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One of the objectives fostered in medical science is the so-called precision

medicine, which requires the analysis of a large amount of survival data

from patients to deeply understand treatment options. Tools like machine

learning (ML) and deep neural networks are becoming a de-facto standard.

Nowadays, computing facilities based on the Von Neumann architecture are

devoted to these tasks, yet rapidly hitting a bottleneck in performance and

energy e�ciency. The in-memory computing (IMC) architecture emerged as

a revolutionary approach to overcome that issue. In this work, we propose

an IMC architecture based on resistive switching memory (RRAM) crossbar

arrays to provide a convenient primitive for matrix-vector multiplication in a

single computational step. This opens massive performance improvement in

the acceleration of a neural network that is frequently used in survival analysis

of biomedical records, namely the DeepSurv. We explored how the synaptic

weights mapping strategy and the programming algorithms developed to

counter RRAM non-idealities expose a performance/energy trade-o�. Finally,

we discussed how this application is tailored for the IMC architecture rather

than being executed on commodity systems.

KEYWORDS

resistive RAM (RRAM), drift, in-memory computing (IMC), survival analysis, multi level

conductance

1. Introduction

In the last decade, medical researchers have started to extensively rely on machine

learning (ML) and artificial neural networks (ANNs) to gain further insights into large

amounts of complex and intertwined data (Anaya-Isaza et al., 2021; Allegra et al., 2022).

Records concerning patients’ clinical and genetic features, pathologies, interventions,
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hospitalizations, and follow ups are deeply investigated through

survival analysis models, whose goal is to provide ad hoc

treatment options and ultimately shed light on the origins of

the disease (Wu et al., 2018). State-of-the-art data analysis

platforms are built on Von Neumann computing architectures

that devise bulky and power-hungry central processing units

(CPUs), graphic processing units (GPUs), and memory devices

embedded in high performance computing (HPC) machines

(Bajaj and Ansari, 2021). The frequent data movement caused

by the performance mismatch between the computing elements

and the memory units in these machines is rapidly hitting

the so-called “Von Neumann bottleneck” (Zou et al., 2021).

Speed and energy efficiency in data analysis are therefore in

jeopardy. One of the main candidates to overcome this issue

materialized in revolutionary computing architecture, namely

the in-memory computing (IMC) concept. The IMC bases on

high density crossbar arrays constituted by memory devices that

offer high throughput, low energy, and good scaling features

(Zahoor et al., 2020; Mannocci et al., 2022). Among the many

memory technologies proposed in the last years for IMC

integration resistive-switching, non-volatile memory (RRAM)

has been identified as an ideal candidate (Burr et al., 2015;

Zidan et al., 2018; Mannocci et al., 2022). RRAM enables massive

IMC parallelism in performing the matrix-vector-multiplication

(MVM) in one computational step (i.e., one clock cycle) via

the physical laws of Ohm and Kirchhoff in the analog domain

(Hu et al., 2018; Ielmini and Wong, 2018; Ma et al., 2018;

Yu, 2018). However, despite these promising properties, RRAM

devices have physical limitations that may threaten the MVM

execution. This would result in failures of the ML and ANN

tasks based on that operation. The limited tunability of the

conductance levels in RRAM devices is one of the most tedious

issues exposed in IMC accelerators based on this technology.

Non-idealities like the device-to-device (D2D) and the cycle-

to-cycle (C2C) variability (Fantini et al., 2013; Ambrogio et al.,

2014a; Grossi et al., 2016), the random telegraph noise (RTN)

(Ambrogio et al., 2014b, 2015a; Chai et al., 2018; Du et al., 2020),

the random walk (Ambrogio et al., 2015b), and the conductance

drift (Kang et al., 2017; Lin et al., 2019; Baroni et al., 2021)

impair the multi-level conductance (MLC) capability of the

RRAM technology resulting in lower bit precision with respect

to CPUs and GPUs. Those limitations can be overcome through

the application of tailored programs and verified algorithms that

accurately set the RRAM in the desired conductance state (Pérez

et al., 2019). However, the stochastic nature of the technology

hardly questions its effectiveness. In Kang et al. (2017), Yu

et al. (2020), and Milo et al. (2021), it has been demonstrated

that when those techniques are applied there is a significant

drift of the conductance distributions both in short and long

time scales. Such behavior is an additional non-ideality that

limits the accuracy of the MVM and should be countered with

a drift-safe algorithm (Baroni et al., 2021) that are in turn

less energy-efficient. This calls for a design space exploration

of IMC architectures devoted to specific ML and ANN

tasks execution.

In this work, we present an IMC architecture based on

RRAM technology that implements a deep neural network

for survival analysis of biomedical data, namely the DeepSurv

(Katzman et al., 2018). The design of the network back-

annotates the physical characteristics of 4 kbits RRAM arrays.

We study how different MLC programming algorithms impact

the performance and the energy consumption of the neural

network especially when the drift phenomenon takes place.

Furthermore, we analyze how different synaptic weights

quantization strategies can expose a performance/energy trade-

off. Finally, we demonstrate that an RRAM-based design of the

DeepSurv is better executed on an IMC concept rather than a

commodity GPU-accelerated Von Neumann architecture both

in terms of throughput and energy efficiency.

2. Materials and methods

2.1. Survival analysis through deep neural
networks

Survival data are commonly used in medical research to

develop models that assess the significance of prognostics

variables in outcomes such as patient’s death or disease

recurrence (Bair and Tibshirani, 2004; Royston and Altman,

2013). The survival analysis requires a patient’s baseline data x

(i.e., the variables), an event time T, and an indicator variable

E built on the presence/absence of a specific event (e.g., death,

disease relapse, etc.). Survival probability S(t) and hazard rate

λ(t) can be then computed. The former is indicated as S(t) =

P(T > t), which represents the probability that a patient has

survived beyond a time t, while the latter is calculated as

λ(t) = lim
ǫ→0

P(t ≤ T < t + ǫ|T ≥ t)

ǫ
(1)

which defines the probability that a patient will not survive an

extra infinitesimal amount of time ǫ, given its survival up to

time t.

The Cox Proportional Hazards (CPH) model is a common

semi-parametric survival analysis framework that relates a

patient’s survival given their baseline data x (Therneau and

Grambsch, 2000). The model assumes that the hazard function

is composed of two non-negative functions: a baseline hazard

function λ0(t) and a risk score r(x) = eh(x). Following

the notations in Therneau and Grambsch (2000), the CPH

estimates the function h(x) through a linear function, so that

ĥβ (x) = βTx. The parameters β in the model are fine-tuned

to properly model the hazard rate function. However, in many

medical scenarios (Bice et al., 2020; Byun et al., 2021; Hadanny

et al., 2022), the assumption of a linear log-risk function (i.e.,

h(x)) may be too simplistic. To this extent, Katzman et al.
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FIGURE 1

The structure of the DeepSurv neural network according to the

implementation provided in Katzman et al. (2018). The dropout

layers between inputs and hidden layers are not shown for

clarity.

(2018) developed the DeepSurv feed-forward neural network

whose non-linear output ĥθ (x) replaces the linear combination

of features ĥβ (x). DeepSurv is a configurable neural network

whose structure is depicted in Figure 1. It consists of several

fully-connected layers followed by dropout layers. The final

layer of the network is a single neuron that performs a

linear combination of the hidden features and outputs the risk

function ĥθ (x).

In this work, we applied the DeepSurv to the Worcester

Heart Attack Study (WHAS) dataset (Hosmer et al., 2008)

consisting of a total of 1,638 observations and 5 patients’

features: age, sex, body-mass-index (BMI), left heart failure

complications (CHF), and order of Myocardial Infarction

(MIORD). A total of 42.1% percent of patients died during the

study with a median death time of 516 days. We fixed the neural

network hyper-parameters as suggested in Katzman et al. (2018)

to enable a fair comparison between its GPU implementation

and the proposed RRAM. To summarize, the network consists

of an input layer with 6 neurons (5 patient features + 1 bias) and

two dense hidden layers with 48 neurons each. All the layers are

followed by a dropout layer featuring a ReLU activation function

and the output layer features a linear activation.

To assess DeepSurv’s predictive accuracy on the WHAS

dataset, we measure Harrell’s concordance-index (C-index)

(Harrell et al., 1984). Its goal is to reflect how well the neural

network predicts the patients’ death times. A C-index = 1

represents a perfect prediction.

2.2. RRAM technology and algorithms

Figure 2A illustrates the implementation of an MVM

operation in a generic DeepSurv’s layer by using a crossbar

architecture. Additional circuitry like the Analog-to-Digital

converter (ADC), the Digital-to-Analog converter (DAC), and

wordline/bitline/sourceline drivers are evidenced. The single

elements of the crossbar are constituted by 1T1R RRAMdevices,

whose structure is depicted in Figure 2B. The memristive

element consists of a materials stack made by a 150 nm TiN

top and bottom electrodes (TE and BE, respectively) deposited

by magnetron sputtering, a 7 nm Ti layer (acting as oxygen

scavenging layer under the top electrode) and an 8 nm HfO2

switching layer grown by atomic layer deposition (ALD) (Grossi

et al., 2018). The transistor in series to the memristive cell is a

0.25 µm nMOS from IHP Microelectronics. Its 2-fold role is to

select a cell in the crossbar and to provide a proper compliance

current (IC) for switching operations via the gate voltage VG.

Figure 2C shows the current-voltage (I-V) characteristics of

an RRAM device, exhibiting a tunable MLC operation that is

sought for MVM operation. The measurements of this work

are performed on 4 kbits RRAM crossbar arrays featuring 64

wordlines and 64 bitlines. A microphotograph of the chip is

available in Zambelli et al. (2015). All the experiments were

performed on quad flat packaged (QFP) devices with the

RIFLE Automated Test Equipment from ActiveTechnologies

(see Figure 2D).

The RRAM devices in the array are prepared for

conductance switching through a forming operation using

the Incremental Step Pulse program and Verify Algorithm

(ISPVA) proposed in Pérez et al. (2019). The gate voltage

VG is set to 1.4 V and the top electrode voltage VTE is

gradually increased from 2 to 5 V in steps of 10 mV. The target

conductance for the operation has been chosen as 200 µS to

avoid RRAM cells premature wear-out. After the Forming,

we performed a reset operation to bring all the cells to the

lowest conductance state, namely L1 at 25 µS. The reset uses

the ISPVA in which the bottom electrode voltage VBE is swept

from 0.5 to 2 V with 100 mV steps. The VG is set to 2.7 V to

ensure a high IC is required to disrupt the conductive filament

in the RRAM cell. Different approaches to achieve multiple

conductance states have been demonstrated for this technology.

The approach in Milo et al. (2021) modulates the IC of the set

operation through a program and verify algorithm. With such

methodology, eight linearly spaced conductance levels (L2-L9)

between 50 and 225 µS are obtained plus L1. These values

are the target conductances Gtrg checked during the verify

operation (i.e., equivalent to a read). In the set operation for

multilevel conductance tuning, the VG is gradually incremented

from 0.5 to 1.7 V in 10 mV steps, featuring 1 µs pulse duration

(tp). The delay between the pulse and the consecutive verify is

about 1 s. Both the rise trise and the fall time tfall of the pulses

is set to 100 ns. The VTE is chosen to be 1.2 V. We refer to

this algorithm as the ML-Set. Its characteristics are depicted in

Figure 3 along with the ones in forming and reset operations.

A second approach proposed in the literature is that of

Baroni et al. (2021). In this case, instead of starting from the

L1 distribution and applying an ML-Set algorithm to reach the
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FIGURE 2

(A) Crossbar array architecture for matrix-vector-multiplication (MVM) operations. (B) Schematic of a 1T1R resistive switching memory (RRAM)

device integrated into the 4 kbits array used in this work. (C) I–V characteristics of a 1T1R RRAM device measured for increasing VG proving

multi-level conductance (MLC) capability. (D) The RIFLE test equipment used in this work.

higher conductance state, we start from the L8 distribution

and reach L2-L5 through a controlled reset operation. The

L6-L9 distributions are still obtained with the ML-Set. We

named this approach as ML-Hybrid algorithm since it embodies

two different switching operations of the RRAM cells in the

array. To avoid the over-stress of the device, we performed the

incremental gate voltage and verify algorithm (IGVVA) reset

experiments with a VBE set to 1.2 V and sweeping VG from

1.5 to 2.9 V in steps of 10 mV. Figure 3 shows the summarized

programming operation used in the two different algorithms and

a flowchart that follows their procedures step by step.

Figure 4A compares the conductance distributions obtained

with ML-Set and ML-Hybrid algorithms considering 1024

RRAM cells per conductance level. It can be noted that in the

former there is a significant drift of the distributions exhibiting

cells whose conductance falls below their desired Gtrg . Such

drift happens in the very first minutes after the application

of the programming algorithm. It is easy to observe that the

L2-L5 conductance levels are the most affected by the drift

and that this phenomenon can lead to larger instabilities over

time if not properly handled (Baroni et al., 2021). Instead, in

the latter algorithm, the drift seems mitigated for L2-L5 levels,

but a small fraction of cells has an inverted trend in terms of

conductance shift. The total number of displaced cells far from

Gtrg is however lower although at the price of a larger power

consumption paid during the programming of the RRAM cells

(a reset followed by a set operation is needed). We must also

remind that the conductance drift is a process that lasts also

for longer times after the end of the programming algorithms.

Figure 4B displays the behavior of the L2-L9 levels after 168 h for
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FIGURE 3

(A) Algorithms used in RRAM forming, set, and reset operation modes. The voltages during the operation and the verify phases are evidenced. (B)

Global flowchart scheme, representing the di�erent steps for ML-SET and ML-Hybrid algorithms.

both programming approaches. The choice of the L8 conductive

level as the starting point for ML-Hybrid is ascribed to reliability

considerations. This conductive level is the same Gtrg used for

the Forming operation. We have observed that starting the ML-

Hybrid operations from L9 can introduce a high number of

stuck-at-L9 cells, therefore reducing the population of available

cells for the study. To this extent, we chose L8 to reduce

possible reliability threats that could hamper the interpretations

of this study. Figures 4C,D show, without lack of generality, the

evolution of the drift of the L5 distribution in 168 h after the

application of the programming algorithms. Once again, the

ML-Hybrid seems to perform better in terms of drift countering.

These peculiar technology characteristics are now considered

for the RRAM-based DeepSurv implementation. The choice of

168 h was made after experimental observations accrued in our

previous work (Baroni et al., 2021). In the experimental section

of that work, we could see that between 100 and 168 h (1

week), the drift phenomenon tends to reach a saturation point,

no longer showing a progressive and additional degradation

of the RRAM device conductances at room temperature. We,

therefore, considered the situation at 168 h at room temperature

as the worst case for our analysis.

2.3. Weights quantization for
RRAM-based DeepSurv implementation

The RRAM crossbar implementation of the DeepSurv

requires the synaptic weights mapping as finite conductance

values in single 1T1R devices. Due to the physical nature of
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FIGURE 4

(A) L2-L9 levels distribution in RRAM obtained after the application of the programming algorithm. (B) L2-L9 levels distribution in RRAM after 168

h evidencing the drift. (C) Evolution in time of the L5 distribution for ML-Set algorithm. (D) Same study performed for the ML-Hybrid algorithm.

the RRAM technology investigated in this work, we experienced

that a single device can be programmed only with 9 discrete

conductance levels (see Figure 4), thus representing only

positive weights. However, in state-of-the-art neural networks,

both positive and negative values are required with a numerical

precision in the order of 32 or even 64 bits. To overcome

such limitations, we can represent each weight W using a

differential approach. To this extent, two separate conductance

values mapped in two 1T1R devices, namely G+ and G−, are

devised. By subtracting them in the analog domain, we obtain

the desired value W = G+ − G−, as described in Milo et al.

(2021). This approach allows mapping the negative weights of

the network as well, while inherently increasing the number

of levels that can be mapped on RRAM devices from 9 to 17.

Despite such improvement, we are still far from the radix used

by CPUs or GPUs arithmetic units (i.e., 32/64 bits).

The numerical precision of the synaptic weights can be

reduced without compromising the network accuracy through

a quantization algorithm. As a preliminary step, we trained the

DeepSurv network on a K80 Nvidia GPU with full floating-

point precision using Tensorflow 2 (Keras 2.3) for Python 3.8

compiled with CUDA11.4 and cuDNN8.2 support. The training

time was 17.32 s using 500 epochs. Then, we implemented

an iterative training algorithm described in Zhou et al. (2017)

as an incremental network quantization (INQ). The key is to

build an RRAM-aware training operation through the decision

of the quantization steps number that is to be followed.

Straightforwardly, the larger the number of steps the longer

the training of the network will take. On the other hand,

if the number of steps proves to be too small, the network

could become unstable or drastically degrades its accuracy.

During our experiments, we found an acceptable trade-off in

using 4 incremental quantization steps: 50, 75, 87, and 100%.

These percentage values allow deriving the number of weights

in each DeepSurv’s layer that will be rounded to the nearest

quantization level at the end of each training epoch of the

network while leaving the remaining weights free to continue

with the training non-quantized. The advantage of this strategy

lies in the compensation of the quantization-induced non-

idealities (Zhou et al., 2017). Figure 5A depicts an example of

the INQ procedure application.

Once we found the right compromise between DeepSurv’s

accuracy and stability, we had to choose the quantization

strategy. Indeed, it is mandatory to define a policy related to
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FIGURE 5

(A) An example of the application of the incremental network quantization (INQ). algorithm. (B) cumulative distribution function (CDF) of the

C-index retrieved in Monte Carlo simulations with di�erent weight picking strategies compared with the C-index obtained by a graphic

processing unit (GPU) without quantization in training and working with full floating-point precision.

the weights choice during INQ, so that they can be quantized

in a precise order. In this work, three different priority patterns

were studied: i) weights with the greatest absolute value; ii)

weights with the lowest absolute value; and iii) weights featuring

the lowest quantization error. The quantization error refers

to the value calculated as the absolute difference between the

value of the weight at the end of the training and the value of

the closest quantization level. Figure 5B reports the cumulative

distribution function (CDF) of the obtained C-index in 100

training experiments. The C-index obtained by training a GPU

without INQ strategies and with a full floating-point precision is

also reported for sake of comparison. We experienced that while

the policy i) leads to optimal results, it is also the one leading

to a higher network instability materialized in the impossibility

to complete the training in some cases. Policy ii) has similar

behavior with respect to the former one, although a slightly

larger variability is experienced in favor of higher training

stability. Policy iii) achieves a slightly lower C-index mean and

a larger variability with respect to the other policies. We were

able to observe that the best C-index values were reached when

the weights with the lowest quantization error coincided with

those with the lowest absolute value. Conversely, we get worse

C-index values when the weights predominantly coincide with

those selected in i). For these reasons, we performed all our

experiments with policy ii).

The last operation for mapping the DeepSurv’s weights

on the RRAM concerns the definition of which differential

operation is required to reach a certain level. Specifically, to

represent a certain quantized weightW with one of the 17 levels,

there are various combinations of G+ and G− achieved from

the 9 discrete conductance distributions of the RRAM devices.

As an example, a weight of 125 µS can be obtained as the

difference betweenG+ = 150µS andG− = 25µS or equivalently

as the difference between G+ = 200 µS and G− = 75 µS.

To better understand which conductance combinations allow

maximizing the accuracy of the network using the 17 quantized

levels, we run 2000 Monte Carlo simulations for all the possible

G+,G− cases and extract the σ for each experiment. Figure 6

shows the results of the simulations by considering the two

different RRAM multilevel programming approaches described

in Section 2.2. To enhance the significance of the results on a

long-term basis, we also performed the simulations considering

the conductance drift effect after 168 h. As it can be seen, both

RRAM programming methods expose how the best mapping

should take advantage of the higher conductance levels due to

their enhanced stability over time (i.e., less affected by drift). This

is manifested in a lower σ value which corresponds a higher

accuracy of the DeepSurv network. However, achieving the 17

quantization levels also requires the use of the lower RRAM

conductance levels. In this context, the programming algorithm

presented in Baroni et al. (2021) allows achieving a more stable

differential operation in both short and long periods. However,

neural network accuracy and stability are not the only goals.

Indeed, it should be reminded that the use of higher conductance

levels inherently leads to lower energy efficiency, since the

IC required in programming operations and the read current

from RRAM cells will lead to large power consumption. This

exposes an interesting trade-off between the energy efficiency

and the DeepSurv performances that requires a thorough design

space exploration.
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FIGURE 6

(A) Colormap of the conductance σ of the di�erential distribution obtained through ML-Set at the end of the programming algorithm. (B) and

after 168 h evidencing the e�ect of the drift. (C,D) Same analysis performed for ML-Hybrid. The lower is better for DeepSurv accuracy.

3. Results

3.1. RRAM-based architecture for
DeepSurv

The implementation of the DeepSurv neural network is

schematically depicted in Figure 7. It consists of a total of four

RRAM arrays, two for the positive and two for the negative

contribution to the synaptic weights. The input is fed into a

series of DACs that control the voltage at the wordlines of the

first arrays. The output of the first layer, extracted as currents, is

transformed into a voltage viaTransimpedance Amplifier (TIA),

digitally converted through ADCs, and fed into a digital signal

processor (DSP) that is responsible for doing the subtraction

of the positive and the negative results, passing them through

activation and adding the bias. The same happens for the second

layer, and the second DSP is also responsible for calculating the

last linear combination and exporting the C-index as the output

of the computation.

From Figures 4, 6, we learned how the choice of higher

conductance levels to avoid the drift in RRAM during

differential operations allows achieving amore precise definition

of the DeepSurv’s weights. We remind that the levels from L6

to L9 are obtained with the same approach both in ML-Set and

ML-Hybrid methods, whereas the L2-L5 are those to differ. In

this context, ML-Hybrid demonstrates a decisive advantage in

terms of conductance drifts and weight displacement countering

even on a longer time span (i.e., 168 h). At the same time, we

want to highlight that in all the calculations of Figure 6, L1

(obtained by reset operation) is used only in conjunction with

other conductance levels to define 2 weights out of 17 and never

as a starting point due to the large instability experienced in this
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FIGURE 7

RRAM-based implementation of the DeepSurv neural network considering the 64 × 64 crossbars studied in this work. The additional circuitry,

such as ADCs, DACs, and DSPs, required for the operations outside the MVMs are highlighted as well.

conductance state (Puglisi et al., 2015). For this reason, on the

X and Y axes of the figure, we will find only the conductive the

levels from levels L2 to L9.

3.2. Performance and energy design
space exploration for RRAM-based
DeepSurv

The multilevel programming methodologies applied to

RRAM interestingly expose the neural network accuracy/energy

trade-off dependently on what the weights quantization strategy

targets rewarding. As an example, if the energy efficiency of the

RRAM implementation is sought, wemay decide to exploit a low

conductance level (L2) to obtain all the possible combinations

for weights mapping. On the contrary, if accuracy is the only

concern, we may consider L8 or L9 as starting levels for the

conductance combinations. To better understand which levels

are best suited for maximizing the accuracy, we decided to

extract the quantization error rate resulting from the use of

each possible combination of conductive levels (L1 is used only

in conjunction with other conductance levels for the reasons

defined previously). Since there is a step of 25 µS between

each quantized weight and the adjacent ones, we considered an

upper and lower bound of 12.5 µS with respect to the target

weight conductance. Figure 8 shows a trend comparable to what

we have already observed in Figure 6. For ML-Set, the upper

conductive levels (L8 and L9) end up being a solid choice in

case we want to maximize the accuracy of the network. On

the contrary, for ML-Mixed, the choice may not be immediate.

We remind that the quantization error rate is not the only

factor affecting the overall accuracy. In fact, this also depends

on the robustness of the network itself. We, therefore, decided

to study network performance in more detail. To this extent,

we run 1,000 neural network simulations considering each

conductance level as a starting point for obtaining the weights.

The goal of this analysis is to evidence whether there are

criticalities in using a particular starting conductance level. The

implementation of the DeepSurv was tested either with the

ML-Set or the ML-Hybrid programming methods on RRAM.

Figure 10 shows the distribution of the C-index obtained shortly

after programming the RRAM and after 168 h to appreciate the

effect of the drift. Although the median value of the C-index

obtained with the ML-Set remains acceptable for all the levels,

we sometimes experience values well below 0.5 for starting

conductance levels lower than L5, making them unsuitable

for our application. On the other hand, we can see that with

the ML-Hybrid, we are able to achieve similar median C-

index values for all starting conductance levels. This important

consideration defines the design point for an RRAM-based

DeepSurv architecture to maintain competitive performance

with reduced energy consumption. In fact, the ML-Set method
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FIGURE 8

(A) Quantization error rate colormap of the di�erential distribution obtained through ML-Set at the end of the programming algorithm. (B) After

168 h evidencing the e�ect of the drift. (C,D) The same analysis performed for ML-Hybrid. The lower is better for DeepSurv accuracy.

can extensively use the L6 level instead of L8 or L9 to obtain

and accurately map all the synaptic weights while guaranteeing

a power consumption almost halved compared to the case

in which the highest conductance states are used. It must be

remembered that the network was trained iteratively to have

weights in the range [-2:+2]. This allows an easy mapping of

the characteristics of our device. The weights are distributed

mainly around the value ’0’ as shown in Figure 9. To obtain the

weights around the value ’0’, we can use differential operations

between the levels adjacent to L6. These are also the ones

that show a lower quantization error rate when compared with

the others. Thanks to this property with the support of the

C-index performance observed in Figure 10, we can confirm

the goodness of the L6 level for this type of network. On the

other hand, with the ML-Hybrid approach, it is possible to use

the L2 level for similar accuracy and quantization error rate

compared with the higher conductive levels (L9), thus obtaining

an estimated 75% power consumption reduction. We must

bear in mind that this would be possible at the expense of a

doubled power consumption during the programming phase

(post-training) of the RRAM array. This stems from the fact

that the above-mentioned multi-level programming method is

based on two combined Set/Reset procedures, thus requiring a

larger energy consumption at the beginning of the operations.

In any case, the greater power efficiency and performance

demonstrated amortize the previous overhead as the number of

inferences increases. Additionally, all these observations allow

us stating that reprogramming of the devices every 168 h may

be essential in the case of using ML-Set, given the strong

conductance drift shown and the consequent drastic increase in

sigma and quantization error, whereas the ML-Mixed algorithm

relaxes this requirement, thanks to its good performance even
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FIGURE 9

Histogram of the weight distribution.

after 168 h. It is also worth noticing that these observations

were performed at room temperature. In Baroni et al. (2022),

we studied the link between conductance drift, time, and

temperature, evidencing that for reliable operation of the RRAM

devices it is advisable to control the temperatures as much as

possible since the higher the temperature, the higher will be the

drift impact.

Finally, we studied the power consumption drawn by the

RRAM crossbar arrays involved in MVM operations during

the simulation of a DeepSurv inference. Since each synaptic

weight is mapped on two differential RRAM cells, we mapped

the correct conductance pattern according to the chosen target

programming algorithm. We defined three operation modes

and considered them separately for the power analysis: i) a

performance mode (P) where L9 conductance level is used to

obtain the weights; ii) an energy-efficient mode (S) using ML-

Set L6 conductance level; iii) an energy-efficient mode (H) using

ML-Hybrid L2 conductance level. The total power drawn is

computed as the sum of all the currents that flow through the

crossbar arrays of the different synaptic layers, supposing to

apply a readout voltage (Vread) of amplitude that depends on

the input neuron’s activation value. Figure 11 shows the total

power consumption for the different conductance levels used

as a starting point for the differential operations, evidencing the

power draw of the three presented modes.

4. Discussion

To compare the different IMC operation modes proposed

in the previous section from the standpoints of energy

consumption and efficiency, we have exploited dedicated figures

of merit. We defined the throughput of the IMC system in terms

of inferences per second as

Tr =
1

τi
(2)

where τi is the latency required for the execution of an inference

operation. From Tr, we can derive the energy consumption per

inference Einf as

Einf = Pinf ∗ τi (3)

where Pinf is the power drawn per inference that is calculated

taking into account the contributions of the crossbars used for

MVM operations, the ADCs, the DACs, and the DSPs. Table 1

reports the values extracted from the literature concerning the

digital circuits of the IMC architecture. The last metric adopted

is the energy efficiency measured in terms of inference per watt:

γ =
Tr

Pinf
(4)

One of the greatest advantages of using IMC applications lies

in the low power consumption that these solutions propound.

In this regard, the peripheral (digital) circuitry used in this

work was chosen aiming to not excessively penalize the IMC

advantages in this context. The total latency of the system can

be calculated through the chain of operations that the IMC

architecture must perform during an inference. At the start of

the chain, we have 6 DACs that take the input features of the

network and convert them in parallel. Next, 2 ADCs come into

play in a parallel fashion. The first converts the 48 values (48

conversion cycles) associated with the G+ matrix, the second

converts the 48 values associated with G−. We assume that

the ADC operation can be pipelined with the DSP. We assume

that 10 clock cycles are needed by the DSP to convert the data

received from the ADC. The conversion operation starts as

soon as the first data from the ADC is received. This final step

closes the computation steps in the first layer of our network.

For the second layer, we will have an identical procedure, but

here instead of the initial 6 DACs we will have to employ 48

DACs, which once again will work in parallel. By considering

the latency values for the components reported in Table 1, we

achieve a latency per layer of 1.48 µs. Finally, we perform the

last linear combination required to provide the c-index value as

output. If the DSP needs 10 clocks to execute it, we obtain a total

latency value for an inference of

τi = 1, 48µs+ 1, 48µs+ 200ns = 2.98
µs

inference
(5)

This holds to a Tr of 335,570 inferences per second.

In Figure 12, we notice the comparison in terms of energy

spent per inference and energy efficiency between the different

IMC operation modes. With mode P, we have a power

consumption only for MVM operations equal to 7.92 mW, with
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FIGURE 10

(A) Boxplot of the C-Index value over 1,000 simulation with the distribution obtained from ML-Set at the end of the programming algorithm. (B)

Boxplot of the C-Index value over 1,000 simulation with the distribution obtained from ML-Set after 168 h evidencing the e�ect of the drift. (C,D)

The same analysis performed for ML-Hybrid.

Mode S 5.2 mW, and with mode H 2.06 mW. Here, we can see

how a careful choice of the conductive reference level can lead to

energy savings per inference of around 8 nJ in the case of ML-Set

and up to 18 nJ for ML-Hybrid, leading to significantly higher

energy efficiency values compared to standard programming

methods. This confirms the importance of a thorough analysis

not only of the neural network but also of the IMC technology,

starting from the programming algorithm ground up to the

implementation strategies used in low power application to

maximize the performance and the accuracy.

A discussion on the benefits of accelerating a survival

analysis workload with the IMC architecture is then mandatory

to understand the placement of this technology with respect

to state-of-the-art platforms. The survival analysis, and in

particular the DeepSurv application, is usually performed using

commodity systems equipped with multicore CPUs, and in

many cases, also with GPUs to take advantage of a potential

acceleration especially when either the datasets or the number

of variables in the model are exceedingly large (Nagpal et al.,

2020; Li et al., 2021; Yang et al., 2022). In this work, we tried

to understand if running the same DeepSurv application on

different platforms (net of the porting steps required) could

result in performance and energy efficiency differences. Our

target application relies on a DeepSurv version that exploits

Python programming language and deep learning frameworks,

such as Tensorflow and Keras, to accelerate the execution of

specific operations in neural networks. To get then an idea of

the cost in terms of computation latency and energy consumed

during the execution of a DeepSurv inference operation in a

commodity system, we have run the same network implemented

on our proposed IMC architecture in the COKA cluster

installed at the University of Ferrara (Italy). We tried the

GPU acceleration using an NVIDIA V100 card and profiled

the execution using the NVIDIA nvprof profiler (Yang, 2020),
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FIGURE 11

Power consumption for MVM operation as a function of the

conductance level selected as starting point for di�erential

weight computation.

TABLE 1 Power consumption and latency features of the peripheral

(digital) circuits considered for the simulations of the proposed IMC

architecture.

Component Technology Power Latency

consumption

DSP (Chen et al., 2017) 14 nm 18.35 µW 20 ns

ADC (Wang and Shi, 2018) 14 nm 41.3 µW 20 ns

DAC (Reaz and Badal, 2019) 130 nm 100 µW 500 ns

running 1,000 inferences and measuring the execution time of

all kernels running/accelerated on the GPU. While the inference

code was running, we also monitored the execution through the

nvidia-smi dmon command, which provides the power usage in

Watts of the GPU with a sampling period of 1 s.

We observed that most of the execution of the inference does

not show activity on the GPU, meaning that it is completely

demanded on the CPU. Only some kernels (e.g., Bias, SGEMM,

RELU, etc.) are fully executed on the GPUs, taking about 10

ms of the total 40 ms used for the inference. An average

power consumption during the inference is reported as 38 W.

These performance and power drawn metrics are not directly

comparable with what we have reported for our proposed

IMC architecture for several reasons, among them: i) we are

measuring all the overheads involved in transferring the data

to/from the host CPU and GPU and the time to launch kernels

on GPU; ii) applications based on Tensorflow only run some

kernels on GPU causing several additional transfers between

host CPU and GPU (called host-to-device and device-to-host

transfers); iii) our neural network model is small both in terms

of input features and the number of layers, and to this extent,

the execution on a GPU cannot be streamlined since is mainly

affected by the time to move data in and out of the GPU

memory; iv) regarding power drawn by the GPU, the output

of nvidia-smi command report the values including also the

consumption for moving data between host CPU and GPU

without providing the power related to the inference time. Such

indications make evident that GPUs are not able to efficiently

accelerate applications like the DeepSurv characterized by low-

latency and low-throughput. Provided the limited advantage of

the GPU acceleration, we expanded the study by implementing

the required network solely on an Intel Xeon 6242 CPU. The

metrics extracted during the simulations reported an inference

time of 38 ms and power consumption of 90 W. Given the

poor figures of merit obtained, one could think to map the

DeepSurv workload on a field programmable gate array (FPGA)

accelerator connected to the CPU. Unfortunately, there are

no implementations in the literature provided for this neural

network used in survival analysis. However, we can compare

the IMC potential in terms of GOP/s and GOP/J (calculated

on the number of MVM operations performed during an

inference) with those theoretically attainable (maximum) by an

FPGA running a generic neural network inference task. We

used values retrieved from different FPGA platforms obtained

by a literature survey (Guo et al., 2019). In Table 2, we show

the results of such a comparison. As it can be seen, while

an FPGA can provide a larger boost in terms of GOP/s

with respect to an IMC architecture, its energy efficiency in

terms of GOP/J is comparable (most of the time, the energy

efficiency is lower). Concerning the power consumption, IMC

performs orders of magnitude better than FPGAs given the

smaller size of the system to be integrated. We also must make

some considerations on the application scenario. The DeepSurv

network is designed to work with an amount of data provided

in input that is often limited (i.e., individual patient’s data)

and does not require frequent inferences during the day (Singh

and Mukhopadhyay, 2011). This allows us speculating that the

power consumption and the energy efficiency take priority with

respect to the inference speed performances. It should also be

noted that both speed and energy efficiency in IMC depend

heavily on the peripheral circuitry connected to the MVM, so

we foresee a further improvement of those values as the CMOS

technology used for ADC, DAC, and DSP goes in the direction

of ultra-low power applications. This would favor the adoption

of IMC architectures in energy-efficient systems where power

consumption minimization is sought, potentially opening new

application scenarios.

5. Conclusions

In this work, we explored the benefits of an IMC architecture

for implementing an RRAM-based inference engine dedicated

to a deep neural network for survival analysis of biomedical

data (DeepSurv). Through the characterization of 4 kbits arrays,

we evaluated the optimal methodologies to quantize and store

the synaptic weights considering the drift phenomenon. A
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FIGURE 12

Benchmark of proposed RRAM-based IMC architecture and algorithms in terms of (A) energy consumption for each inference and (B) energy

e�ciency.

TABLE 2 Performance (GOP/s), power consumption (W), and energy e�ciency (GOP/J) for di�erent technologies candidated to accelerate the

DeepSurv workload.

Technology Data format GOP/s Power consumption GOP/J

This work (IMC) 17 levels 1.82 17.1 mW 106

XC7Z045 (Qiu et al., 2016) INT16 136.97 6.63 W 14.22

XC7Z020 (Venieris and Bouganis, 2016) INT16 12.73 1.75 W 7.27

ZCU102 (Lu et al., 2017) INT16 2940.7 23.6 W 124.6

XCVU440 (Shen et al., 2018) INT16 785 26 W 30.2

The data shown for the field programmable gate array (FPGA) were obtained (Qiu et al., 2016; Venieris and Bouganis, 2016; Lu et al., 2017; Shen et al., 2018) and represent the maximum

theoretically attainable values when a generic neural network task is run.

comparison of two MLC programming algorithms evidenced

how it is possible to exercise a trade-off between network

accuracy and energy consumption. By using a system-level

simulator to map the proposed IMC architecture, we were

able to demonstrate high throughput in terms of inferences

per second and good energy efficiency (inf/J), maintaining the

network accuracy and stability at a competitive level with Von

Neumann architectures.
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