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INTRODUCTION

Transcranial ultrasound stimulation (TUS) is emerging as a powerful, non-invasive
neurotechnology for focal brain stimulation using low intensity focused ultrasound delivered
through the scalp/skull to initiate the modulation of neuronal excitability in the targeted
brain structures (Fomenko et al., 2020). With the advantages of higher spatial resolution and
deeper penetration depth, TUS is increasingly employed as a potential alternative approach for
overcoming the disadvantages of the currently used non-invasive modalities of brain stimulation.
Different from transcranial magnetic stimulation (TMS) and transcranial current stimulation
(tCS), the mechanism of TUS is the mechanical interaction between ultrasound waves and
neuronal membranes, which can modulate the mechanosensitive voltage-gated ion channels
or neurotransmitter receptors and achieve therapeutic goals (Tyler et al., 2008; Di Biase et al.,
2019; Liao et al., 2019). For instance, evidence that a frequency-specific acoustic wave can be
converted into an effective stimulus for a neuron has been observed in a quantitative radiation
force model (Menz et al., 2019). In the last decade, TUS has shown to modulate the activities in
retina (Menz et al., 2019), cortical and subcortical structures, resulting in electrophysiological and
behavioral changes in mice (Hou et al., 2021), primates (Verhagen et al., 2019) and human (Ai
et al., 2018). Among the published TUS studies, the mean chronological age derived from the
human participants is around age 30 (see Supplementary Table 1), which conceivably limits the
applications of TUS in children and elderly.

Using individual medical images as guidance, the accuracy of localizing the treatment
targets during TUS has improved to millimeter (mm) scale, whereas the stimulation-related
parameters and TUS-induced effect still vary between individuals, particularly in the individuals
with age-related brain diseases, such as neurodevelopmental disorders and neurodegenerative
diseases. Among the parameters that determine the heterogeneity of TUS-induced effect, the
morphometric features of treatment target have been highlighted as the stimulation-specific factors
(Polanía et al., 2018).

WHY AGE-SPECIFIC TRANSCRANIAL MODELS IMPORTANT?

When TUS sonication is administered transcranially, the estimation of the focal area based on the
stimulation is critical for precisely targeting the region of interest with effective energy intensity in
the brain structure due to acoustic attenuation and refraction at skull and cerebrospinal fluid (CSF).
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In the consideration of the heterogeneity in skulls and brains,
there is a pressing need to develop effective and advanced models
of TUS, both as tool to investigate the transcranial features
and as potential guidance for age-related brain diseases, such
as pediatric disease (Janwadkar et al., 2022), neurodegenerative
disease (Lipsman et al., 2018; Martínez-Fernández et al., 2018;
Jeong et al., 2021). Except for sonication parameters (i.e.,
viscosity, stimulation frequency), I would like to highlight the
parameters of the transcranial features embedded in the distance
from scalp to cortex, including scalp, skull, CSF and cortex.
Different from TMS and tCS, skull thickness, rather than CSF,
can greatly influence the penetration depth (i.e., peak intracranial
pressure) of TUS (Robertson et al., 2017; Guo et al., 2021; Riis
et al., 2022).

As the most commonly used target in TUS studies (Kim et al.,
2021), primary motor cortex (M1) was selected to demonstrate
the transcranial features in individuals at different stages of life
(Figure 1). With the same measurement scale (i.e., mm), the
skull thickness, scalp-to-cortex distance and cortical thickness
varied between children, young adult, middle-aged adult and old
adult (Figure 1D). Compared to young and middle-aged adults,
old adult showed increased scalp-to-cortex distance and reduced
cortical thickness; while, children had thinner skull and cortex.
Indeed, this simplified demonstration may have very limited
power to quantify the brain features at the population level, but
could highlight the possible heterogeneity in the transcranial and
radiomic features of M1 among individuals at different stages
of life. Based on prior evidence, the scalp-to-cortex distance of
M1, rapidly increased during pathological aging (Lu et al., 2019a),
plays as a determining factor in the dosimetry of TMS treatment
(Stokes et al., 2005). Returning to skull thickness, evidence
confirms a continuous increase in skull thickness and density
during childhood and adolescence (Delye et al., 2015). Although
the skull thickness slowly decreased during aging, significant
changes were only found in female populations (Lillie et al.,
2016), which address another interesting topic for future research
of the gender effect on radiomic features. Toward delivering
personalized TUS treatment in clinical practice, critical questions
persist regarding the scalable features of the reconstructed
scalp, skull and cortex that are based on transcranial model
of the identification of the borders between non-brain tissues
and brain parenchyma. Interestingly, pre-treatment transcranial
model could be employed as a turnkey solution for optimizing
the parameters for treatment targets and, meanwhile, examining
the biophysical mechanisms of TUS at individual level. Previous
studies focused on investigating the spatial distribution of TUS
effect are based on the magnetic resonance imaging (MRI) or
computed tomography scans of young adults with an average
head size (Koh et al., 2021; Zhang et al., 2021). However, this
standard model has limited power to represent the distribution
of TUS-induced effects in the individuals with various skull and
brain morphology. Therefore, the transcranial model of TUS
should be developed in the combination of the features capturing
the skull and cortex related to the stimulation targets. Besides,
the discrepancies of region-specific radiomics may also rise the
in advanced brain stimulation settings, such as multisite TUS.

THE IMPORTANCE OF RADIOMIC
FEATURES IN TUS

High-resolution structural MRI provides a powerful modality
in medical imaging, with the additional benefits of its high
spatial resolution and plausible measurements of skull and
brain morphology (Wahlund, 2020). Radiomics is a quantitative
mapping approach to structural MRI, aiming at analyzing,
extracting and quantifying the high-throughput features of
human brain available to clinicians (Lambin et al., 2017). MRI-
based radiomics, as a rapidly developing field, is an encouraging
tool for the identification and quantification of region-specific
brain features (Bretzner et al., 2021), which has been successfully
applied in clinical practice, such as brain tumor (Zhang et al.,
2019) and stroke (Chen et al., 2021). To improve the TUS
protocols in age-related brain diseases, except for skull thickness,
another transcranial variable, scalp-to-cortex distance (SCD), in
the combination of cortical thickness, should be added into the
head models for the individuals with different age ranges. Beside
of global brain changes, region-specific brain morphometry plays
a critical role in determining the precise localizations of targets
(Weise et al., 2022) and predicting the disease progress (Lu et al.,
2021) and neurophysiological outcomes (Mosayebi-Samani et al.,
2021) in brain stimulation studies. Moreover, the dissociable
trajectories of cortical thickness and SCD of M1 in old adults
and dementia patients (Lu et al., 2019a) may capture the further
assumptions about radiomic feature-dependent effect on focal in
TUS studies.

As shown in Figure 1, compared to children, young and
middle-aged adult, old adult showed a sharp change in skull
thickness, SCD and cortical thickness. Due to the discrepancies
of transcranial features, the importance of combining region-
specific radiomic features in transcranial model for TUS
treatment can be explained as follows: (1) Penetration depth:
SCD is a vector-like parameter that serves as the distancemeasure
connecting the point on the scalp to the point on the cortical
surface (Lu et al., 2019b). SCD represents the sum of skull
thickness and the thickness of connective tissues and CSF in two-
dimensional space, but also represents other complex radiomic
features in three-dimensional space, such as shape and curvature
(Lu et al., 2021). Different layers of SCD have been identified
with diverse conductivities that largely determine the penetration
depth and its related dosage and effect of TUS. (2) Scaling-
up neuron modeling: Regarding to the biophysics mechanisms
of TUS, the range of TUS parameters for achieving efficient
stimulation in terms of minimal acoustic intensity and energy
deposition to the non-brain tissues and brain parenchyma has
beenmentioned in the transcranial model. To achieve the desired
therapeutic effect, an activation ofmechanosensitive ion channels
induced by acoustic waves is the key part that ultrasound
propagation travels through the non-brain tissues and cortical
layers (Kamimura et al., 2020). Besides, the neuronal bilayer
sonophore (NBLS) model has been developed for explaining the
acoustic effect on the cell membrane and synapses of specific
neurons at microscopic scale (Plaksin et al., 2016; Weinreb and
Moses, 2022). It should be noted that cortical thickness represents

Frontiers in Neuroscience | www.frontiersin.org 2 June 2022 | Volume 16 | Article 935283

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lu Radiomics-Informed Modeling for TUS

FIGURE 1 | Schematic representation of the region-specific radiomic features differences across the individuals with different age ranges, including

children/adolescent, young adulthood, middle-aged adulthood and late-life adulthood (A). Taking primary motor cortex (M1) as an example, left M1 was localized by

the Montreal Neurological Institute (MNI) coordinates through T1-weighted structural magnetic resonance imaging (MRI) scans (B). The radiomic features in

transcranial model (C), including skull thickness, scalp-to-cortex distance and cortical thickness, vary across the individuals with different age ranges (D). ST, Skull

thickness; SCD, Scalp-to-cortex distance; CT, Cortical thickness.

an average of the distance from the inner surface of gyrus to the
closest point on the outer surface of gyrus, containing six layers
of neurons featured with cytoarchitectonic subdivisions (Amunts
et al., 2013). According to the models of brain diseases, the
interneurons embedded in specific layers are the targets related
to neuropsychiatric symptoms or domain-specific cognitive
function. Importantly, high-resolution MRI and ultrasound
stimulation have comparable resolutions, which lie in the order
of millimeter and can provide the spatial resolutions ranging
from 1 to 2 mm3 (Wahlund, 2020). Therefore, the combination
of scale-dependent MRI-based radiomic features (i.e., mm),
SCD and cortical thickness in particular, may be critical to
accurately modulate the activities of layer-specific neurons in
TUS treatment.

To sum up, the dynamic changes of radiomic features
are evident across the lifespan, whereas the scalp-to-cortex
distance is increased linearly with age, accompanied by the
non-linear changes of the thickness of skull and cortex.

Given the complexity of transcranial structures, the region-
specific radiomics derived from high-resolution structural MRI
have created intriguing and encouraging opportunities for the
personalization of transcranial brain stimulation in real-world
clinical practice.

FUTURE DIRECTIONS

With the guidance of individual head models, the TUS-
mediated image-guided brain stimulation could be utilized in
the implementation and demonstration of the precise and
personalized modality with exquisite ability to deliver acoustic
energy to the targeted regions. The therapeutic applications of
imaging-guided TUS and its potential remedies in the context
of transcranial mapping are future landscapes in neurosurgery
and neurorehabilitation for the targeted drug delivery and
early-stage disease modification. Beside of therapeutic utilities,
image-guided TUS could also be used as a non-invasive and
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powerful tool for directly assessing and monitoring the function
of the white matter tracts and cortical-subcortical networks in
vivo at mesoscopic scale.
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