural variations of SGF units. For instance, the

SGF unit B has a feature extraction layer only.

For an SGF unit computing process, at first, a feature

extraction layer is used to detect global dynamic features of

events. Each SGF unit has several corresponding spatial SNNs

and temporal SNNs, which target in detecting different global

features (features with index A-I are shown in Figure 2). An
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SGF unit A has four spatial SNN networks, which respond to

spatial feature detection as below: A) intensive activities at a

constrained left area; B) mild activities at a large left area; C)

mild activities at a large right area; D) intensive activities at

constrained right areas. An SGF unit B has two temporal SNN

networks for E) clockwise movements and F) counter-clockwise

movements. Particularly, a prior human knowledge of event

sequences is introduced here for designing E and F. An SGF unit

C has four temporal SNNs and one spatial SNN for detecting

as follows: G) intensive activities at a specific constrained area.

H) up-down movements; I) bottom-up movements; J) left-

right movements, and K) right-left movements. The detailed

computing mechanisms of SNNs are described in Section 3 of

SNN design.

Next, there is an event-driven layer that connects SNNs

outputs to the global feature neurons. This layer is responsible

for generating event feature vectors for the next training

layer. Typically, an event class will have several feature vectors

types due to the spatiotemporal variations. A feature vector

can be defined as a combination of feature indexes of all

active SNNs, which are represented by connecting active

SNNs to one global neuron. Therefore, for each action type,

global feature neuron number is equal to the feature vector

type number.

At last, an SGF unit has a fully connected histogram-based

training layer, in which each output neuron connects to its all

global feature neurons. After each training trail, feature vector

histogram will be updated and converted into corresponding

weights. In addition, the conversion is a normalization process.

This result of the higher the histogram number is, the

bigger the weights are. At the inference stage, the feature

vector generated from a test sample will be sent into all

output neurons for final scores, which follows the equation

as below:

Sm =
∑

j

∑

Tm
j ⊙ V

Lv
× wm

j (1)

Where Sm ∈ [0, 1] is a testing sample score at mth output

neuron (mthclassification);wm
j ∈ [0, 1] is the weight of jth feature

vector for the mth output neuron; Tm
j is the jth feature vector

of the mth output neuron; and V is the feature vector of the

testing samples. Both the Tm
j and V consist of 1-bit values which

belong to {0, 1}. The symbol ⊙ is a bit-wise NXOR operation,

and Lv is the length of the feature vector. Then, the final decision

is the classification with the highest score. The key advances of

such a learning algorithm are that each data sample only requires

one training time and tiny computational resources for updating

weights, which enables rapid online learning behaviors.

A detailed example is illustrated in Figure 3. SNNs with

feature index A and D are active at the first training trail,

which forms a feature vector[A − D]. Hence, a corresponding

global feature neuron is generated that connects to SNNs with

feature indexes A and D (connected with red lines). A feature

vector histogram is also displayed in Figure 3A left. After that,

the feature vector[A − D] histogram values will be converted

into output neuron weights of event type A. It is clearly

seen that the weight is one since there is only one feature

vector type (Figure 3A). Meanwhile, a knowledge graph of event

type A is produced through quantitative analysis of feature

vectors distributions (Figure 3A right). At a 10th training trail,

there are three more feature vectors generated [A − C,A,C]

(Figure 3B left red lines). This indicates that there are in total

four types of feature vector in the event type A. Identically,

corresponding feature vectors histogram numbers [3, 1, 5, 1] will

be transformed into event A neuron outputs weights via a

training layer. The feature vector’s distribution is also updated

in the knowledge graph: a vector with green lines indicates

that histogram values are decreased, while a vector with red

lines indicates that histogram values are raised. At the end of

a 100th training trail, there is no new feature vector appeared,

which results in the same global feature neuron number as

the 10th training trail. The event A output neuron weights are

updated based on the current histogram numbers as a final

result. Similarly, the event types B and C follow the same training

procedures.

At the inference stage, a test sample was given into the

trained network, which would generate a corresponding test

feature vector. It would go through all the output neurons to

calculate the final scores. As shown in Figure 3D, there is a

trained network which contains three output neurons, whose

inference classification result is the maximum one among these

output neuron scores.

The online learning process example is shown in Figure 3E.

At an initial stage, event group A [3: right-hand wave; 2: left-

hand wave] was sent into the network for training. Since event

group A contained significant spatial features, only a spatial

SGF unit A was active and responsible for generating feature

vectors. After finishing learning event group A, event group B [4:

right arm clockwise, 5: right arm counter clockwise, 6: left arm

clockwise, and 7: left arm counter clockwise] was sent into the

network for sequential online learning. Identically, a temporal

SGF unit B was active for recognizing clockwise/counter

clockwise movements. At last, event group C [1: hand clap, 2:

left-hand wave, 8: arm rolls, 9: air drum, and 10: air guitar] was

sent into the network that contained complex combinations of

vertical and horizontal movements. The SGF unit C was active

for learning such features. As it can be seen, the final network

architecture varied depending on the learning targets.

3. Design of SNNs

We have developed two types of SNNs, spatial SNN and

temporal SNN, and a preprocessing module, spatiotemporal
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FIGURE 3

(A–D) The histogram-based training example of an event type A. (E) An example of the system online learning process.

(ST) cores. An ST core aims to reduce the background noise

of the DVS camera and enhance the key ST information.

Spatial SNNs respond to capturing event’s spatial features.

Temporal SNNs are expert in distinguishing object movement

directions. By combining these SNNs, a system can have rich

representations of various ST features for action classifications.

3.1. ST core

Since a DVS camera has a unique output format, a ST core

is designed for DVS output preprocessing: 1) to reduce the

DVS output noise and 2) to enhance the key spatiotemporal

information. An ST core involves two-stage computations:

spatial and temporal processing. The mathematical model is

as below:

STt
m =







∫ t

t−1STt





i+1STs
∑

i

dtm





θs

dt







θt

(2)

Where STt
m is the output of themth ST core at frame t; dtm is

the output of the mth DVS sensor pixel at frame t, which equals

to –1 or +1; 1STs is the detection range of an ST core. The

function [S]θs equals 1 if S is over spatial thresholds θs. Regarding

the temporal computations,1STt is an integration window, and

θt is a temporal threshold. The function [T]θt equals 1 if T

is over spatial thresholds θt . As a result of this, by adjusting

the above four parameters [1STs, θs, 1STt , and θt], we can

configure the ST core filtering behaviors properly. In general,

each SNN will require an ST core for feature extraction. More

details of preprocessing the DVS gesture dataset are illustrated

in the Result Section 4.3.

3.2. Spatial SNNs

A spatial SNN is designed for extracting spatial features

based on the ST core outputs. The computing mechanism is

quite similar to an ST core. However, the major differences rely

on the following: 1) the outputs of a spatial SNN are a feature

vector; 2) a spatial SNN does not require temporal information,

and it accumulates all the frames of [0, T] together first and

performs spatial computing. The spatial SNN equations are

as below:

SPm =





i+1SPs
∑

i

[

∫ t=T

t=0
STt

mdST

]θi




θa

(3)

Where T is the total frame number of an event. 1SPs is

the detection size and SPm is the mth spatial SNN outputs. The

outputs can be a single bit or multiple bits. θi is the gate neuron
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FIGURE 4

(A) The spatial spiking neural network (SNN) computing

mechanism. The event consists of T frames in total. (B) Examples

of three spatial SNNs focus on di�erent global feature detection.

threshold for intensity, and θa is the gate neuron threshold for

the area. As Figure 4A depicts, an event consisting of T frames

is processed by intensity gate neurons first. After that, intensity

gate neuron spikes are employed as inputs for area gate neurons.

By adjusting two thresholds’ values, three different spatial

SNNs can be reconstructed in Figure 4B: 1) spatial SNNs with

feature index [A,D]: intensive activities as a constrained area

[θ1 > θ2]; 2) spatial SNNs with feature index [B,C]: mild

activities at a large area [θ1 < θ2]; and 3) spatial SNNs with

feature index [G]: intensive activities at a specific location.

3.3. Temporal SNNs

Temporal SNNs are designed for detecting the movement

directions of an event (e.g., up-down, left-right). The key

principle is to encode the object’s temporal location into

temporal neuron spiking patterns. The equation is shown below:

TEtm =





nt−1TEt
∑

i

[

ltm − l
t−1TEt
i

]θl





θte

(4)

Where TEtm is the output of the mth temporal neuron at

frame t; lti is the location of the ith temporal active neuron

at frame t, the location can be either vertical or horizontal

information depending on the temporal SNN type. 1TEt is the

comparison frame window; θl is the location index threshold,

nt−1TEt is the active neuron number at frame t − 1TEt . θte

is the temporal neuron spiking threshold. For each frame, the

object location is calculated by selecting the maximum location

index of fired neurons. Therefore, objects’ temporal movement

patterns can be obtained by a combination of the generated

object location at each frame, which serves as event temporal

feature vectors.

FIGURE 5

The temporal SNN with feature index H top-down computing

mechanism. Also, reference patterns of temporal SNNs with

feature indexes E, F, and I are shown at bottom as well. (A) The

object movement. (B) Temporal SNN outputs. (C) Detected

temporal SNN spiking patterns. (D) Reference pattern.

For instance, Figure 5 shows a temporal SNN with feature

index H for detecting top-down movements. At a frame n,

an object is vertically located at areas from [4, 1] to [4, 5].

Since this is the first frame, a temporal SNN does not generate

activities because there is no reference for comparison. At a

frame n + 1, an object is moving down to a new location

as the gray color indicates. Each active neuron (neuron that

receives non-zero ST core outputs) compares its location to

all the active neurons at the previous compared frame. If the

current neuron location is lower than that of the previous

frame, the current neuron receives an input value from the

compared neuron. In this top-down case, the location index

is defined as the vertical information (Y-axis). The temporal

SNN outputs are shown in Figure 5B, neurons with dark colors

indicate large input values, while neurons with light colors

indicate limited input values. Neurons then generate a spike

where values are above a threshold θte. After calculating all

the frames, the object’s temporal movements are represented by

the generated temporal feature vectors. A temporal SNN with

feature index H will be active if an object movement temporal

feature vector is consistent with its reference feature vector

which is shown in Figure 5D bottom (top-down feature vector).

Identically, temporal SNNs with feature index [I, J,K] follow

the same computing mechanisms. Corresponding reference

feature vectors are also shown in Figure 5D bottom. Reference

feature vectors that can be pre-defined or learned depend on

the task. Particularly, SNNs with feature index [E, F] clockwise

and counter clockwise require temporal feature vector timing
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information that is based on a prior human knowledge. The

clockwise counter event temporal pattern sequence is defined

as [top-down, left-right, bottom-up, and right-left], and the

clockwise event temporal pattern sequence is defined as [top-

down, right-left, bottom-up, and left-right].

4. Results

DVS Dataset: A dynamic vision sensor gesture dataset

(Amir et al., 2017) (10 classes of gesture actions of which

each contains 98 training sequences and 24 test sequences) is

employed to verify the system’s performance. The event-driven

sensor data is different from the traditional video since the

DVS records the change in each pixel on a 128*128 canvas

independently. Specifically, a spike will be recorded into

sequences if the brightness is changed in the pixel (with the

column and row address).

Experiment Setting: We preprocessed the event-driven

sensor data with a standard method (Rebecq et al., 2019).

A frame is defined to be 1,000 continuous spikes, and each

sequence in the dataset is divided into 50–80 frames. For each

class, we used 36 sequences for training and 24 sequences

for testing.

4.1. Network architecture

The network details and statistical results are shown in

Table 1. The number of input and output neurons of our

designed SNNs can be flexibly configured. The SNNs in unit

B have the largest number of input (16,384) and output (160)

neurons because of the more complex task. As a result, unit B

has more operations (2.1 M) than unit A/C (7–63 K). However,

they have the similar model size since the unit B does not have

the event layer and the histogram-based layer. The details of

parameter calculation are described in Appendix A.

4.2. System accuracy

In Table 2, we first compared the developed network with

two typical SNN-based gesture recognition networks, an STDP-

based SNN (George et al., 2020) and an SGD-based SNN (Perez-

Nieves et al., 2021). To the best of our knowledge, our system

achieved the highest accuracy of 87.5% among state-of-the-art

non-BP-based SNNs. Regarding ANN/DNN converted SNN,

the developed network can reach the same level of accuracy

as SLAYER (Shrestha and Orchard, 2018), but slightly lower

than ConvNet (Amir et al., 2017) at 96.5%, SCRNN (Xing

et al., 2020) at 96.59%, Converted SNN (Kugele et al., 2020) at

96.97%, and PointNet++ (Qi et al., 2017) at 97.08%. However,

the network model size can be reduced by 456 times compared

to the ConvNet (Amir et al., 2017), and the number of operations

can be reduced by 53 times compared to the PointNet++

(Qi et al., 2017).

Finally, the developed SGF only requires 1 training

epoch at a condition of training/inference ratio of 1.5:1,

while DL networks typically require hundreds of training

epochs at a condition of 3.8:1. This indicates that the

system training cost is significantly lower than the DL-based

networks.

4.3. SNNs behaviors

The spiking neural networks can be tuned by adjusting the

thresholds. For a particular dataset, we employed a grid search

method to find an optimal threshold based on the training

dataset and required functionalities.

The spatiotemporal core noise cancellation performance is

shown in Figure 6. At the left side of the figure, there are

original event pictures of a hand clap and an air drum. Event

pictures are obtained via an ST core model process. A color

bar on the right displayed spike intensities at each pixel. In

the middle, there are the results of an ST core with weak noise

cancellation (parameters are 1, 1, 2, 2), it is clearly seen that

most of the sparse noise are disappeared. A right, there are

results of an ST core with strong noise cancellation (parameters

are 1, 1, 6, and 5), only most significant features are kept

at this case.

Spatial SNNs computing performance is shown in Figure 7,

events of the right-hand wave and the right-hand clock-wise

movement are employed as examples. The results indicate that

SNN with feature index A generates a spike for an event of the

right-hand wave, since it is only sensitive to intensive activities in

a constrained area. Furthermore, the SNN with feature index B

generates a spike for an event of the right-hand clockwise, which

results from the interest of mild activities on a large area.

Temporal SNNs computing performance is shown in

Figure 8. Here, we employed an event of clockwise counter

as an example. Four original frame information is shown in

the top of Figure 8 top. Corresponding temporal SNNs with

feature indexes H (top-down) and J (left-right) outputs are

shown in the middle of Figure 8. It was clearly observed that

there was a top-down movement pattern followed by a left-right

movement pattern, which were identical to the pattern sequence

of clockwise counter event.

4.4. FSL performance

We also investigated the system’s FSL performance. By

varying the data ratio between the training and inference

stage, results are shown in Figure 9. Compared to a typical

action recognition deep learning model C3D (Tran et al.,
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TABLE 1 The developed network architecture information.

SGF Unit A Unit B Unit C

SNN index(Type*) A(SP) B(SP) C(SP) D(SP) E(TE) F(TE) G(SP) H(TE) I(TE) J(TE) K(TE)

Input neuron number Unit A shares 1,764 input neurons Unit B and C share 16,384 input neurons

Output neuron number 16 18 18 16 160 160 2 2 2 2 2

Feature vector length 16 18 18 16 160 160 2 2 2 2 2

Number of OPs 56.0 K 63.0 K 63.0 K 56.0 K 2.1 M 2.1 M 7.0 K 27.2 K 27.2 K 27.2 K 27.2 K

Model size 304 Byte 342 Byte 342 Byte 304 Byte 240 Byte 240 Byte 2 Byte 16 Byte 16 Byte 16 Byte 16 Byte

*SP indicates the spatial SNN and TE indicates temporal SNN.

TABLE 2 The comparison between state-of-the-art methods and the proposed spiking gating flow (SGF) network.

Name Type
Learning Learning Model information Training cost

Accuracy
method style Size Diff(×) OPs Diff(×) Epoch T/I ratio

Reservoir CSNN (George et al., 2020) SNN STDP Offline 3.17 MB 88.7 ↑ - - 3.8:1 65.0%

Heterogeneity Network (Perez-Nieves

et al., 2021)

SNN SGD Offline 125 KB 3.4 ↑ - - 3.8:1 82.1%

SLAYER (Shrestha and Orchard, 2018) SNN BP Offline 1034.8KB 28.3 ↑ 79.8M 9.6 ↑ 739 3.8:1 93.64%

SCRNN (Xing et al., 2020) ANN2SNN BPTT Offline 732.34KB 20.0 ↑ 81.91 M 9.9 ↑ 100 4.1:1 96.59%

Converted SNN (Kugele et al., 2020) ANN2SNN BP Offline 500KB 13.7 ↑ 651 M 78.7 ↑ 10 3.8:1 96.97%

ConvNet (Amir et al., 2017) DNN2SNN BP Offline 16.3 MB 456 ↑ 946.82 M 114 ↑ 250 3.8:1 96.5%

PointNet++ (Qi et al., 2017) DNN2SNN BP Offline 3.50MB 98 ↑ 440.0 M 53.2 ↑ 250 3.8:1 97.08%

This work SNN SGF Online 36.58 KB 8.27 M 1 1.5:1 87.5%

“-” Indicates the data can not be calculated or not mentioned in the corresponding paper. Bold indicate the results in our method. ↑ Indicates that our method has improvement compared

to the related works.

FIGURE 6

The spatiotemporal (ST) core weak and strong noise

cancellation results.

2015) (red line), the developed SGF illustrated excellent

FSL performances. At a training/inference data number ratio

1.5:1 condition, the SGF reached the highest accuracy of

87.5%, while the C3D network only has 70% accuracy.

However, there is a cross-point at a training/inference data

number ratio of 3.8:1. The C3D network reached above 90%

accuracy and surpassed the SGF network. In summary, we

FIGURE 7

The spatial SNN with feature indexes A and B results on events

of the right-hand wave and right-hand clockwise.

concluded the key design principles of the developed FSL

paradigm: 1) a hierarchical structure-based network design

involves prior human knowledge; 2) SNNs for global dynamic

feature detection.
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FIGURE 8

The temporal SNN with the performances of feature index E

performances. The origin frames of a counter-clockwise

counter event. The temporal SNN outputs and spiking patterns.

The temporal SNN with feature index H. The temporal SNN with

feature index J. The arrow indicates moving trajectory of the

generated spikes.

FIGURE 9

A comparison of the few-shot learning (FSL) performances on

both SGF and C3D networks.

4.5. Design quality of SNNs

We evaluated our SGF unit design by visualizing the

convergence speed. The faster the convergence speed, the higher

the design qualities. In each trail, a training sequence was

used to update the feature vectors. For an effective design,

the number of feature vectors should be converged as the

number of training trails increases. Thus, we visualized the

number of generated feature vectors in Figure 10. From the

experiment, we can draw several conclusions: a) Our SGF units

A and C are feasible because the number of feature vectors is

gradually convergent as we expected. For comparison, in the

non-ideal case, the number of feature vectors increased linearly

with the number of training trails so that cannot converge.

b) Our SGF units A and C have good FSL potential. The

results indicate that after 40 trails, the SGF units A and C

already converged.

4.6. Hardware implementations

A spiking gating flow inference model is implemented

on an FPGA ZedBoard XC7Z020-CLG484-1 for testing the

performance of a system hardware performance. As a proof of

the concept, the hardware implemented SGF has the capability

to classify five events. The developed hardware architecture

is largely based on Luo et al. (2016) with modifications. The

system configuration is shown in Figure 11A, a DVS camera

DAVIS346 (Inivation) is directly connected to a laptop HP Pro

Book 430 G6 via a custom designed UART communication

protocol. Three event types classification results are shown in

Figure 11B: left wave, right wave, and air drum. The power

consumption is 9 mW and memory size is 99 KB, which means

our SGF can serve as an ideal candidate for edge/end-device

applications.The detailed hardware implementations are shown

in Appendix B.

5. Discussion

This work presents a novel system titled SGF which has

a strong dispersity with the current mainstream DL networks.

First, we employed a standard DVS gesture classification as

a proof of concept. Regarding the training performances, the

developed network can achieve the same level of accuracy

with the DL under a condition of the training/inference

data ratio 1.5:1. More importantly, only one training epoch

is required during the learning periods, which significantly

reduced the system training cost. Also, in terms of the model

complexity, the SGF model size is approximately 379 times

smaller than a standard CNN network, and 2.8 times smaller

than an SNN. Then we implemented a developed SGF inference

model on a tailor designed hardware resulting limited power

consummations (9 mW) and memory resources (99KB). At

last we draw conclusions of essential factors for achieving

few-shot learning paradigms: 1) a hierarchical architecture

design encoded with human prior knowledge; 2) SNNs for

global feature detections. At last, although the system capability

has a considerable distance compared to the current DL

network, the system shows the essential biological intelligence

(e.g., few-shot learning, energy efficient, explainable) at a

particular scenario. This may inspire us to design the next

generation DL algorithms, and also raise a wider discussion

among groups of computer hardware architecture, neuroscience

and algorithms.
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FIGURE 10

The SNNs design qualities performances. The SGF units A and C

are shown in orange and blue color, while a non-ideal design

case is shown in gray color.

FIGURE 11

(A,B) The experimental setup: an SGF inference model is

implemented on an FPGA ZedBoard XC7Z020-CLG484-1 for

testing system hardware performances.

One of the major future works is that the network does

not have strong generalization capabilities, which may not be

suitable for processing a large-scale dataset (Soomro et al., 2012)

(e.g., UCF101). This is due to the network architecture being

tailor-designed for the gesture recognition task. Such a design

principle of fusing prior human knowledge with SNNs global

feature detection introduces a biological intelligence-based

system but with limited flexibility. In the future, we will

focus on solving the generalization issue in various technology

paths: 1) designing an SNN based network architecture search

(NAS) mechanism which is similar to the Auto ML (He

et al., 2021); 2) introducing a reinforcement-learning based

agent to generate learning rules that equal to the prior

human knowledge (Williams, 1992); 3) utilizing biological brain

assembling theories to build a learning logic-based architecture

(Papadimitriou et al., 2020; Wu et al., 2022).
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