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Tonal working memory has been less investigated by neuropsychological and

neuroimaging studies and even less in terms of tonal working memory load.

In this study, we analyzed the dynamic cortical processing process of tonal

working memory with an original surface-space-based multivariate pattern

analysis (sf-MVPA) method and found that this process constituted a bottom-

up information transfer process. Then, the local cortical activity pattern,

local cortical response strength, and cortical functional connectivity under

different tonal working memory loads were investigated. No brain area’s local

activity pattern or response strength was significantly different under different

memory loads. Meanwhile, the interactions between the auditory cortex (AC)

and an attention control network were linearly correlated with the memory

load. This finding shows that the neural mechanism underlying the tonal

working memory load does not arise from changes in local activity patterns or

changes in the local response strength, but from top-down attention control.

Our results indicate that the implementation of tonal working memory is

based on the cooperation of the bottom-up information transfer process and

top-down attention control.

KEYWORDS

tonal working memory load, sf-MVPA, cortical activation pattern, functional
connectivity, attention

Abbreviations: STG, superior temporal gyrus; SMG, supramarginal gyrus; IFG, inferior frontal
gyrus; PCG, Precentral gyrus; SMA, Supplementary motor area; PMC, Premotor cortex; IPL,
Inferior parietal lobe; PT, Planum temporale; AC, Auditory cortex; EEG, Electroencephalography;
MEG, Magnetoencephalography; MVPA, Multivariate pattern analysis; fMRI, Functional magnetic
resonance imaging; LFP, Local field potential; PFC, Prefrontal cortex; PCC, Posterior cingulate
cortex; ECOC, Multiclass error-correcting output codes; SVM, Support vector machine; FDR, False
discovery rate; GLM, General linear mode; BOLD, Blood oxygen level dependent.
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Highlights

- A surface-space-based multivariate pattern analysis
method is proposed.

- Using this method, the dynamic cortical processing process
of tonal working memory is revealed, which constitutes a
bottom-up information transfer process.

- The neural mechanism underlying tonal working memory
load arises from the top-down attention control of the
working memory system.

- The realization of tonal working memory is based on the
cooperation of the bottom-up information transfer process
and top-down attention control.

Introduction

Working memory plays a central role in human cognition
(Cai et al., 2021) and has been an important issue since
it was first proposed (D’Esposito and Postle, 2015). Tonal
working memory refers to actively and temporarily maintaining
tones in the mind (Gorow, 2011; Galeano Weber et al.,
2017), while working memory load refers to the number of
items held in working memory (Pinotsis et al., 2019). As an
important part of the auditory working memory (Pechmann
and Mohr, 1992; Berz, 1995), tonal working memory is essential
for musical cognition (Schulze and Koelsch, 2012). However,
compared with visual/spatial and verbal studies, tonal working
memory has been less investigated by neuropsychological and
neuroimaging studies (Daligault, 2017) and even less in terms of
tonal working memory load (Grimault, 2014).

In an early functional magnetic resonance imaging (fMRI)
study, Gaab et al. (2003) found that the neural basis of
tonal working memory involved the superior temporal gyrus
(STG), supramarginal gyrus (SMG), inferior frontal gyrus
(IFG), precentral gyrus (PCG), superior parietal regions, and
dorsolateral cerebellar regions. Using a decoding method, Uluç
et al. (2018) found distinguishable neural coding in STG, PCG,
and supplementary motor area (SMA) in a content-specific tonal
working memory study. In an fMRI study (Schulze et al., 2011)
comparing verbal and tonal working memory, Broca’s area,
premotor cortex (PMC), pre-SMA/SMA, left insular cortex, and
inferior parietal lobe (IPL) were found to be involved in both
verbal and tonal working memory. In another verbal and tonal
working memory study (Koelsch, 2009) during rehearsal and
articulatory suppression, the planum temporale (PT), PMC, IPL,
Broca’s area, the anterior insula, and some subcortical structures
were found to be activated during a rehearsal of verbal and tonal
information. When studying the local neural pattern of working
memory of tones, Kumar (2016) found that patterns of activity
in the auditory cortex (AC) and left IFG distinguished the tone
that was maintained in working memory.

Although a consensus is gradually emerging that a
frontoparietal network (Gaab et al., 2003; Schulze et al., 2011;
Schulze and Koelsch, 2012; Albouy, 2019; Czoschke et al., 2021)
consisting of the inferior parietal lobule (IPL), cerebellum, PT,
Broca’s area, and PMC constitutes the neural basis underlying
tonal working memory, the dynamic neural processing process
of tonal working memory remains largely unknown. In
addition, although there has been some electroencephalography
(EEG)/magnetoencephalography (MEG) research (Guimond,
2011; Nolden, 2013; Grimault, 2014) concerning the tonal
working memory load, due to the limited spatial resolution of
EEG/MEG (Ahlfors and Simpson, 2004), the neural correlates
of tonal working memory load remain unclear.

Some fMRI studies (Gaab et al., 2003; Albouy, 2019) have
attempted to investigate the dynamic processing process of
tonal working memory by shifting the scanning time during the
memory retention period; however, due to the poor temporal
resolution of traditional data analysis methods, the dynamic
processing process has not been clearly revealed. In addition
to fMRI, local field potential (LFP) is also a potential method
to explore the dynamic processing process underlying working
memory (Pinotsis et al., 2019; Kumar, 2021). However, despite
the high spatial and temporal resolution of LFP, it is difficult
to cover the whole cortex with electrodes and is hard to
use this method in healthy people, which limits the scope
of the method. A more efficient and non-invasive method is
needed to reveal the dynamic neural processing process of
tonal working memory.

Volume-space-based MVPA mainly depends on a
searchlight method (Kriegeskorte et al., 2006) to select
voxels that represent the local pattern space. In this method,
for a certain central voxel, a spherical-volumetric region
around that voxel is defined and the voxels inside that sphere
constitute the local pattern space. This spherical-volumetric
searchlight method has several flaws (Chen, 2011; Oosterhof
et al., 2011). First, the inclusion of non-gray matter, such
as white matter, cerebral spinal fluid, and other tissues in a
volumetric searchlight, is likely to increase the noise-to-signal
ratio. Second, considering the folded nature of the cortex, it
is very possible to include remote (in the geodesic distance)
non-associated brain areas in a searchlight. Searchlights close
to the longitudinal fissure might even include voxels from the
other hemisphere.

To improve the defects of volume-space-based MVPA, we
proposed a new original surface-space-based MVPA method.
This method directly extracts searchlight from the surface space,
thus avoiding the disassociation problem and the noise of
non-gray matter. Using this sf-MVPA method, we successfully
revealed the dynamic cortical processing process of tonal
working memory and found that this process constituted
a bottom-up information transfer process. Furthermore, we
analyzed the local cortical activity pattern, local cortical
response strength, and cortical functional connectivity under
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different tonal working memory loads. We found that the
interactions between the AC and an attention control network,
consisting of the prefrontal cortex (PFC), posterior cingulate
cortex (PCC), and precuneus, were linearly correlated with
memory load, demonstrating top-down attention control
during tonal working memory.

Materials and methods

Participants

A total of 23 young and healthy volunteers with normal
hearing (18–23 years, mean age 20.8 years, 11 females,
right-handed) participated in this experiment. All volunteers
were students of Southwest University (China). None of the
volunteers had any extra-musical training beyond general
school education. Volunteers were paid for their participation
and signed informed consent forms. The experimental paradigm
was approved by the Ethics Committee of Southwest University
(project number: H21053).

Experimental paradigm

There were five MRI runs in total. The first run was
used to acquire T1 structure data, and during this run, no
task was performed. The second run was used to adjust the
system volume by the subjects, and during this run, the T2∗

functional data were scanned for 1 min to simulate the real
experimental circumstance. During this run, a song was played
via headphones, and the subjects were asked to adjust the
system volume as much as possible on the premise that they
felt comfortable. Foam inner ear plugs were worn by subjects
to reduce the noise from the scanner. A formal experiment was
performed in the last three MRI runs. Subjects were instructed
to keep their eyes open and look at a fixed cross in the center of
the screen during the formal experiment. A trial started with a
second of silence, and then, a fixed cross was presented in the
center of the screen until the answer period. Then, a sequence
of piano tones (1–4 in number) was presented to subjects via
headphones. After a delay period of 20 s, another sequence of
piano tones (the same length) was played. Subsequently, the text
“were they the same” in Chinese and two buttons, one with
the word “same” and another with the word “different,” were
displayed on the screen. Subjects had 4 s to answer whether these
two sequences were the same with a panel. The panel had two
buttons and was held by subjects with the left (12 subjects) or
the right (11 subjects) hand. The panel was also used to adjust
the system volume in the second run. Subjects were asked to
press the buttons with their index finger and the answer was
shown on the screen in real time. Under the control condition,
during which nothing was played, subjects were asked to press

the same button during the answer period. Before entering
the scanning room, subjects were trained on a computer to
familiarize themselves with the experimental procedures.

There were 100 trials in the formal experiment, including
20 control trials. These 100 trials were randomly divided into 3
parts, with 33 trials in the first and second parts and 34 trials in
the last part. Each part was presented in an MRI run. Nine tones
(C1, D1, E1, F1, G1, A1, B1, C2, and D2) were selected as stimuli
according to the key of C major. Sequences of tones consisted
of free combinations of these 9 pitches, allowing repetition.
Piano tones were chosen because a piano is a common musical
instrument and is often used in studies of auditory working
memory (Jerde et al., 2011; Herholz et al., 2012; Bigelow et al.,
2014). To eliminate the interference of other musical elements,
such as rhythm and tempo, all tones were in 4/4 m and 240 bpm.
There were 20 sequences under each condition and whether
the paired sequences were the same was equiprobable. For the
paired sequences that were not the same, there was a tone
(at a random location) of the probe sequence that varied in
two natural tones (up or down with equal probability). We
used MATLAB R2020b1 to generate the random code of these
sequences and used LilyPond2 to generate MIDI files. We then
used MATLAB R2020b to convert these MIDI files into.mp3 files
(sample rate of 44.1 kHz). Later, Adobe Audition CS63 was used
to standardize the volume of the sequences and the song used
in the second run according to the peak amplitude. We wrote
two VC++ programs using Visual Studio 20104 to present the
stimuli and visual content. The first program was used to present
a song via headphones and receive button messages to adjust
the system volume in the second MRI run. The second VC++
program randomly presented the paired sequences to subjects
and recorded their button responses. The triggering signal sent
by the MRI system ensured that the two VC++ programs were
synchronized with the scanning. The experimental paradigm is
illustrated in Figure 1A.

Imaging data acquisition and
preprocessing

The MRI data were acquired with a 3T Siemens Prisma
scanner at the Brain Imaging Center of Southwest University.
Scanning consisted of 5 runs. The first run acquired the high-
resolution T1 images. The parameters were as follows: FOV read
(256 mm), slices per slab (192), resolution (1× 1× 1 mm3), TR
(2,530 ms), TE (2.98 ms), TI (1,100 ms), and flip angle (7◦). The
following 4 runs acquired the T2∗ image. Notably, to acquire the
T2∗ images, we used multi-slice accelerating technology (MSA),

1 https://ww2.mathworks.cn/

2 http://lilypond.org/

3 https://www.adobe.com/cn/products/audition.html

4 https://visualstudio.microsoft.com
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FIGURE 1

Experimental procedure and behavioral results. (A) A sequence of piano tones (1–4 tones) was presented to subjects and after 20 s, another
sequence of tones (same length) was presented. Subjects must answer whether these two sequences are the same. There were five conditions
in total. Condition 0 referred to the control task, during which no sequence was presented and subjects had to answer “same” in the answer
period. (B) Accuracy of the answers under different memory loads.

which can significantly improve the temporal resolution of the
imaging data (Frost, 2015). With the advantages of MSA, we
acquired the functional imaging data at 2.5 × 2.5 × 2.5 mm3

resolution with a TR only lasting for 1 s. The higher temporal
resolution of the functional data helped us obtain a more
detailed dynamic processing process of tonal working memory.
The parameters used in the T2∗ scanning were as follows:
acceleration factor slice (4), FOV read (195 mm), TR (1,000 ms),
TE (30 ms), flip angle (32◦), slices (56), and resolution
(2.5× 2.5× 2.5 mm3).

We used FreeSurfer (Fischl et al., 1999b) to implement
data preprocessing. First, we used the function “recon-
all” (Collins et al., 1994; Dale et al., 1999; Fischl et al.,
1999a,b) to reconstruct the cortex with a T1-weighted
image. In this step, data processing procedures such as
motion correction, Talairach transform, skull strip, white
mater segmentation, spherical registration, and cortical
parcelation were performed. Second, we used the function
“preproc-sess” (Cox and Jesmanowicz, 1999) to preprocess
the functional data. In this step, processing procedures
such as registration template, motion correction (with
motion parameters), anatomical-functional registration, mask
creation, intensity normalization (global signal regression),
resampling to common space, and spatial smoothing
were performed. By preprocessing, the functional data
were registered to a high-resolution surface template of
fsaverage, which was obtained by the spherical alignment
of 40 participants (Wu, 2018). Fsaverage consists of two
hemispheres, both of which have 163,842 vertices. It has
an inflated form that can significantly benefit visualization.
Our following analyses were implemented based on this
inflated template.

Surface-space-based MVPA

In this study, we proposed an sf-MVPA method to reveal
the distinction among local cortical activity patterns under
different conditions. The surface space of fsaverage has a very
fine spatial resolution. We calculated the distances between the
vertices and found that the average distance between a vertex
and its nearest vertex is 0.542 mm in the left hemisphere and
0.545 mm in the right hemisphere, which is much finer than
the spatial resolution of our original functional data. If we
directly implemented sf-MVPA in this space, the computational
complexity will significantly increase.

To address the problem of computational complexity, we
proposed a double radius dividing method to downsample the
surface space of fsaverage. The core idea of this method is to
divide the surface of fsaverage into small pieces that share a
resolution similar to that of the original functional data as evenly
as possible. In this article, these pieces were named labels. The
surface space of fsaverage is an irregular sphere, which increases
the difficulty of uniform subdivision. As illustrated in Figure 2A,
the subdivision was implemented in the numerical order of the
vertices. The distances between the first vertex (point A) and
all remaining vertices were calculated. Vertices whose Euclidean
distance from point A was less than a 0.9-mm radius (r) were
grouped into label 1. When a vertex was grouped into a label,
it was painted green. Meanwhile, vertices whose Euclidean
distance from point A was less than 1.8 mm (double radius, R)
but larger than 0.9 mm were painted yellow. The double radius
R was used to prevent the overlapping of adjacent labels. This
painting and grouping operation was iterated for all remaining
vertices under the condition that the vertex under processing
had not been painted any color by the former processes. For
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FIGURE 2

The analysis stream of sf-MVPA. (A) Double radius dividing method. We used this method to divide the template of fsaverage into labels as
evenly as possible. Dividing was implemented according to the numerical order of the vertices. For a vertex (e.g., points A, D, and E) that was not
grouped into a label, the vertices whose distances from the vertex were shorter than r were grouped into a label and painted green. The vertices
whose distances from the vertex were longer than r but shorter than R (R = 2r) were painted yellow. For vertices that were painted color (e.g.,
points B and C) by the painting process of the former vertices, the painting and grouping process was forbidden. The large circle guarantees
that the labels will not overlap. After the iteration process, the vertices painted yellow were grouped into the nearest label. (B) Searchlight on the
surface space. The grid on the surface represents the labels. The yellow circle represents the searchlight. (C) The frame-by-frame training and
classification process. The hexagons represent labels and the color on them represents the averaged strength of BOLD signal.

example, vertex 2 (Point B) and vertex 3 (Point C) were painted
green and yellow, respectively, by the operation of the first
vertex. Therefore, the painting and grouping operation was not
applied to these two vertices. Vertex 4 (Point D) and vertex
5 (Point E) were not painted by former processes; thus, the
painting and grouping operation was applied to them. After the
iteration process was completed, the vertices that had not been
grouped into a label (vertices painted yellow) were grouped into
the nearest label according to the Euclidean distances between
them and the center positions of each label. Then, the label
replaced the vertex as the basic unit of the surface space. Using
this method, we downsampled the surface space of fsaverage
from 163,842 to 11,895 (left hemisphere) and 11,751 (right
hemisphere), with approximately 14 vertices per label. The
average Euclidean distance between a label and its nearest label
(center to center) was 2.08 mm (left hemisphere) and 2.10 mm
(right hemisphere), indicating that after downsampling, the
surface space was in a comparable resolution with the original
functional data (but still smaller than the original resolution).
Then, the functional data were downsampled to the label space
by averaging the blood oxygen level-dependent (BOLD) signals
of vertices inside labels.

The following steps were similar to those of volume space-
based MVPA. For each label, a sphere (10 mm in radius,
as illustrated in Figure 2B) around the center of the label
was constructed. Labels whose center was located inside the
sphere constitute the searchlight of the central label. Because
the size of the radius (10 mm) of a sphere is much smaller
than the size of the template of fsaverage, whose major axis

(Y-axis) is 212 mm and minor axis (X-axis) is 80 mm, the
searchlight selected by this method is close to a circle on a
plane. A searchlight includes 36–91 labels. The fluctuation of
the numbers of labels included in a searchlight mainly stems
from the non-uniformity of the subdivision and the irregular
curvature of the template of fsaverage.

Subsequently, we analyzed the local cortical activity pattern
distinction between the tonal working memory task and the
control task. A threefold cross-validation was applied. The data
from two runs served as the training set, and the remaining
run served as the testing set. The classification accuracies of the
three testing sets were averaged and stored in each label. We
used a multiclass error-correcting output code (ECOC) model
(Escalera et al., 2008, 2009) to train and classify the data. This
model was encapsulated in MATLAB and worked together with
support vector machine (SVM) binary learners (Allwein et al.,
2000). The number of trials of tonal working memory was four
times that of the control condition, which would lead to an
imbalance problem (Farquad and Bose, 2012). The imbalance
problem refers to when there are many more instances of
some classes than others during training, and the classifiers
tend to be overwhelmed by the large classes and ignore the
small ones. To avoid the imbalance problem, we downsampled
the instances of tonal working memory to the same number
of trials as the control condition. Under each memory load
condition, we randomly selected instances with the number of
a quarter of the number of the control condition. After instance
downsampling, the functional data were z-score normalized
and subjected to the training and classifying procedures, as
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FIGURE 3

Sf-MVPA analysis results of 1–11 s and BOLD curves of 6 ROIs. (A) The sf-MVPA results of 1–11 s of tonal working memory vs. control task.
(B) Average BOLD curves of 3 ROIs in the left hemisphere. (C) Average BOLD curves of 3 ROIs in the right hemisphere. AC, auditory cortex.

illustrated in Figure 2C. A second-level random effect analysis
(Lee et al., 2011) was implemented by comparing each label’s
accuracy to 50% with a unilateral t-test. We analyzed the
local pattern distinction from the stimulus onset to the end
of the delay period, forming a 21-s dynamic process. The
results are reported in Figures 3A, 4A with a criterion of

p < 0.0001 (significance level of the t-test), false discovery rate
(Benjamini and Hochberg, 1995) (FDR) p < 0.01, and cluster
size (label) > 10.

The cluster sizes of the labels meeting the statistical criterion
were calculated with an iterative recursive algorithm. First, we
set the criterion that if the closest distance (by calculating
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vertex–vertex distances) between the two labels was less than
1.1 mm, the two labels were judged as adjacent to each other.
For every label that met the statistical criterion, the following
iterative process was invoked. If a label was not grouped into a
cluster, this label and its adjacent labels that met the statistical
criterion were grouped into a cluster. Then, the process was
recursively invoked by its adjacent labels that met the statistical
criterion. This algorithm stopped automatically when all labels
that met the statistical criterion were grouped into a cluster.
Through this iterative recursive algorithm, cluster sizes were
successfully counted.

After the analysis of tonal working memory vs. the control
task, we analyzed the local pattern distinction under different
tonal working memory loads with the sf-MVPA method. Three
changes were applied. First, because the numbers of trials
of different memory loads were comparable, downsampling
of instances was not applied. Second, in the second-level
random-effect analysis, the accuracies of the classification
were compared to 25%, corresponding to 4 conditions.
Third, instances of the control condition were not included
in this analysis.

Response strength analysis of fMRI
data

We used general linear mode (GLM) to explore whether
there are brain areas whose activity strength increases as tonal
working memory load increases. Using FreeSurfer, the onset
times of different conditions (with a duration of 21 s) were
convolved with a standard hemodynamic response functional
(HRF) curve to construct simulated response curves. These
curves entered the GLM, and the regression coefficients were
calculated. Then, the second-level random effects were analyzed,
and the contrasts between adjacent conditions were compared.
The statistical criteria of these comparisons were set to
p < 0.01 (voxel-wise threshold) and p < 0.05 (cluster-wise
threshold). GLM analysis was implemented in the standard
vertex space of fsaverage.

We also used a linear regression (Chatterjee and Hadi,
1986) to analyze the relation between memory load and neural
activity strength. Linear regression analysis was implemented in
label space with MATLAB. We constructed the average BOLD
response curves of each label under each memory condition
by subtracting the average response curve under the control
condition from each condition’s average response curve. The last
second before the stimulus was set as the baseline (zero point);
thus, the curve lasted for 21 s. The average curves across subjects
and conditions of 12 return on investments (ROIs) (introduced
in the next part) are displayed in Figures 3B,C, 4B,C. The
average amplitudes of the response curves under each condition
were stored in each label and entered the group-level linear
regression analysis between memory load and neural activity

strength. The statistical criteria were set to p < 0.05 (significance
level) and cluster size (label) > 10.

Functional connectivity analysis

Surface-space-based multivariate pattern analysis of tonal
working memory vs. the control condition revealed the dynamic
cortical processing process of tonal working memory. During
the process, some brain areas, such as the bilateral AC, IPL,
PCG, and SMA dynamically participated in the processing
of tonal working memory. However, in contrast to the IPL,
PCG, and SMA, which have relatively stable peak positions, the
peak position of AC varies with time (as shown in Figure 3).
Therefore, we choose the three peak positions of AC in the
fifth, sixth, and seventh seconds as ROI. Thus, there were 12
ROIs in total. The names and coordinates of these ROIs and
the time points from which they were selected are reported in
Table 1.

We calculated the functional connectivity strength between
these ROIs and each label under different memory loads. In
each trial, Person correlations of the 21-s BOLD curves between
the 12 ROIs and all labels were calculated. It is worth noting
that the BOLD curves of the 12 ROIs were average curves of
each ROI and their adjacent labels. The correlation coefficients
under each memory condition were averaged and stored in each
label. A group-level linear regression between the correlation
coefficients and memory load was performed for each label and
ROI. Brain areas whose functional connectivity strength with an
ROI was linearly correlated with the memory load are reported
with a criterion of p < 0.05 (significance level) and cluster
size (label) > 10.

Results

Behavioral results

The average response accuracy under the four memory
conditions was 75.7% and SD 7.5%. The accuracies under each
condition were as follows: Condition 1 (77.6% and SD 12.5%),
Condition 2 (84.1% and SD 14.7%), Condition 3 (75.4% and SD
12.4%), and Condition 4 (65.7% and SD 8.7%). The behavioral
results are displayed in Figure 1B.

Sf-MVPA of tonal working memory vs.
control task

Surface-space-based multivariate pattern analysis revealed a
dynamic cortical processing process of tonal working memory.
As shown in Figures 3A, 4A, the cortical processing of tonal
working memory started from the 4th second with small area
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TABLE 1 Names and locations of 12 ROIs.

Talairach coordinates

Hemisphere Name Time point Region x y Z

Left AC1 5s Superior temporal gyrus left −37.0 −26.1 9.6

AC2 5s Superior temporal gyrus left −49.0 −22.0 6.0

AC3 7s Superior temporal gyrus left −59.5 −16.3 2.1

AC4 7s Superior temporal gyrus left −59.0 −44.2 19.5

PCG 9s Precentral gyrus left −44.5 1.6 36.7

SMA 8s Supplementary motor area left −6.6 12.4 56.1

Right AC1 7s Superior temporal gyrus right 53.6 −25.2 0.3

AC2 6s Superior temporal gyrus right 43.0 −17.7 −6.1

AC3 5s Superior temporal gyrus right 38.1 −25.5 10.7

AC4 8s Superior temporal gyrus right 58.5 −28.3 9.3

PCG 8s Precentral gyrus right 49.6 −3.1 44.3

SMA 7s Supplementary motor area right 7.0 15.1 57.0

activation in the bilateral AC. Then, during 5–7 s, the bilateral
AC was strongly activated and the activation was transmitted to
the bilateral IPL, PCG, and SMA. During 8–12 s, activation in
the bilateral AC gradually faded, and activations were mainly
maintained in the bilateral PCG and SMA. After the 12th
second, the activation in the right hemisphere disappeared but
the left PCG and SMA remained activated. After the 16th
second, the activation of the left PCG disappeared and the left
SMA was the only remaining activated brain area. Notably, after
the 12th second, the strength and area of the activation of the
left hemisphere gradually declined, and at 15, 18, and 20 s, there
was no activation of either hemisphere. We summarized the
activation sequence and made a summary in Figure 5A.

Notably, neural activity and BOLD signals have a
complicated non-linear relationship (Baumann, 2010). Thus,
there is a delay and non-linear mapping relationship between
the actual occurrence time of neural activity and the time
that sf-MVPA can detect changes in local activity patterns.
To simplify the results, we directly reported and discussed the
sf-MVPA results without considering the delay of HRF.

Sf-MVPA and response strength
analysis of tonal working memory load

Sf-MVPA of tonal working memory load showed that
no brain area’s classification accuracy was significantly higher
than 25% during the analyzed 21 s, indicating that the local
activity patterns under the four memory load conditions did
not significantly differ. In addition, GLM analysis showed that
no brain area’s response strength significantly differs between
adjacent conditions. Furthermore, regression analysis validated
the GLM results by showing that no brain area’s response
strength was linearly correlated with the memory load. The

regression analysis results of the 12 ROIs are displayed in
Figure 6.

Functional connectivity analysis

In total, six ROIs (three in each AC) manifested an increased
functional connectivity with cortical areas as the memory load
increased. In the left AC, as the memory load increased, AC1L
showed an increased connectivity with bilateral AC, bilateral
PCC, and the right precuneus; AC2L showed an increased
connectivity with bilateral AC; and AC3L showed an increased
connectivity with bilateral AC, the right PCC, the bilateral
precuneus, and the right PFC. In the right AC, AC2R showed
an increased connectivity with bilateral AC and bilateral PCC;
AC3R showed an increased connectivity with bilateral AC and
bilateral PCC; and AC4R showed an increased connectivity
with bilateral AC. The results of functional connectivity analysis
along with the results of regression analysis of the peak labels are
displayed in Figures 5B, 7A,B and Table 2.

Discussion

In this article, we studied the dynamic processing process
of tonal working memory and the cortical correlates of tonal
working memory load. Our results showed that (i) the cortical
processing process of tonal working memory is a bottom-
up information transfer process; (ii) in all analyzed 21 s, no
brain area’s local activity pattern was distinguishable among
different memory loads; (iii) no brain area’s local activity
strength significantly increased as memory load increased;
and (iv) the functional connectivity strength between the
AC and an attention control network, consisting of the
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FIGURE 4

Sf-MVPA analysis results of 12–21 s and BOLD curves of 6 ROIs. (A) The sf-MVPA results of 12–21 s of tonal working memory vs. control task.
(B) Average BOLD curves of 3 ROIs in the left hemisphere. (C) Average BOLD curves of 3 ROIs in the right hemisphere. AC, auditory cortex; PCG,
precentral gyrus; SMA, supplementary motor area.

PFC, PCC, and precuneus was linearly correlated with tonal
working memory load.

The original sf-MVPA approach

The existing sf-MVPA approaches (Oosterhof et al., 2010;
Chen, 2011) have the problem of repetitive calculation. In this
article, we proposed a double radius downsampling algorithm
to solve this problem. Using this algorithm, we successfully

downsampled the surface space of fsaverage from the vertex
space, which contains 163,842 vertices in each hemisphere,
to the label space, which contains 11,895 labels in the left
hemisphere and 11,751 labels in the right hemisphere. Because
the computational complexity of sf-MVPA linearly correlates
with the number of units in a space, our method can significantly
reduce the computational complexity by an order of magnitude.
Moreover, because the resolution of the label space is still
less than the resolution of the original functional data, our
method does not compromise the resolution. Furthermore,
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FIGURE 5

Bottom-up information transfer process and top-down attention control network during tonal working memory. (A) The information transfer
process during tonal working memory. (B) The attention control network during tonal working memory. PCG, precentral gyrus; AC, auditory
cortex; IPL, inferior parietal lobule; SMA, supplementary motor area; PFC, prefrontal cortex; PCC, posterior cingulate cortex; PCUN, precuneus.

our approach directly extracts local activity pattern data from
the label space, which is more intuitive and can retain the
proportion of local activity patterns.

In summary, compared to the existing sf-MVPA approaches
(Chen, 2011; Oosterhof et al., 2010), our sf-MVPA approach
significantly decreases the computational complexity, does not
compromise the resolution, and applies a more intuitive and
reasonable searchlight data extracting method.

Dynamic cortical processing process
of tonal working memory

Compared to GLM, a significant advantage of MVPA is
that it can analyze fMRI data frame by frame. Based on
this advantage, our sf-MVPA method successfully revealed
a dynamic cortical processing process of tonal working
memory. During this process, tonal information is sequentially
transmitted to the AC, IPL, PCG, and SMA, all of which are
important parts of the neural basis of tonal working memory
(Chatterjee and Hadi, 1986; Benjamini and Hochberg, 1995;
Baumann, 2010; Oosterhof et al., 2010; Lee et al., 2011; Farquad
and Bose, 2012), and then sequentially disappears in these
areas, forming a bottom-up information transfer process. The
order and duration of the neural activity indicated the role
of the brain areas in maintaining tonal working memory.
Tonal information was first transmitted to the AC, but the
information was not maintained in the AC for a long time
and was then transmitted to higher level cortices (i.e., the
IPL, PCG, and SMA) just 1 s later. Thus, the role of the
AC in this process is more like a perception and transmitting
station. This presumption is consistent with animal experiments
(Bigelow et al., 2014; Yu, 2021) that auditory working memory
information is only maintained in the AC in the early stage of

the retention period. After the 5th second, tonal information
is transmitted to and sustainably maintained in the IPL, PCG,
and SMA. The sustained activity of a given brain area in the
maintenance period is generally considered the neural basis of
working memory (Kumar, 2016). Thus, the IPL, PCG, and SMA
played a higher role in maintaining tonal information in this
network. Furthermore, a more detailed hierarchical structure
seems to exist in these three areas. With the tonal information
represented in the local patterns of IPL and PCG disappearing
after the 16th second, the left SMA was the only brain area
that carried tonal working memory in the late stage of the
maintenance period. Thus, the left SMA was the only brain
area that carried tonal working memory throughout the whole
maintenance period, indicating its core role in tonal working
memory. The SMA has been found to play an important role
in maintaining auditory working memory. In a verbal working
memory study (Huang et al., 2013), activity in the bilateral SMA
was found to increase with memory load. In an fMRI study
(Hoddinott et al., 2021) comparing the neural basis of verbal
and rhythmic working memory, the left SMA was found to be
activated during the maintenance of verbal working memory.
When studying the neural basis of content-specific (pitches)
working memory (Uluç et al., 2018), the bilateral SMA was
found to carry information on the working memory of pitches.

In addition to the left SMA, the left PCG and IPL were
also left-side laterally activated during the middle stage of
the maintenance period, showing the left laterality of the
network. Taken together, the dynamic bottom-up information
transfer stream in the cortex supported the maintenance of
tonal working memory.

Utilizing the good spatial and temporal resolution of our
sf-MVPA method, we successfully demonstrated the dynamic
processing process of tonal working memory. To the best of
our knowledge, this study is the first to clearly demonstrate
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FIGURE 6

Names and locations and regression analysis results of neural response strength of 12 ROIs. No brain area’s response strength was linearly
correlated with memory load. AC, auditory cortex; PCG, precentral gyrus; SMA, supplementary motor area.

this process, showing the promising prospects of our sf-
MVPA method.

Neural mechanisms underlying tonal
working memory load

Tonal working memory has been studied from the
perspective of local activity intensity and local activity
pattern (Gaab et al., 2003; Nolden, 2013; Kumar, 2016; Uluç
et al., 2018). However, the neural basis of tonal working
memory load showed a different perspective. Our sf-MVPA
results showed that no brain area’s local cortical activity
pattern was distinguishable among different memory loads.
In addition, GLM and linear regression analysis showed that
no brain area’s response strength increased as the memory
load increased. Finally, our functional connectivity analysis
showed that functional connectivity from the left AC to
the right AC, bilateral PCC, bilateral precuneus, and right
PFC and the connectivity from the right AC to the left
AC and bilateral PCC were linearly correlated with tonal
working memory load.

According to Baddeley’s working memory model (Baddeley,
1986, 2000), a working memory system includes a master
component (the central execute) and some slave components,
such as the phonological loop, visuospatial sketchpad, and
episodic buffer. The central execute coordinates and integrates

the demands of the slave components by allocating limited
attention resources to each component according to the
current goal (Pechmann and Mohr, 1992; D’Esposito and
Postle, 2015; Baddeley, 2020). In addition to Baddeley’s
model, recently, popular state-based models [refer to ref.
(D’Esposito and Postle, 2015) for a review] proposed a
similar opinion. These models posit that working memory
relies on a top-down attention selection mechanism and
that attention selection of mental representations brings
them into working memory (Cowan, 1998; D’Esposito and
Postle, 2015). Despite the differences, both Baddeley’s and
state-based models stressed the interaction between top-
down attention control and memory storage units during
working memory. It has been widely accepted that the PFC
plays an important role in the top-down attention control
mechanism during working memory (Funahashi, 2017; Nee
and D’Esposito, 2018). In addition to the PFC, the PCC and
precenus were found to be associated with attention control.
In an fMRI study exploring the domain-general network of
working memory, Li et al. (2014) found that the PCC and
precuneus played a role in allocating attention resources to
memory contents. In another fMRI study investigating spatial
working memory, Bledowski et al. (2009) found that the
PCC and precuneus are related to the process of allocating
attention to specific items. In addition, as important hubs
of the default mode network, the PCC and precuneus are
believed to be essential for the executive control of attention
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FIGURE 7

Results of functional connectivity analysis. (A) Brain areas whose functional connectivity strength with ROIs in the left hemisphere was linearly
correlated with memory load. (B) Brain areas whose functional connectivity strength with ROIs in the right hemisphere was linearly correlated
with memory load. AC, auditory cortex; PFC, prefrontal cortex; PCUN, precuneus; PCC, posterior cingulate cortex.

(Andrews-Hanna et al., 2014; Leech and Sharp, 2014). Taken
together, it can be concluded that the PFC, PCC, and precuneus
constitute at least part of the top-down attention control
network in working memory.

Our results showed that the interactions between the AC
and this top-down attention control network (i.e., the right
PFC, PCC, and precuneus) were linearly correlated with tonal
working memory load. Considering this result and working
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TABLE 2 Results of functional connectivity analysis.

Talairach coordinates

ROI -log10 (p) Size (mm2) Region x y Z

AC1L 2.178 278.0 Superior temporal gyrus left −51.4 −20.2 2.6

2.775 57.3 Posterior cingulate cortex left −6.1 −39.0 22.6

2.393 259.6 Superior temporal gyrus right 46.2 −23.9 7.1

2.674 117.0 Superior temporal gyrus right 63.9 −29.5 4.0

2.754 35.5 Posterior cingulate cortex right 2.2 −31.4 24.2

2.887 34.6 Posterior cingulate cortex right 6.9 −15.1 28.1

2.964 93.4 Precuneus right 10.4 −66.1 39.8

AC2L 2.120 156.4 Superior temporal gyrus left −50.6 −12.4 1.0

2.705 92.0 Superior temporal gyrus left −44.8 −25.9 6.3

3.981 740.8 Superior temporal gyrus right 65.7 −25.0 4.9

AC3L 2.415 143.7 Superior temporal gyrus left −10.7 −70.1 43.6

2.753 297.0 Superior temporal gyrus left −38.5 −33.1 8.8

2.445 158.5 Prefrontal cortex right 37.2 49.5 8.8

2.533 88.9 Prefrontal cortex right 25.0 48.7 11.0

2.565 168.3 Precuneus right 12.2 −66.2 40.9

2.733 261.6 Superior temporal gyrus right 51.9 −12.1 2.8

2.904 133.1 Superior temporal gyrus right 62.9 −25.2 6.8

2.941 91.6 Posterior cingulate cortex right 7.7 −24.9 27.3

AC2R 1.885 37.9 Posterior cingulate cortex left −8.2 −34.4 27.7

2.233 119.4 Superior temporal gyrus left −62.6 −17.2 0.0

2.965 309.8 Superior temporal gyrus left −43.3 −23.9 9.3

1.865 27.5 Posterior cingulate cortex right 7.6 −25.2 29.6

2.972 341.6 Superior temporal gyrus right 48.2 −20.0 5.9

3.038 165.8 Superior temporal gyrus right 65.9 −23.4 3.3

AC3R 2.552 480.5 Superior temporal gyrus left −59.6 −26.3 6.7

4.288 32.3 Posterior cingulate cortex left −4.1 −37.0 22.9

2.406 64.5 Posterior cingulate cortex right 5.7 −31.5 28.4

2.880 496.4 Superior temporal gyrus right 65.9 −23.4 3.3

AC4R 2.690 88.1 Superior temporal gyrus left −54.9 −31.1 8.4

2.780 505.0 Superior temporal gyrus left −47.1 −18.2 5.6

3.552 538.7 Superior temporal gyrus right 49.7 −22.3 5.7

Brain areas whose functional connectivity strength with ROIs was linearly correlated with memory load.

memory models (Baddeley, 1986, 2000; D’Esposito and Postle,
2015) together, it can be inferred that as the memory load
of the current task increases, by strengthening the functional
connectivity between the attention control network and task-
related cortices, more attention is focused on the current
task-related working memory, allocating more limited working
memory resource to the current task and, thus, increasing the
ability to retain more items in working memory. Thus, the
neural mechanisms associated with tonal working memory load
do not arise from changes in local cortical activity patterns or
changes in the local cortical activity strength, but from top-down
attention control of the working memory system. Although
similar research on tonal studies is lacking, this conclusion is
consistent with related studies in the visual domain. In an LFP

study (Pinotsis et al., 2019) involving monkeys, visual memory
load was found to be correlated with the connectivity between
the PFC and the visual sensory cortex. In an EEG and MEG
study (Palva et al., 2010), synchrony among the frontoparietal
regions, which are known to underlie executive and attentional
functions, was found to be correlated with memory load.
Furthermore, the interactions among the PCC, precuneus, and
angular area were found to be correlated with visual working
memory load in an fMRI study (Vatansever et al., 2017). All
these studies revealed the connection between memory load
and the functional connectivity between the attention control
network and task-related cortices.

Taken together, our results show that the realization of
tonal working memory involves the following two information
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streams: the bottom-up information transfer stream, which
perceives and transfers tonal information to memory storage
units, and the top-down attention control stream, which
allocates working memory resources by adjusting the
connectivity strength between the AC and the attention control
network. The cooperation of these two streams constitutes the
neural basis underlying tonal working memory.

In addition, as stated earlier, the dynamic processing process
of tonal working memory showed left-sided laterality. The
results of functional connectivity analysis also showed that the
left AC played a more central role than the right AC. Taking both
of these results into account, it can be concluded that the tonal
working memory system shows left laterality. This finding may
contradict some former studies (Lee et al., 2011; Albouy, 2019;
Sihvonen, 2019), but is also supported by some other studies
(Gaab et al., 2003; Hyde et al., 2011; Schaal, 2015).

Conclusion

In this article, we studied the neural basis underlying tonal
working memory load. We found that the realization of tonal
working memory requires the support of two information
streams, one bottom-up information transfer stream and one
top-down attention control stream. Meanwhile, the strength
of the top-down attention control stream was modulated by
memory load, which supported the working memory model
of Baddeley (Baddeley, 1986, 2000). Our study revealed the
complexity of the neural basis of tonal working memory.
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