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We have performed a morphological analysis of patients with schizophrenia

and compared them with healthy controls. Our analysis includes the

use of publicly available automated extraction tools to assess regional

cortical thickness (inclusive of within region cortical thickness variability)

from structural magnetic resonance imaging (MRI), to characterize group-

wise abnormalities associated with schizophrenia based on a publicly

available dataset. We have also performed a correlation analysis between

the automatically extracted biomarkers and a variety of patient clinical

variables available. Finally, we also present the results of a machine learning

analysis. Results demonstrate regional cortical thickness abnormalities in

schizophrenia. We observed a correlation (rho = 0.474) between patients’

depression and the average cortical thickness of the right medial orbitofrontal

cortex. Our leading machine learning technology evaluated was the support

vector machine with stepwise feature selection, yielding a sensitivity of 92%

and a specificity of 74%, based on regional brain measurements, including

from the insula, superior frontal, caudate, calcarine sulcus, gyrus rectus, and

rostral middle frontal regions. These results imply that advanced analytic

techniques combining MRI with automated biomarker extraction can be

helpful in characterizing patients with schizophrenia.
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Introduction

Schizophrenia is a mental disorder characterized by
hallucinations, delusions, thought disorders and a lack of
motivation. Although a number of post-mortem brain studies
in the early twentieth century failed to find abnormalities in
schizophrenia (e.g., Southard, 1910, 1915; Jacobi and Winkler,
1928; Haug, 1962), the first computer assisted tomography
(CT) study succeeded in observing enlarged lateral ventricles
(Johnstone et al., 1976). More recently, magnetic resonance
imaging (MRI) was introduced in schizophrenia research. MRI-
based studies, as well as CT-based studies, confirmed ventricular
enlargement, and it has become a consensus that ventricular
enlargement is present in first episode patients who are not yet
treated by medication (Nordström and Williamson, 2003). The
use of MRI has also led to successes in evaluating abnormalities
regionally, including investigations of the medial temporal lobe,
the prefrontal, orbitofrontal, and parietal lobe in addition to the
ventricles (see reviews in Shenton et al., 2001; Kubicki et al.,
2005; Haukvik et al., 2013).

The analysis of patients with schizophrenia by MRI
examinations has been the subject of many studies. However,
existing research has been limited in the populations studied,
particularly in terms of the ages of the patients in the study,
and in terms of the regions analyzed (Kim et al., 2012;
Zalesky et al., 2012; Wu et al., 2015). The use of MRI in
schizophrenia research has been further supported by the use
of automated measurement tools, such as FreeSurfer (Fischl,
2012). FreeSurfer is a brain imaging analysis technology that
aids in identifying and extracting measurements from cortical
and non-cortical regions of the brain. It performs volume-
based and surface-based analyses, reconstructs accurate models
of gray/white matter and pial surfaces, and provides a variety
of measurements, such as cortical thicknesses, surface areas,
and folding measurements. Studies of schizophrenia combining
MRI technology and FreeSurfer have found interdependence
between abnormal white matter connections and altered gray
matter structure (Liu et al., 2014), reduced hippocampal volume
(Arnold et al., 2015; Haukvik et al., 2015; Singh et al., 2018),
reduced amygdalar volume (Rich et al., 2016), reduced cerebellar
cortical volume (Laidi et al., 2015), thinner cortices (van Erp
et al., 2018), and cortical (Yasuda et al., 2020) and subcortical
brain volume abnormalities (van Erp et al., 2014) associated
with the condition. These findings imply that a variety of
abnormalities are present in patients with schizophrenia, and
that FreeSurfer technology (Fischl, 2012) is capable of assisting
in characterizing regional irregularities potentially associated
with the condition.

The application of machine learning to MRI examinations
of patients with schizophrenia has been the subject of multiple
review articles (de Fillippis et al., 2019; Steardo et al., 2020).
Briefly, previous research in the application of machine learning
to schizophrenia diagnostics has focused on discriminating

schizophrenic patients from those with bipolar disorder
(Schnack et al., 2014) and healthy controls (Nieuwenhuis et al.,
2012; Iwabuchi et al., 2013; Schnack et al., 2014). Work has also
focused on using machine learning to classify childhood-onset
schizophrenia (Greenstein et al., 2012). Additional research
has focused on differential diagnosis between patients with
schizophrenia with and without auditory hallucinations using
resting state functional MRI (Chyzhyk et al., 2015), as well
as classifying schizophrenic patients into cognitive subtypes
(Gould et al., 2014). The combination of MRI and genetic
data to improve classification of schizophrenia has also been
investigated (Yang et al., 2010). Machine learning (ML) applied
to MRI exams of patients with schizophrenia has been the
subject of a review article (Veronese et al., 2013) and meta-
analysis (Kambeitz et al., 2015). More recently, research has
focused on the use of deep learning on structural MRI
exams, achieving widely varying performance (area under
the curve ranges from 0.71 to 0.90) on unseen datasets
(Oh et al., 2020), ML based on whole brain white matter
fractional anisotropy (accuracy: 62%) (Mikolas et al., 2018),
ML applied to functional MRI (accuracy: 79%) (Gallos et al.,
2021), and ML based on voxel-based morphometry on a small
dataset (accuracy: 88%) (Lu et al., 2016), as well as a more
recent study on a larger cohort (accuracy: 75%) (Salvador
et al., 2017). Unfortunately, the differing datasets employed
result in variation in the patient populations and image
acquisition quality across studies, making direct comparison of
widely accepted performance metrics, such as overall accuracy,
extremely difficult. Additionally, the ability to explain what a ML
model has learned, a critical component for medical applications
of artificial intelligence (AI), is extremely limited in emerging
methods, such as deep learning.

Since FreeSurfer produces such a large array of anatomical
measurements (regional volumes, cortical thicknesses, cortical
surface area, surface curvature measurements and more), and
machine learning typically involves the multivariate analysis
of many feature measurements in order to better inform
predictions, we hypothesized that FreeSurfer may play a useful
role in statistical machine learning-based diagnostic technology.
The combination of FreeSurfer measurements with ML has
produced papers presenting their leading ML models based
on the random forest (Jo et al., 2019; Yassin et al., 2020),
the decision tree (Liang et al., 2019) and the support vector
machine (de Pierrefeu et al., 2018), including an approach
developed on a small cohort focused on only the amygdaloid and
hippocampal regions (Guo et al., 2020), as well as methods that
combine FreeSurfer with voxel based morphometry (Schwartz
et al., 2019). It should also be noted that ML combined with
FreeSurfer has also been applied to the prediction of first episode
psychosis (Vieira et al., 2020). FreeSurfer’s validated pipeline
produces a wide array of anatomically meaningful and specific
measurements, thus ML models employing feature selection
and FreeSurfer-based measurement extraction offer inherent
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improvements in explaining what the model has learned, relative
to many of the approaches employed in the literature.

In this study, we hypothesize that a thorough analysis of
cortical thickness biomarkers, inclusive of a correlation analysis
with clinical characteristics in a schizophrenia population, and
a machine learning analysis applied to the many biomarkers
available in FreeSurfer (Fischl, 2012), may assist in the
characterization of schizophrenia.

Materials and methods

Participants, data acquisition and
preprocessing

Following approval by BCH’s Institutional Review Board
(informed consent was waived due to the lack of risk to
participants included in retrospective analyses), the MCIC
medical imaging electronic database (Gollub et al., 2013)1

was accessed, and all examinations with clinical data available
from the MCIC dataset were downloaded for further analysis.
Imaging was performed with MRI scanners. The MCIC
project was supported by the Department of Energy under
Award Number DE-FG02-08ER64581. MCIC is the result of
efforts of investigators from the University of Iowa, University
of Minnesota, University of New Mexico, and Massachusetts
General Hospital. Patients were only included if they met the
DSM-IV criteria for schizophrenia, schizoaffective disorder or
schizophreniform disorder. A major effort was made to only
include patients who were antipsychotic drug naïve and were
recruited early in the course of their illness. The control
participants were selected based on having no history of
substance abuse or psychiatric illness, and were matched to
the patient cohort for age, sex, and parental education (Gollub
et al., 2013). Data used in the preparation of this work were
obtained from the Mind Clinical Imaging Consortium database
(see text footnote 1) through the Mind Research Network.2

The detailed protocol descriptions available are in the literature
(Gollub et al., 2013).

Each T1 structural examination was processed with
FreeSurfer (Fischl, 2012), using the recon-all command which
aligns the input examination to all available atlases. All atlases
that have cortical thickness measurements were included for
further analysis. These combined atlases include definitions of
331 cortical regions in the brain, divided into both the left
and right hemispheres. Each FreeSurfer output T1 structural
examination was displayed with label map overlays and visually
inspected for regional segmentation quality. If FreeSurfer results
were observed to substantially fail, they were excluded from

1 https://coins.trendscenter.org/

2 www.mrn.org

this analysis [i.e., FreeSurfer regions-of-interest (ROIs) that do
not align to the MRI and examinations where major problems
were observed with an ROI such as a cerebellar segmentation
extending far beyond the extent of the cerebellum]. This
resulted in a collection of 174 MRI examinations that passed
quality control (from 213 examinations publicly accessed),
including 99 examinations of patients with schizophrenia, and
75 examinations of healthy control participants.

Statistical analysis

This study included the acquisition of 662 regionally
distributed cortical thickness measurements per imaging
examination (mean and standard deviation of within region
thicknesses across both left and right hemispheres), as extracted
by FreeSurfer’s recon-all command, which processes the
participant’s examination with all available atlases (Fischl, 2012).
This included extracting measurements of the average and
the standard deviation of within-region cortical thicknesses
for each supported gray matter region. Cohen’s d statistic
(positive/negative values indicate a higher/lower average value
in the schizophrenic population relative to the neurotypical
population) and a p-value based on the standard t-test (Student,
1908) for two groups of samples were computed to assist
in the assessment of group-wise differences between our two
populations. The p-value was selected as an established method
to demonstrate that it is unlikely that our findings were the result
of random chance, Cohen’s d statistic was selected as it is the
most established method to assess effect sizes. This yielded a
total of m = 662 group-wise comparisons, yielding a Bonferroni
corrected threshold for achieving statistical significance of
p < 0.05/m = 7.55e−5.

In order to confirm that the findings reported are the
result of group-wise differences between the schizophrenic and
neurotypical participants, a statistical model was constructed
based on multivariate regression (using MATLAB’s mvregress
function), adjusting each measurement in order to control
for group-wise differences in age, gender and imaging site.
This model was used to adjust each cortical thickness (mean
and standard deviation) measurement, in order to evaluate
whether group-wise differences between our pathological and
typically developing populations are the result of age, gender or
imaging site effects.

A correlation analysis was performed to assess possible
relationships between cortical thickness measurements
extracted from MRI examinations and patient clinical variables
from the schizophrenia population. In the MCIC dataset, a
variety of clinical variables are available for each pathological
patient, including, age, gender, parental education levels, a
variety of neurological test results, etc. A detailed description of
all of the variables available is provided in the literature (Gollub
et al., 2013). Each of 662 cortical thickness measurements
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were compared with each of the 90 clinical variables available
for our schizophrenic population with a correlation analysis,
computing Pearson’s correlation coefficient and an associated
p-value. This resulted in m = 662 × 90 = 59,580 comparisons,
yielding a Bonferroni corrected threshold for achieving
statistical significance of p < 0.05/m = 8.39e−7.

Machine learning analysis

Five machine learning algorithms are compared in this
analysis, the support vector machine (SVM), the decision tree
(DT), the random forest (RF), bagged logistic regression (BL),
and an artificial neural network (ANN). All examinations
that passed quality control were included in the machine
learning analysis. All 4,784 feature measurements produced
by FreeSurfer’s recon-all command were included as potential
features to be selected by the machine learning algorithms.
Hyperparameter tuning was employed with each algorithm in
order to optimize classifier performance using Optuna Bayesian

TABLE 1 Effect sizes for regions exhibiting statistically significant
group-wise differences in regional average thickness.

Regional measurement Cohen’s d

Left superior temporal average thickness −0.728

Right temporal pole average thickness −0.717

Left middle temporal average thickness −0.712

Right fusiform average thickness −0.678

Left superior segment of the circular
sulcus of the insula average thickness

−0.672

Left inferior temporal average thickness −0.654

Left hemisphere average thickness −0.654

Left lateral superior temporal gyrus
average thickness

−0.650

Left temporal pole average thickness −0.645

Left middle occipital gyrus average
thickness

−0.636

Right superior temporal average thickness −0.634

Right anterior transverse collateral sulcus
average thickness

−0.631

Left superior temporal sulcus average
thickness

−0.630

Right anterior segment of the circular
sulcus of the insula average thickness

−0.625

Left inferior segment of the circular sulcus
of the insula average thickness

−0.618

Right inferior temporal average thickness −0.618

Right pars orbitalis average thickness −0.600

Right middle temporal average thickness −0.593

Left fusiform average thickness −0.592

Left Brodmann’s area 45 average thickness −0.592

Negative Cohen’s d values indicate that the schizophrenic population have a lower
average measured value as compared with the healthy patients.

optimization, which performed extremely well in a recent public
competition (Turner et al., 2021). The parameters subjected
to Optuna Bayesian optimization for each ML method are as
follows: RF – the number of estimators/trees, the criterion (gini
vs. entropy), the tree depth, and whether or not to bootstrap;
SVM – C the regularization parameter; DT – criterion (gini
vs. entropy), tree depth, whether splits are random vs. best;
BL – number of estimators, feature down sampling, whether
to bootstrap or not; ANN – number of layers, layer size,
regularization, batch size, learning rate, learning rate decay.
Each of these algorithms were combined with each of three
feature selection techniques: ranking features based on Cohen’s
d statistic, Principal Components Analysis (PCA) and stepwise
feature selection. The number of features included for each of
the feature selection methods was set to each of 10, 50, and 100.
Each combination of machine learning algorithm and feature
selection technique was evaluated as part of a K-Fold cross
validation, with K = 5, K-Fold cross validation with K = 10,
and Monte-Carlo style bootstrapping, ensuring a large share
of examinations were available for model training with held
out samples used for testing/model validation. This validation
was repeated 100 times. In each run of the validation, the
overall accuracy (OA) is computed alongside the area under
the receiver operating characteristic curve (AUC), the sensitivity
and the specificity. Summary statistics (mean and standard
deviation) are computed across validation runs. All machine
learning, validation and statistical analyses were performed
in python. Public domain software has been made available
at https://github.com/stfxecutables/df-analyze to facilitate other
researchers to (1) reproduce the findings of this study, and (2)
to facilitate the application of the ML methods used herein to
any given data frame (samples in rows, feature measurements in
columns), helping make the addition of Optuna hypertuned ML
easy in future studies.

Results

Cortical thickness analysis

Many regions demonstrated group-wise differences between
participants with schizophrenia and healthy controls. Decreases
in average cortical thicknesses with the largest effect sizes
were observed in the superior temporal, temporal pole, middle
temporal, and fusiform regions. These findings are summarized
in Table 1, demonstrating consistently decreased cortical
thicknesses in patients with schizophrenia. All findings provided
in Table 1 represent raw (not multivariable regression adjusted)
effect size calculations, all of which had statistically significant
associated raw p-values, as well as statistically significant
multivariable adjusted p-values computed with the results of the
multivariable regression analysis that controls for the effect of
age, gender, and imaging site.
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Unlike other cortical thickness studies, which generally
focus on average cortical thicknesses, our study has also included
intra-regional cortical thickness variability measurements in the
form of the standard deviation. Results indicate a common
tendency for schizophrenic patients to exhibit increased cortical
thickness variability across many sub-regions of the brain.
However, the findings are based on small to medium effect
sizes that do not reach our stringent standard for statistical
significance. The largest Cohen’s d statistics associated with the
abnormalities of intra-regional cortical thickness variability was
found in the left rostral anterior cingulate (d = 0.44), the left
pars orbitalis (d = 0.38), the triangular part of the left inferior
frontal gyrus (d = 0.34) and the left rostral middle frontal region
(d = 0.33).

Cortical thickness to clinical variable
correlation analysis

The correlation analysis considered the schizophrenia
population whose examinations passed quality control, thus
this analysis helps assess possible relations between automated
extractable brain biomarkers and clinical variables in a
schizophrenic population. The correlation analysis yielded
156 biomarker measurement and clinical variable pairs that
exceeded the Bonferroni correction, or just 0.26% of all
pairings between automatically extracted biomarkers and
clinical variables. The most common statistically significant
correlations established were negative correlations between

patient age and average cortical thicknesses (78/156 statistically
significant measurements) of a wide variety of regions,
confirming known cortical thinning that progresses with age
(e.g., Salat et al., 2004), as well as confirming this effect
specifically in schizophrenia (Kubota et al., 2011). The second
most common statistically significant correlations were found
to be negative correlations between the amount of time a patient
takes to complete a clinical assessment task and regional cortical
thicknesses (57/156 statistically significant measurements), a
finding that may also be age-dependent. The third most
common statistically significant correlations were found to be
negative correlations between illness duration and regional
average cortical thicknesses (17/156 statistically significant
measurements), another finding that might be a product of age-
dependency, as older patients naturally have thinner cortices
and older patients, on average, have had schizophrenia for
longer periods of time. We observed a negative correlation
between the thickness of the left precentral cortex and the
number of errors patients make (Error Score clinical variable;
rho = −0.482). Finally, a positive correlation was observed
between the Calgary Depression Scale (Addington et al., 1993)
total score and the right medial orbitofrontal average cortical
thickness (rho = 0.474).

Machine learning analysis

In Table 2, the mean and standard deviation of OA
and AUC, as well as sensitivity and specificity, are provided
for each of our top performing combination of machine

TABLE 2 Comparative results of 5 ML algorithms and three feature selection (FS) techniques in terms of overall accuracy (OA), area under the
receiver operating characteristic curve (AUC), sensitivity, and specificity.

FS: stepwise SVM DT RF BL ANN

OA mean (Std Dev) 0.84 (0.04) 0.75 (0.07) 0.84 (0.06) 0.83 (0.05) 0.74 (0.08)

AUC mean (Std Dev) 0.83 (0.04) 0.75 (0.08) 0.84 (0.05) 0.83 (0.06) 0.74 (0.09)

Sensitivity mean (Std Dev) 0.92 (0.08) 0.79 (0.05) 0.84 (0.11) 0.85 (0.04) 0.79 (0.13)

Specificity mean (Std Dev) 0.74 (0.09) 0.70 (0.12) 0.85 (0.07) 0.81 (0.13) 0.69 (0.22)

# of features 50 100 50 100 50

FS: PCA SVM DT RF BL ANN

OA mean (Std Dev) 0.64 (0.11) 0.62 (0.05) 0.63 (0.05) 0.63 (0.07) 0.59 (0.08)

AUC mean (Std Dev) 0.63 (0.11) 0.62 (0.05) 0.62 (0.05) 0.61 (0.08) 0.57 (0.08)

Sensitivity mean (Std Dev) 0.70 (0.16) 0.66 (0.08) 0.68 (0.10) 0.77 (0.04) 0.71 (0.22)

Specificity mean (Std Dev) 0.56 (0.18) 0.58 (0.11) 0.57 (0.12) 0.44 (0.15) 0.44 (0.25)

# of features 10 10 10 50 100

FS:D SVM DT RF BL ANN

OA mean (Std Dev) 0.64 (0.12) 0.62 (0.07) 0.64 (0.06) 0.67 (0.05) 0.60 (0.05)

AUC mean (Std Dev) 0.63 (0.12) 0.61 (0.08) 0.64 (0.06) 0.67 (0.06) 0.58 (0.07)

Sensitivity mean (Std Dev) 0.70 (0.10) 0.71 (0.08) 0.67 (0.11) 0.69 (0.07) 0.73 (0.19)

Specificity mean (Std Dev) 0.57 (0.15) 0.51 (0.15) 0.61 (0.16) 0.65 (0.11) 0.43 (0.29)

# of features 100 50 50 50 10

The feature selection (FS) method is listed in the top left. The symbol # denotes the word number.
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learning methods and feature selection techniques. Results
in Table 2 demonstrate considerable variability in machine
learning performance depending on the underlying technology
as well as the feature selection technique chosen. The best
performing model was the support vector machine (SVM) with
stepwise feature selection (OA: mean 84%, standard deviation
4%) limited to 50 features. Similar results were obtained from
the SVM with stepwise feature selection with only 10 features
(OA: mean 83%, standard deviation 5%). These leading models
both based their predictions on the variability of the thickness
of the left calcarine sulcus, the volume of the left gyrus rectus,
the number of vertices on the left superior frontal gyrus, the
average thickness of the left rostral middle frontal region,
the signal intensity of the right insula, right superior frontal
gray matter, and right caudate, the left hemisphere surface
integral, and the irregularity of the left hemisphere’s surface
reconstruction (in terms of defect holes). All results in Table 1
report validation findings for K-Fold cross validation (K = 5)
repeated 100 times reporting on the average and standard
deviation of each performance metric. Overall, stepwise feature
selection was consistently the best performing feature selection
method available.

Discussion

We performed a retrospective analysis of a public
schizophrenia dataset including a cortical thickness analysis and
a correlation analysis. Our findings from the cortical thickness
analysis confirm known average group-wise cortical thinning
in schizophrenia (van Erp et al., 2018) in the superior temporal
cortex (Schultz et al., 2010; van Haren et al., 2011), middle
temporal gyrus (Cui et al., 2018), right fusiform gyrus (Goghari
et al., 2015), inferior temporal cortex (Buchy et al., 2011), and
thinning of the right temporal pole, which was observed in
patients at high risk for schizophrenia (Li et al., 2016). We
observed cortical thinning of the left temporal pole, which
has previously been reported to be correlated with processing
speed (Hartberg et al., 2011). Additionally, we have observed
cortical thinning in the left middle occipital gyrus, which has
been reported to be linked with the verbal intelligence quotient
(IQ) in schizophrenia (Hartberg et al., 2010). We were also able
to confirm cortical thinning in Brodmann’s area 45 (Narayan
et al., 2007). Various studies have reported abnormalities of
the insula (Shepherd et al., 2012), including abnormalities of
insular cortical thickness (Song et al., 2015; Emami et al., 2016),
which this study has confirmed alongside reporting thinning of
the insular sulcus.

In this study, the majority of the statistically significant
correlations between clinical variables and structural cortical
thickness measurements were observed between patient age
and regional cortical thicknesses that were highly negative
correlations. These findings are expected, as it is well

known that cortical thinning (reductions in average cortical
thickness) occurs naturally with age (Fjell et al., 2009;
Levman et al., 2017), that schizophrenia populations exhibit
increased cortical thinning relative to neurotypical controls
(Kubota et al., 2011; Nenadic et al., 2015), and, specifically,
negative correlations have been reported between temporal
pole thickness and age in schizophrenia (van Erp et al.,
2018). Furthermore, we observed many (17/156) statistically
significant negative correlations between illness duration and
regional average cortical thicknesses, a finding in agreement
with previously completed research (van Erp et al., 2018). Of
potentially more interest, findings include a positive correlation
between the Calgary Depression Scale For Schizophrenia
Total Score (Addington et al., 1993) and the average cortical
thickness of the right medial orbitofrontal region, which has
been implicated in depression outside of a schizophrenic
population (Drevets, 2007; Cheng et al., 2016). These results
are supportive of previous literature findings of observed
orbitofrontal abnormalities in schizophrenia (Waltz and Gold,
2007; Kanahara et al., 2013), and imply that the right medial
orbitofrontal region might be directly implicated in the
experience of depression among patients with schizophrenia.
We observed a negative correlation between the thickness of
the left precentral region and the number of errors patients
make (Error Score clinical variable; rho = −0.482), which
may be supportive of reported associations of the precentral
gyrus with No-Go errors (Stevens et al., 2009) and reported
functional MRI-based activation-behavior correlations in the
precentral gyrus in Go trials (Zhang et al., 2019), both in
control populations.

Multivariable regression models were included to assess
the possible confounding effects of age, gender and imaging
site. Results indicated that our primary findings remained
statistically significant when controlling for these factors. We
elected to present our raw (unadjusted) results rather than our
multivariable regression model results for ease of comparison
and reproducibility with future studies, and because it has been
previously demonstrated that the use of multivariable regression
in neuroscience is associated with the introduction of error, and
this was specifically demonstrated on this same schizophrenia
dataset (Levman et al., 2021).

We performed a comparative analysis of five machine
learning methods and three feature selection methods
combined with Optuna hyperparameter tuning toward the
automated diagnosis of schizophrenia from T1 structural
MRI examinations. The leading model was a support vector
machine employing stepwise feature selection, yielding an
accuracy of 84%. This leading model based its predictions
on a variety of identified abnormalities implicating the right
insula, right superior frontal gray matter, right caudate, left
calcarine sulcus, left gyrus rectus, left superior frontal gyrus, the
left rostral middle frontal region, and whole left hemisphere
surface measurements in schizophrenia. Many of these brain
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regions have been previously identified as being involved
in schizophrenia, including the insula (Wylie and Tregellas,
2010), superior frontal gyrus (Gao et al., 2015; Vogel et al.,
2016), caudate (Ebdrup et al., 2010; Williams, 2016), calcarine
sulcus (Sulejmanpašić et al., 2016), gyrus rectus (Kim et al.,
2017), and the rostral middle frontal region (Kikinis et al.,
2010). The results of our ML analysis directly support these
historical literature findings. Furthermore, these historical
findings lend support to the potential reliability of the leading
machine learning model developed as part of the methods
from this analysis.

Deep learning is a popular approach to machine learning
applications in medical imaging. Research has focused on
the use of deep learning on structural MRI exams for
the prediction of schizophrenia, achieving widely varying
performance (area under the curve ranges from 0.71 to
0.90) on unseen datasets (Oh et al., 2020), implying that
current deep learning technologies may not meet the high
reliability standards expected in medical applications. This is
further supported by recent findings applying deep learning to
schizophrenia diagnostics, which achieved accuracy of 70% at
best (Vieira et al., 2020).

Accuracy of reported ML models that rely on more
traditional techniques (not deep learning) varies considerably,
with techniques reporting accuracies of 62% for ML based on
whole brain white matter fractional anisotropy (Mikolas et al.,
2018), 79% for ML applied to functional MRI (Gallos et al.,
2021), 88% for ML based on voxel-based morphometry on a
small dataset (Lu et al., 2016), as well as 75% accuracy on a larger
cohort of participants (Salvador et al., 2017). Automated feature
extraction technologies, like FreeSurfer (Fischl, 2012), provide
detailed feature measurements that are more informative
relative to that obtainable from deep learning and voxel based
morphometry (VBM) based approaches. The application of ML
to FreeSurfer measurements has been the subject of existing
work, which has produced papers presenting their leading ML
models with accuracies of 76 and 69%, respectively, based on
the random forest (Jo et al., 2019; Yassin et al., 2020), 72%
based on the support vector machine (de Pierrefeu et al., 2018),
82% based only on the amygdaloid and hippocampal regions
in a small cohort of study participants (Guo et al., 2020), and
76% accuracy from combining FreeSurfer with VBM (Schwartz
et al., 2019). Unfortunately, the differing datasets employed
result in variation in the patient populations and image
acquisition quality across studies, making direct comparison of
widely accepted performance metrics, such as overall accuracy,
extremely difficult. Thus, directly comparing two OA values
from differing studies should be done with great caution.
However, it is noted that our approach, reporting OA of 84%,
exhibits strong performance based on FreeSurfer (Fischl, 2012)
extracted measurements, and the closest performing model
(Guo et al., 2020), with 82% OA, was based on measurements
extracted from just the amygdaloid and hippocampal regions

and was based on a small patient population. Our approach
achieves the results outlined with biomarkers extracted from
many regions, including the insula, superior frontal region, etc.
FreeSurfer based methods have considerable improved potential
to inform clinicians of the brain features that contribute to a
patient being diagnosed with schizophrenia.

From a technical perspective, the best performing ML
technique investigated was the support vector machine (SVM)
combined with stepwise feature selection. The SVM is a classical
ML approach that attempts to minimize error on unseen
samples, which is a statistical sampling dependent approach
that is capable of providing substantial reliability improvements
over many ML techniques. Additionally, the SVM operates by
defining a boundary between predictions based on training
samples located near the boundary itself, providing potentially
statistically robust solutions to the discrimination/prediction
problem. Artificial neural networks (ANNs) perform feature
weighting and are based on extensive random initialization,
which potentially contributes to variability in performance
across validation runs. The decision tree and the random
forest do not weight their individual features, however, some
features are prioritized over others based on their respective
positions in the resultant decision trees associated with these
methods. The support vector machine does not perform feature
weighting, however, its robust sample down sampling strategy
can sometimes result in a minimization of the effects of
nuisance features. Employing feature selection with limits on
the number of features helps to ensure that models do not rely
on excessive numbers of spurious features to inform prediction,
thus potentially contributing to improvements in ML reliability.

Stepwise feature selection was the best performing of the
three feature selection methods considered in this analysis.
Stepwise feature selection involves repeatedly adding feature
measurements to the machine learning model based on which
measurement is anticipated to provide the most improvement
to the accuracy of the resultant technology. Unfortunately,
stepwise feature selection is by far the slowest method of
those evaluated. Stepwise feature selection does allow the user
to select the number of features included in the ML model,
which when set appropriately low, can assist in the creation of
reliable artificial intelligence (AI) technologies. It is noteworthy
that stepwise feature selection outperformed the other two
feature selection methods (PCA and ranking with Cohen’s d
statistic) for all five machine learning algorithms assessed. PCA
tries to rotate the high dimensional data space in order to
identify salient projections that act as rotated features. It is a
popular dimensionality reduction technique that can be used to
reduce the number of features by keeping only those rotated
measurements that allow us to retain as much variance in
the dataset as possible, and thus hopefully retains as much
discriminatory information as possible. Ideally, the technique
will keep rotated features that result in large interclass distances
and small intraclass variance in the feature space. It is also
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desirable to assess correlations between features, as is done in
PCA, so that any redundant information can be removed. The
basic idea in PCA is to find the linearly transformed components
that can explain the maximum possible amount of variance in
the dataset. Unfortunately, the input dataspace is very large in
terms of input features and sparsely populated, which helps
explain why the technique is not functioning reliably. Cohen’s d
statistic represents an established method for assessing a feature
measurement’s effect size. Ranking our features with Cohen’s d
statistic and providing the leading set of features to the machine
learning algorithm produced results of intermediate quality in
this application.

The limitations of the study include that disease sub-
status was not included as a variable in the analyses, thus no
group-wise comparisons nor statistical models were constructed
to control for issues such as whether a given patient had
experienced chronic or first episode schizophrenia, respectively.
Additional limitations include that the study was performed on
a modest sized publicly available dataset. Strengths of the study
include a correlation analysis, as well as a machine learning
analysis, and open source machine learning code to facilitate the
reproducibility of our study findings.

In conclusion, our analysis included the observation of
correlations between cortical thickness of the right medial
orbitofrontal cortex and patient depression in schizophrenia,
as well as provided extensive sets of results from machine
learning, indicating good performance for predicting the
condition from computer code that we have made publicly
available. Future work is needed to further optimize the
performance of machine learning in this application. Future
work will investigate the extent of improvements to machine
learning diagnostics attainable by dramatically increasing the
sample size and investigating the use of deep learning based
convolutional neural networks. It is hoped that as new
technologies in explainable deep learning become available,
that methods such as those presented in this paper can
assist with comparative validation between models to ensure
sensible behavior from emergent deep learning technologies.
All underlying features and trained models need to be
subjected to rigorous validation on independently acquired
datasets. We will also extend the analysis to include additional
MRI modalities, such as tractography and functional MRI,
as well as expanding our analyses to larger datasets. It is
hoped that reliable ML models based on validated FreeSurfer
measurement extraction technology can act as comparative
models to help validate emerging explainable deep learning
models as part of future work as well. Future work will
also perform additional analyses to control for the effects of
disease sub-status, which was not included as a variable in
our analyses, in order to assess the effects associated with
whether a given patient had experienced chronic or first episode
schizophrenia, respectively. It is hoped that these research
avenues will assist toward better understanding schizophrenia
as well as improved characterization, diagnosis and classification
of the disorder.
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