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Background: Migraine is a common disorder, a�ecting many patients.

However, for one thing, lacking objective biomarkers,misdiagnosis, andmissed

diagnosis happen occasionally. For another, though transcutaneous vagus

nerve stimulation (tVNS) could alleviate migraine symptoms, the individual

di�erence of tVNS e�cacy in migraineurs hamper the clinical application

of tVNS. Therefore, it is necessary to identify biomarkers to discriminate

migraineurs as well as select patients suitable for tVNS treatment.

Methods: A total of 70 patients diagnosed with migraine without aura (MWoA)

and 70 matched healthy controls were recruited to complete fMRI scanning.

In study 1, the fractional amplitude of low-frequency fluctuation (fALFF) of

each voxel was calculated, and the di�erences between healthy controls

and MWoA were compared. Meaningful voxels were extracted as features

for discriminating model construction by a support vector machine. The

performance of the discriminatingmodel was assessed by accuracy, sensitivity,

and specificity. In addition, a mask of these significant brain regions was

generated for further analysis. Then, in study 2, 33 of the 70 patientswithMWoA

in study 1 receiving real tVNS were included to construct the predicting model

in the generated mask. Discriminative features of the discriminating model in

study 1 were used to predict the reduction of attack frequency after a 4-week

tVNS treatment by support vector regression. A correlation coe�cient between

predicted value and actual value of the reduction of migraine attack frequency

was conducted in 33 patients to assess the performance of predicting model

after tVNS treatment.We vislized the distribution of the predictive voxels as well

as investigated the association between fALFF change (post-per treatment)

of predict weight brain regions and clinical outcomes (frequency of migraine

attack) in the real group.

Results: A biomarker containing 3,650 features was identifiedwith an accuracy

of 79.3%, sensitivity of 78.6%, and specificity of 80.0% (p < 0.002). The

discriminative features were found in the trigeminal cervical complex/rostral

ventromedial medulla (TCC/RVM), thalamus, medial prefrontal cortex (mPFC),

and temporal gyrus. Then, 70 of 3,650 discriminative features were identified

to predict the reduction of attack frequency after tVNS treatment with a

correlation coe�cient of 0.36 (p = 0.03). The 70 predictive features were

involved in TCC/RVM, mPFC, temporal gyrus, middle cingulate cortex (MCC),

and insula. The reduction of migraine attack frequency had a positive
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correlation with right TCC/RVM (r = 0.433, p = 0.021), left MCC (r = 0.451, p =

0.016), and bilateral mPFC (r= 0.416, p= 0.028), and negative with left insula (r

=−0.473, p= 0.011) and right superior temporal gyrus/middle temporal gyrus

(r = −0.684, p < 0.001), respectively.

Conclusions: By machine learning, the study proposed two potential

biomarkers that could discriminate patientswithMWoA and predict the e�cacy

of tVNS in reducingmigraine attack frequency. The pivotal featuresweremainly

located in the TCC/RVM, thalamus, mPFC, and temporal gyrus.

KEYWORDS

migraine, transcutaneous vagus nerve stimulation, machine learning, functional

magnetic resonance imaging, support vector machine (SVM), vagus nerve

Introduction

Migraine, affecting approximately 1 billion people, is the

second most prevalent neurologic disorder, which imposes

socioeconomic burdens and absence of work and study, and

can be divided into episodic migraine (attacks that occur

≤15 days/month) and chronic migraine (attacks that occur

>15 days/month) (Ashina, 2020; Mu et al., 2020). In all

subtypes, migraine without aura (MWoA) was the most

common one, experienced by the majority of migraineurs

(Launer et al., 1999). Currently, the diagnosis of MWoA

mainly depends on the International Classification of Headache

Disorders (ICHD) (Arnold, 2018), with five criteria including

unilateral location with pulsating quality, moderate to severe

pain intensity, suffering for 4 to 72 h in one attack, and

presence of nausea/vomiting and/or photophobia/phonophobia.

Nevertheless, many patients have difficulties in meeting the

entire criteria of MWoA in clinical practice (Ozge et al., 2015).

Therefore, it is necessary to find an objective as well as an

accurate method to diagnose MWoA in the “gray zones.”

In addition, as the pathophysiology remains misty,

the pharmacotherapy of migraine is far from satisfactory.

Accumulating evidence suggests that transcutaneous vagus

nerve stimulation (tVNS) at the external ear can induce

anti-nociception. By stimulating the auricular and cervical

branches of the vagus nerve non-invasively, migraineurs

experienced a significant decrease in the attack frequency

and intensity (Straube et al., 2015; Diener et al., 2019;

Zhang et al., 2020). Consequently, tVNS has got a Class

I recommendation for patients with episodic migraine

(Tassorelli et al., 2018; Blech et al., 2020). Moreover, another

two studies investigated the mechanism of tVNS in the

treatment of migraine and found that tVNS could inhibit the

transmission of trigeminal nociception and cortical spreading

depression (Cornelison et al., 2020; Morais et al., 2020). Taken

together, the above evidence suggested that tVNS should

be considered in the clinical practice of migraine. On the

other way, despite the effectiveness of tVNS for MWoA, the

efficacy varies considerably across different subjects. Therefore,

identifying a valid and objective biomarker for treatment

response will be of great importance. Intriguingly, emerging

functional magnetic resonance imaging (fMRI) has provided an

innovative perspective for migraine, greatly contributing to the

understanding of its pathophysiology and therapeutics (Ashina

et al., 2021). For example, migraineurs exhibited aberrant

patterns in the trigeminal cervical complex (TCC), thalamus,

medial prefrontal cortex (mPFC), and temporal gyrus (Xue

et al., 2013; Wang et al., 2016; Li et al., 2017). Additionally, a

significant correlation could be found between migraine pain

intensity and disease duration, with the thalamus and mPFC

(Coppola et al., 2018; Qin et al., 2020b). For example, functional

connectivity of mPFC and thalamus had a negative correlation

with pain intensity of migraine. Moreover, studies previously

demonstrated nociceptive stimulation would activate TCC and

modulate the endogenous pain circuitry which associated the

ascending trigeminal spinal-thalamo-cortical pathways with

the migraineur’s pain sensitivity (Marciszewski et al., 2018; Lim

et al., 2021). All of the above studies have revealed a potential

central mechanism of migraine, involving TCC, thalamus,

mPFC, and temporal gyrus, which could be the targets of

migraine treatment.

In terms of these brain regions, our previous studies have

investigated the effects of tVNS in treating migraines. For

example, the effects of tVNS could be associated with the mPFC

and thalamus, which had a negative correlation with migraine

attacks days after tVNS treatment (Luo et al., 2020b; Zhang

et al., 2021). Furthermore, our recent study also suggested

that tVNS would increase functional connectivity between the

middle cingulate cortex (MCC) and periaqueductal gray which

were involved in descending pain modulation system (DPMS)

(Cao et al., 2021). All of those studies indicated that tVNS

would treat migraines by modulating these pain-related regions,

which reflected the intrinsic characteristics of migraineurs and

their relationship with clinical manifestations. Nevertheless,

potential biomarkers still have not been applied to migraines.

The goals of current studies mainly concentrate on identifying
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neuroimaging measures related to phenotypic measures, which

often does not generalize to novel individuals, thus, it results in

inadequate clinical utility (Bisenius et al., 2017; Scheinost et al.,

2019).

As a data-driven technique, multivariate pattern analysis

(MVPA) plays an important role in analyzing neuroimaging

data and is expected to help solve this problem, due to which

it is sensitive to the fine-grained spatial discriminative patterns

and exploration of inherent multivariate nature from high-

dimensional neuroimaging data and also could provide novel

insight into the differences between two groups because it

allows the identification of features which contribute the most

to individual classification or prediction (Khosla et al., 2019;

Rocca et al., 2020). Several sensitive and specific neuroimaging

potential biomarkers have been explored by machine learning

in psychiatric and neurologic diseases, expected to instruct

diagnosis and treatment (Yang et al., 2019; Huang et al.,

2020; Luo et al., 2020a; Ma et al., 2020; Schneider et al.,

2020; Chiarelli et al., 2021). Some previous studies have used

machine learning combined with fMRI to identify migraineurs

from healthy controls (HCs) with an accuracy of 83.33 to

91.4% (Chong et al., 2017; Tu et al., 2020; Yin et al.,

2020; Chen et al., 2021). Furthermore, previous studies have

predicted the efficacy of acupuncture for migraines before

treatment in individuals, which developed a personalized

medicine strategy based on the predictive model (Tu et al.,

2020; Yin et al., 2020). Those studies have indicated that the

combination of fMRI and machine learning might be used to

diagnose specific patients and predict individual responses to

clinical therapy.

Thus, the present study aimed to explore the neuroimaging

biomarker which can be used to discriminate migraineurs and

predict the efficacy of tVNS for migraines. In this study, we

selected fractional amplitudes of low-frequency fluctuations

(fALFF) as the feature to construct the biomarker, which

could reflect the local spontaneous fluctuation of the fMRI

BOLD signal (Zou et al., 2008). The advantage of fALFF is

that it does not require a prior hypothesis which strengthens

test-retest reliability. Moreover, compared with ALFF, fALFF

has higher sensitivity and specificity in detecting regional

spontaneous brain activity (Zou et al., 2008). In study 1, we

calculated the fALFF of each voxel and imported the fALFF

value into support vector machine (SVM) to construct the

discriminative model which could discriminate migraineurs

and healthy controls (HCs). We assessed the performance of

model by analyzing the accuracy of the discriminative model.

In addition, extracted the mask of discriminative features

for further research. In study 2, we used the mask from

study 1 and support vector regression (SVR) to construct

the predicting model to predict the reduction of migraine

attack frequency after tVNS treatment. Finally, we tested the

correlation between regions of interest and the reduction of

migraine attack frequency.

Materials and methods

Participants

MWoA patients with matched healthy controls (HC)

were recruited between May 2017 and May 2019. The study

was approved by the Institutional Review Board of the

Second Affiliation Hospital, Guangzhou University of Chinese

Medicine. This study protocol was registered on the Chinese

Clinical Trial Registry (ChiCTR-INR-17010559, February 7,

2017, http://www.chictr.org.cn/hvshowproject.aspx?id=11101).

Informed consent was obtained from all participants.

This study was an advanced exploration based on our

previously published article (Zhang et al., 2021). Thus, eligible

criteria and intervention protocol of MWoA patients would not

be listed in detail.

In brief, in study 1, patients diagnosed with MWoA by the

International Classification of Headache Disorders, the Second

Edition (ICHD-2), were included. The patients were asked to

fulfill a 4-week (Weeks 1–4) migraine diary including attack

frequency, intensity of each attack, and emotion evaluation.

Attack frequency was defined as the International Headache

Society Clinical Trials Committee recommended (Diener et al.,

2020). The intensity of the attack was assessed by a visual

analog scale (VAS) of 0 to 100. A higher score meant more

severe pain. Patients were asked to record each intensity of head

attack using VAS and the average VAS score of each subject

was included in the final analysis. Migraine Specific Quality of

Life Questionnaire (MSQ) was used to assess the life quality

of migraineurs. Self-rating anxiety scale (SAS) and self-rating

depression scale (SDS) were used to evaluate emotion. Then,

patients and age, sex-matched HCs were required to complete

once MRI scanning. We used the demographics and fMRI data

of patients and HCs to construct a discriminate model.

In study 2, patients with MWoA were randomly divided

into the real group and sham group, receiving a 4-week (Weeks

5–8) treatment according to the treatment protocol. The real

tVNS group was applied at the left cymba concha (the true

stimulation site), while the sham tVNS group was stimulated

on the left tail of the helix. During the treatment, patients were

required to complete another 4-week migraine diary as well as

MRI scanning as a post-treatment assessment. We constructed

predicting model, using the difference in attack frequency

between baseline (Weeks 1–4) and post-treatment (Weeks 5–8)

of the real group as a label, and discriminative features of the

discriminating model generated in study 1 as inputs.

Demographic and clinical outcomes
statistics analysis

Demographic and clinical outcomes were conducted by

SPSS 24.0. T-student analysis and Chi-square analysis were
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FIGURE 1

The flow diagram of classification and prediction. A total of 70 HCs and 70 MWOA were used to construct the classification model and the top

3,650 discriminative features could discriminate MWoA with the highest accuracy. Then, the 3,650 discriminative features were used to

construct predicting model and 70 predictive features could predict the reduction of migraine attack frequency with the highest correlation

coe�cient. HCs, healthy controls; MWOA, migraine without aura; LOOCV, leave-one-out cross-validation; SVM, support vector machine; SVR,

support vector regression.

used for continuous and counting variables individually. The

significance threshold was set to p < 0.05 (two-tailed).

Image acquisition

A 3.0 T SiemensMRI scanner (SiemensMAGNETOMVerio

3.0 T, Erlangen, Germany) was conducted to scan all participants

with a 24-channel phased-array head coil. To minimize head

movement and scanner noise, foam padding and earplugs

were applied. All of them were required to remain motionless,

sober with eyes closed, and avoid thinking of anything in

particular. All patients participated in the identical functional

MRI (fMRI) scanning sessions before and after 4 weeks of

treatment in the interval period (If MWoA patients had a

headache attack within 48 h before and after scanning, we

would make another appointment for fMRI scanning), while

HCs completed only one. Resting-state fMRI encompassing the

whole brain was acquired with the following parameters: (1) T1-

weighted structural images: TR = 1900ms, TE = 2.27ms, flip

angle= 9◦, FOV= 256× 256mm,matrix= 256× 256, and slice

thickness = 1.0mm. (2) Resting-state fMRI images: repetition

time (TR) = 2,000ms, echo time (TE) = 30ms, field of view

(FOV) = 224 × 224mm, matrix = 64 × 64, flip angle = 90◦,

slice thickness= 3.5mm, interslice gap= 0.7mm, 31 axial slices

paralleled, and 240 time points.

fMRI preprocessing and fALFF analysis

The fMRI data were preprocessed in Data Processing and

Analysis for Brain Imaging 3.0 (DPABI 3.0) (Yan et al., 2016).

The main steps were as follow: (1) The first 10 volumes

were discarded, followed by slice timing and realignment.
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(2) After head motion correction, structural images were

segmented into grey matter, white matter and cerebrospinal

fluid. (3) Functional images were coregistered to the structural

images. (4) Functional and structural images were standardized

into Montreal Neurological Institute (MNI) space. (5) After

correcting head motion with Friston 24, linear trending, white

matter, and cerebrospinal fluid were conducted. (6) Finally, a 6-

mmGaussian kernel was used to spatially smooth it and a 3-mm

voxel resolution was adopted to further analysis.

Before fALFF calculation, the data were filtered by a

frequency window of 0.01 to 0.10HZ. Fast Fourier transform

changed the time series to the frequency series. Each voxel

computed and averaged the square root of the power spectrum.

Then, fALFF was used to calculate the ratio of the power of

each frequency at the low-frequency range (0.01–0.08Hz) to that

of the entire frequency range (0–0.25 Hz). Finally, to make the

statistics conveniently, the data transformed into z-maps.

Classification of MWoA and HCs

First, we performed a group-level two-sample t-test on

fALFF values between HCs and MWoA, with age, sex, and

head motion as covariates. Significant differences for fALFF

were assessed with a threshold of p < 0.05 and false discovery

rate (FDR) correction. Features showing significant differences

were retained for the subsequent analyses to construct the

discriminating model. Second, a leave-one-out cross-validation

(LOOCV) was used in the model to avoid the risk of overfitting.

Thus, the analyses were unbiased in the sense that the training

features were selected independently of each test case. It was

used to obtain the best classifier using a linear SVM algorithm

combining a feature selection of F-Score.We took all meaningful

voxels with the highest ranks to calculate the accuracy, setting

the step until incorporating all features. The performance of a

classifier was evaluated by accuracy, sensitivity, and specificity.

To measure the robustness of the model, a non-parametric

permutation test was performed.More specifically, we randomly

permuted the labels and repetitively executed the CV procedure

5,000 times. If the accuracy of the classifier on real class

labels was more significant than the accuracies of the classifiers

trained on randomly relabeled class labels, this classifier was

considered to be well-performing. The significance threshold

was set to p <0.05 (two-tailed). After obtaining the best-

performing model, we extracted all discriminative features of

the model for visualizing the results. Then, we identified brain

regions by setting the threshold to > 30% of the maximum

weight vector scores for visualizing the results of classification.

Prediction of the e�cacy of tVNS

We still chose LOOCV as the validationmethod. We also

regressed sex, age, and headmotion. The prediction model was

constructed by support vector regression (SVR) combining with

feature select of weight based on the LIBSVM toolbox. The

predictionmodel was trained using the discriminative feature set

gained from study 1. The correlation coefficient was calculated

to assess the fitting between predictive and actual values. The

significance was measured by permutation testing (permutation

times = 1,000). The significance threshold was set to p < 0.05

(two-tailed). After obtaining the best-performing model, we

extracted all predicting features of themodel and identified brain

regions by visualizing the results of prediction. To investigate

the association between fALFF change (post-per treatment) of

predict weight brain regions and clinical outcomes (frequency

of migraine attack) in the real group, we extracted the average

z values of the brain regions. We then performed a partial

correlation analysis between the fALFF z value change and the

clinical outcomes (frequency of migraine attack), using age, sex,

SAS, SDS, and MSQ as covariates. A threshold of p < 0.05

false discovery rate (FDR) corrected was applied for multiple

comparisons.

See Figure 1 for the flow diagram of classification

and prediction.

Results

Clinical characteristics

A total of 70 patients with MWoA and 70 HCs participated

in the study. They all completed the first scanning fMRI. Nine

patients were dropped out in the sham tVNS group (2 for

change of residency, 2 for familial dissenting opinion, 2 for

time restriction, and 3 for unsatisfied with treatment). Two

patients were dropped out in the real tVNS group (1 for time

restriction and 1 for unsatisfied with treatment). Consequently,

33 patients with real tVNS and 26 patients with sham tVNS

finally completed studies with two times scanning fMRI.

Table 1 showed the demographic of participants and migraine

characteristics of patients with MWoA. Age and sex between

HCs and patients were balanced. After a 4-week treatment,

patients in real group indicated a significant reduction in

migraine attack frequency (t = 3.341, p = 0.002), VAS score of

attack intensity (t= 4.614, p< 0.001), SAS (t= 4.627, p<0.001),

SDS (t= 3.900, p <0.001), and MSQ (t= 6.603, p <0.001).

Classification results

With the number of features increasing, the accuracy

changed dynamically (Figure 2). The top 3,650 meaningful

features showed the best classification ability (79.3% accuracy,

78.6% sensitivity, 80.0% specificity, and 83.35% AUC), which

suggested well performance of the result in machine learning.

The permutation analysis conducted 5,000 times showed that

the classifier with 3,650 meaningful features was superior
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TABLE 1 Characteristics of each subject group.

Study 1

MWoA (n= 70) HCs (n= 70) t/χ2 p value

Age (years) 30.34± 7.20 28.07± 6.71 1.93 0.056

Sex (males/females) 16/54 25/45 2.794 0.095

Attack frequency (times/month) 3.81± 2.39

VAS 49.77± 15.45

SAS 43.39± 5.64

SDS 44.88± 5.97

MSQ 57.23± 9.94

Study 2 (n= 33)

Before After t/χ2 p value

Age (years) 29.94± 6.30

Sex (males/females) 10/23

Attack frequency (times/month) 4.0± 2.3 2.55± 2.25 3.341 0.002

VAS 49.98± 14.67 32.23± 21.26 4.614 <0.001

SAS 43.30± 6.15 40.27± 6.98 4.627 <0.001

SDS 43.94± 6.14 41.0± 6.09 3.900 <0.001

MSQ 57.12± 9.68 70.76± 10.62 6.063 <0.001

VAS, visual analog scale; SAS, self-rating anxiety scale; SDS, self-rating depression scale; MSQ, Migraine Specific Quality of Life Questionnaire.

FIGURE 2

Classification performance of the proposed approach. (A) The accuracy of classification with the increased number of features; when including

3,650 discriminative features, the highest accuracy of the classification model is 79.3%. (B) Area under the curve of the classification model (AUC

= 0.83347) with the highest accuracy. (C) The result of the permutation test with the highest accuracy (p < 0.0002).

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.937453
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Fu et al. 10.3389/fnins.2022.937453

TABLE 2 Discriminative features to discriminate MWoA from HCs.

Weight Cluster voxels Brain region Peak intensity MNI coordinates

X Y Z

Postive weight 16 TCC/RVMS_Bi 0.006254 3 −30 −48

22 Frontal_Sup_L 0.010727 −21 30 57

13 Temporal_pole_sup_L 0.007674 −39 6 −18

10 Temporal_Sup_L 0.007724 −51 −15 −6

18 Supp_Motor_Area_R_L 0.005871 6 21 66

5 Occipital_Sup_L 0.005292 −12 −93 36

6 ParaHipppcampal_R 0.005616 21 −12 −30

11 Cerebelum_Crus1_L 0.008698 −51 −63 −33

Negative weight 8 Thalamus_R −0.007086 6 −9 9

24 Cingulum_Mid and Post_Bi −0.005831 −6 −45 33

9 Frontal_Sup_Medial_L −0.008821 −3 42 54

12 Frontal_Sup_Medial_R −0.009839 6 51 24

12 Frontal_ Mid_L −0.006807 −42 15 45

9 Frontal_Orb_L −0.010326 −21 24 −18

30 Frontal_Sup_R −0.006637 21 −12 63

14 Paracentral Lobule_L −0.008106 −6 −18 66

12 Postcentral_L −0.007618 −39 −21 54

18 Precuneus_L −0.007034 −3 −69 63

Bi, bilateral; Inf, inferior; L, left; Mid, middle; Orb, orbit; R, right; RVM, rostral ventromedial medulla; Sup, superior; TCC, trigeminal cervical complex.

to the random classifiers (p < 0.002). After extracting the

discriminative features, we found the classification results

of 3650 voxels were enormous and very unfavourable for

results demonstrating. According to previous study (Li et al.,

2014), we identified brain regions by setting the threshold to

>30% of the maximum weight vector scores for visualizing

the results of classification (Table 2). The voxels were found

in bilateral TCC/rostral ventromedial medulla (TCC/RVM),

bilateral mPFC, bilateral MCC, right thalamus, temporal

gyrus, right precuneus, and postcentral gyrus, which were

involved in trigeminal spinal-thalamo-cortical pathways,

default mode network (DMN), auditory network, and DPMS

(Figure 3).

Prediction of tVNS e�cacy

A total of 3,650 discriminative features from study 1

were used to construct the predicting model. We found that

70 of 3,650 discriminative features contributed significantly

to predicting the reduction of attacks after a 4-week tVNS

treatment (r = 0.36, p = 0.03) (Figure 4). After extracting

the predictive features, we analyzed the distribution of

discriminative voxels (Table 3). The voxels are mainly

distributed in TCC/RVM,mPFC, and temporal gyrus (Figure 5).

Moreover, a paired t-test showed significant fALFF changes

in right TCC/RVM, bilateral mPFC, right superior temporal

gyrus/middle temporal gyrus (TSG/TMG), left insula, and left

MCC. The reduction of migraine attack frequency had a positive

correlation with TCC/RVM (r = 0.433, p = 0.021), bilateral

mPFC (r = 0.419, p = 0.029), and left MCC (r = 0.451, p =

0.016), and negative with left insula (r=−0.473, p= 0.011) and

right TSG/TMG (r=−0.684, p < 0.001), respectively (Figure 6,

Figure 7).

Discussion

As an advanced exploration of the previous study (Zhang

et al., 2021), by performing complicated machine learning

with fMRI, we investigated the potential of spontaneous brain

activity in individual diagnosis and treatment in the present

study. Our results not only confirmed that the aberrant fALFF

patterns served the possibility to be a neuroimaging biomarker

with high accuracy (79.3%), sensitivity (78.6%), and specificity

(80.0%) in classifying MWoA but also further extended the

clinical value of the classification model for predicting the

efficacy of tVNS with moderate correlation (r = 0.36). The

results indicated that TCC/RVM, MCC, mPFC, and temporal

gyrus are the main brain regions in discriminating migraine

and predicting the efficacy of tVNS treatment which can be

involved in trigeminal spinal-thalamo-cortical pathways, DMN,

AN, and DPMS, respectively. Meanwhile, fALFF of the above

brain regions had high correlations with the reduction of
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FIGURE 3

Discriminative features to discriminate MWoA patients and HCs. Red means positive weight and blue means negative weight. The main weight

brain areas were located in TCC/RVM, thalamus, PFC, and TSG/TMG. Bi, bilateral; FMG, frontal middle gyrus; FSG, frontal superior gyrus; L, left;

MCC, middle cingulate cortex; mPFC, medial prefrontal gyrus; OFG, orbitofrontal gyrus; PCC, post cingulate cortex; POCG, postcentral gyrus; R,

right; RVM, rostral ventromedial medulla; SMA, supplementary motor area; Sup, superior; TCC, trigeminal cervical complex; TMG, middle

temporal gyrus; TSG, superior temporal gyrus.

migraine attack frequency after tVNS treatment. Taken together,

our results linked disrupted spontaneous brain activity to

migraine and enhanced the comprehension of pathophysiology

and treatment of migraine.

In the study, we demonstrated that both TCC/RVM and

thalamus could help to identifyMWoAwhich extended previous

findings that the thalamus could be used for identifying

migraineurs (Chong et al., 2017; Tu et al., 2020). As well-

known, TCC and thalamus are the first and second order

of trigeminal spinal-thalamo-cortical pathways, cooperating in

migraine attacks (Ashina, 2020; Lim et al., 2021). On one

hand, TCC is the trigger of sensitization and activation of

nociception transmitting nociception from the periphery to the

central (Bartsch and Goadsby, 2003; Weir and Cader, 2011;

Akerman and Romero-Reyes, 2013; Luz et al., 2019). On the

other hand, through comprehensive processing in the selection,

amplification, and prioritization, the thalamus could handle the

nociceptive inputs from TCC, and then, projected to higher

centers inducing pain response (Schwedt et al., 2013; Noseda

et al., 2017; Tolner et al., 2019; Tu et al., 2019). The synergistic

effect of TCC and thalamus in nociception transmission might

be a crucial key to pain response and analgesia.

Consequently, in terms of its important position in the

pathophysiology and treatment of migraine, researchers have

investigated the aberrant brain alternation of trigeminal spinal-

thalamo-cortical pathways in migraineurs. A recent study found

a greater BOLD signal variability of the trigeminal spinal-

thalamo-cortical pathways in migraineurs than HCs which may

amplify nociception processing in migraineurs (Lim et al.,

2021). Meanwhile, Meylakh et al. found increasing ALFF of

thalamus, TCC/RVM, dorsal pons, and thalamus in migraineurs

before an attack (Meylakh et al., 2018). This evidence suggested

that TCC and thalamus were coupled to the progress of

headache attack events. Moreover, two studies revealed that

TCC had a negative correlation with migraine attack intensity,

whereas the thalamus had a positive correlation (Hodkinson

et al., 2016; Li et al., 2017), revealing a close relationship

between the trigeminal spinal-thalamo-cortical pathway and

migraine. Further studies suggested that acupuncture, triptans,

and tVNS could regulate the disrupted functional connectivity
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FIGURE 4

Prediction performance of the proposed approach. (A) Line chart reflecting actual label and predictive label; when including 70 predictive

features, the highest correlation coe�cient is 0.36. (B) Correlation coe�cient between the actual label and predictive label with the increased

number of features in the reduction of migraine attack frequency. (C) The result of the permutation test with the highest correlation coe�cient

(p < 0.001).

TABLE 3 Predictive features to predict the e�cacy of tVNS.

Weight Cluster voxels Brain region Peak intensity MNI coordinates

X Y Z

Positive weight 5 TCC/RVM_R 0.20958 9 −30 −51

5 Frontal_Sup_Medial_L_R 0.117150 0 63 24

7 Cingulum_Mid_L 0161300 −3 −42 36

7 Frontal_Mid_ L 0.189710 −27 24 54

4 Frontal_Sup_R 0.003670 21 42 51

8 Temporal_Inf_R 0.067577 57 −51 −30

Negative weight 9 Precuneus_R −0.109190 21 −63 24

6 Temporal_Sup_R −0.222620 51 −12 −6

3 Insula_L −0.039590 −42 −12 0

Inf, inferior; L, left; Mid, middle; Orb, orbitofrontal; R, right; RVM, rostral ventromedial medulla; Sup, superior; TCC, trigeminal cervical complex.
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FIGURE 5

Predictive features to predict the e�cacy of tVNS based on the classification model. Red means positive weight and blue means negative

weight. The main weight brain areas were located in TCC/RVM, mPFC, TSG, and Insula. Bi, bilateral; FSG, frontal superior gyrus; FMG, frontal

middle gyrus; L, left; mPFC, medial prefrontal gyrus; R, right; RVM, rostral ventromedial medulla; TCC, trigeminal cervical complex; TSG, superior

temporal gyrus.

FIGURE 6

Treatment response of fALFF (mean±sem) and correlation between fALFF changes and migraine frequency changes (FDR corrected). (A)

Significant increase of fALFF in right TCC/RVM after tVNS treatment. (B) Location of TCC/RVM, (C) a positive correlation between right TCC and

the reduction of migraine attack frequency (r = 0.433, p = 0.021). R, right; RVM, rostral ventromedial medulla; TCC, trigeminal cervical complex.

and spontaneous activity within the trigeminal spinal-thalamo-

cortical pathways in migraines (Kroger and May, 2015;

Moller et al., 2020; Chang et al., 2021; Zhang et al.,

2021). And modulation of trigeminal spinal-thalamo-cortical

pathways is considered a crucial strategy for the management

of migraine (Goadsby et al., 2009). Therefore, it may

not be a coincidence that trigeminal spinal-thalamo-cortical

pathways could be applied to discriminate migraineurs in

our studies.

Another notable finding is that TCC/RVM could predict

the efficacy of tVNS, which also had a positive correlation with

the reduction of attack frequency. Animal experiments have

revealed that tVNS could block the sensitization of TCC by

direct and indirect pathways (Lyubashina et al., 2012; Lerman

et al., 2019; Sclocco et al., 2019; Vila-Pueyo et al., 2019).

Neuroimaging studies provided more straight evidence that

tVNS could activate the signal of TCC in participants (Frangos

et al., 2015; Frangos and Komisaruk, 2017). All the above

studies suggested that tVNS could modulate the function of

TCC supporting it as the meaningful brain region in predicting

the efficacy of tVNS. Nonetheless, the result did not take the

thalamus into the prediction model. But considering its crucial

structural connection and synergetic effect with other brain

regions of the trigeminal spinal-thalamo-cortical pathways and
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FIGURE 7

Treatment response of fALFF (mean ± sem) and correlation between fALFF changes and migraine frequency changes (FDR corrected). (A)

Significant decrease and increase of fALFF in bilateral mPFC and right TSG/TMG after tVNS treatment. (B) A negative correlation between right

TSG/TMG and the reduction of migraine attack frequency (r = −0.684, p < 0.001). (C) A positive correlation between bilateral mPFC and the

reduction of migraine attack frequency (r = 0.416, p = 0.028). (D) Significant increase and decrease of fALFF in the left insula and left MCC after

tVNS treatment. (E) A negative correlation between left Insula and the reduction of migraine attack frequency (r = −0.473, 0.011). (F) A positive

correlation between left MCC and the reduction of migraine attack frequency (r = 0.451, p = 0.016). Bi, bilateral; L, left; MCC, middle cingulate

cortex; mPFC, medial prefrontal gyrus; R, right; TMG, middle temporal gyrus; TSG, superior temporal gyrus.

response to the tVNS (Noseda et al., 2011; Luo et al., 2020b;

Lim et al., 2021; Zhang et al., 2021), the effect of thalamus in

predicting the efficacy of tVNS in treating migraine could not

be neglected.

In addition to the trigeminal spinal-thalamo-cortical

pathways, the DMN is another significant brain network in the

study consisting of mPFC and precuneus. Consistent with other

studies (Tu et al., 2020; Chen et al., 2021), our result showed

that DMN could discriminate migraineurs from HCs. The

DMN is a network related to individual stressful experiences

which could respond to the environment in a predictive

manner (Buckner et al., 2008; McEwen and Gianaros, 2011).

Nevertheless, the abnormalities in DMN in migraineurs lead to

information transfer and multimodal integration dysfunction

(Xue et al., 2012; Tessitore et al., 2013; Zhang et al., 2016; Yu

et al., 2017). Particularly, researchers have suggested that DMN

had a negative correlation with pain intensity, attack frequency,

and duration years of migraine (Xue et al., 2012; Gao et al.,

2016; Yu et al., 2017; Coppola et al., 2020; Qin et al., 2020a),

highlighting the role of DMN in migraine. Additionally, as the

integration center, mPFC receives inputs from the thalamus and

limbic system, modulating the pain response directly as well as

impacting pain management indirectly by regulating emotion

and cognition (Ong et al., 2019; Thompson and Neugebauer,

2019; Xu et al., 2019). In short, all the above studies confirmed

the critical role of DMN in the pathogenesis of migraine

which supported using the DMN to discriminate migraineurs

from HCs.

Previous studies have revealed that tVNS could regulate

the function of DMN in both physiological and pathological

conditions (Kraus et al., 2007; Badran et al., 2018; Wang et al.,

2018; Yap et al., 2020; Yakunina and Nam, 2021). Further studies

suggested that tVNS would inhibit pain response through the

DMN (Usichenko et al., 2017; Guo et al., 2020). What’s more,

our recent studies demonstrated the changes in the DMN in

migraineurs after tVNS treatment (Luo et al., 2020b; Zhang et al.,

2021). These findings implicated that DMNmight be a potential

target of tVNS treatment for migraine. Interestingly, the current

study verified that DMN could predict the efficacy of tVNS in

migraine management. Especially, fALFF of the mPFC had a

positive correlation with the migraine attack frequency. These

results expanded our understanding of the important role of the

DMN in tVNS treatment for migraine.

Moreover, another finding of the study is that temporal

gyrus, MCC, and insula also played important role in

discrimination and prediction, whose fALFF value had a
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correlation with the reduction of attack frequency. These brain

regions have two main roles in migraine. For one thing,

migraineurs often complain about phonophobia and tinnitus,

especially sufferingmigraine attacks. A reasonable explanation is

that MWoA may have a more vulnerable temporal gyrus that is

susceptible to external stimuli, causing concomitant symptoms

associated with auditory (Langguth et al., 2015; Goadsby et al.,

2017). For another, MCC and insula would be responsible

for coding pain perception and termination and integrating

interoceptive information with emotional salience (Zhao et al.,

2020). Acute nociceptive stimuli would consistently activate

MCC and insula, affecting a subjective impression of our bodily

state, tricking the body into making the wrong decision (Vogt,

2016; Uddin et al., 2017). Although we have provided a robust

framework for neural markers in MWoA, there are still several

limitations. First, we only recruited subjects suffering from

MWoA, lacking comparisons in different subtypes of migraines.

Admittedly, a comparison of various subtypes of migraine by

machine learning would improve the performance of our model,

but considering the morbidity, we thought MWoA should take

priority. Second, we only adapted the SVM algorithm without

comparing the differences in other algorithms. What needs

illustration is that SVM is a growing popularity algorithm

for its relative simplicity within the neuroimaging community

(Campbell et al., 2020). Third, although we did not perform

the sample size estimation, we determined it according to

the previously published similar article (Yin et al., 2020).

Further larger scale study will be conducted to enhance the

data reliability (Page 18, line 431). Finally, it is a single-center

study without external validation. Thus, further multi-center

research should be carried out to verify the repeatability and

generalization of the models.

Conclusion

In summary, the study preliminarily demonstrated that

fALFF features (infra-slow oscillations) at baseline have good

potential for classifying the MwoA with the HCs and predicting

the individualized treatment response of tVNS. And we

provided a pattern for selecting patients to respond well to

tVNS for migraine which could optimize the allocation of

medical resources. TCC/RVM, thalamus, mPFC, and temporal

gyrus are the potential targets both in the classification and

prediction model.
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