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Alzheimer's disease (AD) is the most common type of dementia and a
distressing diagnosis for individuals and caregivers. Researchers and clinical
trials have mainly focused on p-amyloid plaques, which are hypothesized
to be one of the most important factors for neurodegeneration in AD.
Meanwhile, recent clinicopathological and radiological studies have shown
closer associations of tau pathology rather than p-amyloid pathology with
the onset and progression of Alzheimer's symptoms. Toward a biological
definition of biomarker-based research framework for AD, the 2018 National
Institute on Aging—Alzheimer's Association working group has updated
the ATN classification system for stratifying disease status in accordance
with relevant pathological biomarker profiles, such as cerebral g-amyloid
deposition, hyperphosphorylated tau, and neurodegeneration. In addition,
altered iron metabolism has been considered to interact with abnormal
proteins related to AD pathology thorough generating oxidative stress,
as some prior histochemical and histopathological studies supported this
iron-mediated pathomechanism. Quantitative susceptibility mapping (QSM)
has recently become more popular as a non-invasive magnetic resonance
technique to quantify local tissue susceptibility with high spatial resolution,
which is sensitive to the presence of iron. The association of cerebral
susceptibility values with other pathological biomarkers for AD has been
investigated using various QSM techniques; however, direct evidence of
these associations remains elusive. In this review, we first briefly describe the
principles of QSM. Second, we focus on a large variety of QSM applications,
ranging from common applications, such as cerebral iron deposition, to
more recent applications, such as the assessment of impaired myelination,
quantification of venous oxygen saturation, and measurement of blood-
brain barrier function in clinical settings for AD. Third, we mention the
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relationships among QSM, established biomarkers, and cognitive performance
in AD. Finally, we discuss the role of QSM as an imaging biomarker as well as
the expectations and limitations of clinically useful diagnostic and therapeutic
implications for AD.

Alzheimer's disease, biomarker, imaging, MRI, quantitative susceptibility mapping

Introduction

Alzheimer’s disease (AD) is the most common cause of
dementia (Scheltens et al., 2016). The pathological hallmarks
include deposition of extracellular B-amyloid (AP) aggregates
as senile plaques and intracellular hyperphosphorylated tau
aggregates as neurofibrillary tangles, along with neuronal loss
and glial activation (Serrano-Pozo et al., 2011). Over a long
period, researchers and clinical trials have mainly focused
on AP pathology, which is hypothesized to be one of the
most important factors in AD pathogenesis. However, recent
clinicopathological and radiological data suggest that tau
pathology, not AP pathology, closely links with onset and
progression of Alzheimer’s symptoms (Brier et al., 2016; Aillaud
and Funke, 2022) though the relationship and interplay between
AP and tau pathologies remain controversial (Pourhamzeh
et al., 2021). Toward a biological definition of biomarker-
based research framework for AD, the 2018 National Institute
on Aging-Alzheimer’s Association working group has updated
the ATN classification system (Jack et al, 2018), whose
measures have different roles for definition and staging:
A: AP biomarkers determine whether an individual is in
the Alzheimer’s continuum; T: pathological tau biomarkers
determine if an individual in the Alzheimers continuum
has AD; and N: neurodegenerative biomarkers determine the
staging severity of the Alzheimer’s continuum.

In addition to these traditional pathological features, iron
deposition has attracted the attention of researchers as a new
biomarker reflecting disease severity in AD. Histochemical and
histopathological studies have shown evidence of altered iron
metabolism and accumulation in AD brain tissues, with iron
colocalizing in senile plaques and neurofibrillary tangles (Tao
et al., 2014). These abnormal proteins bind ferric iron and
reduce it to the redox-active form, ferrous iron, which reacts
with hydrogen peroxide to generate hydroxyl radicals, leading
to the ferroptosis pathway (Sayre et al., 2000; Everett et al.,
2014; Conrad et al., 2016). Studies in animal models of AD have
reported that brain iron chelation can abolish this iron-mediated
pathomechanism, reducing downstream oxidative stress and
neurofibrillary tangle formation (Smith et al., 1997; Guo C. et al,,
2013). Therefore, iron may have a synergistic role with AB and
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tau proteins in key pathophysiological processes leading to AD
pathogenesis.

Using advanced imaging techniques, human subjects were
investigated in vivo to determine whether their brain iron
levels would be altered. Quantitative susceptibility mapping
(QSM) has recently become more popular as a non-invasive
magnetic resonance technique with which to quantify local
tissue susceptibility with high spatial resolution; this technique
is sensitive to the presence of iron (Liu et al., 2009; Shmueli
et al., 2009; de Rochefort et al., 2010). In this review, we focused
on the associations of established pathological biomarkers for
AD with cerebral iron deposition using a conventional QSM
technique, as well as more complicated QSM applications, such
as an assessment of impaired myelination, quantification of
venous oxygen saturation, and measurement of blood-brain
barrier function in clinical settings for AD.

Principles of quantitative
susceptibility mapping

History of quantitative susceptibility
mapping

Magnetic susceptibility between tissues has been utilized
as a new type of contrast in magnetic resonance imaging
(MRI), which differs from proton density, T1-, and T2-weighted
imaging. The phase signals from materials with different
magnetic susceptibilities compared with their neighboring
tissues are formed by dipole interactions. The phase image itself
is unavailable without post-processing for phase unwrapping,
which is performed to deconvolute the dynamic range of —x
to 7, and background field removal for susceptibility differences
at tissue-air boundaries. Thus, phase imaging provides a unique
contrast between gray matter, white matter, iron-laden tissues,
venous blood vessels, and other tissues with biologically specific
magnetic susceptibilities that differ from those of background
tissues (Liu et al., 2009; Shmueli et al., 2009; de Rochefort et al.,
2010). Susceptibility-weighted imaging (SWI) is a precursor
post-processing technique for QSM that uses the phase as a
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means of enhancing susceptibility differences (Haacke et al.,
2004). Since its development in the mid-1990s (Haacke et al.,
1995), SWI has been used in diverse clinical settings, such as
in the identification of cerebral microbleeds (Akter et al., 2007;
Greenberg et al., 2009; Barnes et al., 2011; Goos et al., 2011;
Cheng et al,, 2013; Guo L. F. et al,, 2013; Linn, 2015; Shams
etal., 2015), acute ischemic stroke (Hermier and Nighoghossian,
2004; Tong et al., 2008; Santhosh et al., 2009; Tsui et al,
2009; Chalian et al., 2011; Kesavadas et al., 2011; Baik et al.,
2012; Kao et al.,, 2012; Fujioka et al., 2013; Lou et al., 2014;
Meoded et al,, 2014; Verma et al, 2014; Luo et al., 2015),
vascular malformations (Essig et al., 1999; Choi and Mohr, 2005;
Jagadeesan et al., 2011), and magnetic resonance venography
(Reichenbach et al., 1997, 1998, 2001; Reichenbach and Haacke,
2001; Neelavalli et al., 2014). However, these approaches are
qualitative in nature as SWI is calculated by the summation
of magnitude and homodyne-filtered phase signals (Liu et al.,
2017). This limitation is currently being addressed with the
development of the QSM technique (Liu et al., 2015), which
provides a quantitative measure of magnetic susceptibility and
has been useful for statistical image analyses (Eskreis-Winkler
etal., 2017).

Acquisition and reconstruction
protocols for quantitative susceptibility

mapping

A 3D gradient-recalled echo sequence with full flow
compensation is generally used to acquire QSM data, as this
sequence can account for the flow-induced phase shift and
capture reliable phase information (Schenck, 1996; Xu et al.,
2014). The properties of the gradient echo signal phase images
produced by a clinical 3 Tesla MRI scanner are highly dependent
on the imaging parameters (Haacke et al., 2015). Multiple echo
sequences can acquire phase data more effectively than single-
echo sequences. The phase value is dependent on the frequency
map and echo time, and it achieves optimal phase contrast and
maximal signal-to-noise ratios when the echo time is equal to
the T2* value on a specific pixel (Wu et al., 2012). As the
optimal echo time is usually different in various tissue types
due to the variety of T2* values, it is necessary to combine
the frequency map at each echo time based on the weighted
averages of the T2* values. The parallel imaging technique is
turned on to reduce the scan time as long as the magnitude and
phase images are properly reconstructed (Vinayagamani et al.,
2021). A high-resolution whole-brain acquisition of 6-12 min is
typically implemented. Low spatial resolution and small brain
coverage worsen the accuracy of susceptibility values (Karsa
etal., 2019).

Susceptibility map reconstruction consists of several post-
processing steps, which include phase unwrapping, background
field removal, and dipole inversion. As the phase data are limited
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to the dynamic range from —m to m, a phase unwrapping
algorithm is required to calculate the frequency map (i.e., total
field map) (Robinson et al., 2017; Karsa and Shmueli, 2019).
Then, the background field caused by the air-tissue interface
is removed from the total field map to separate the tissue-
generated field map (Liu T. et al, 2011; Sun and Wilman,
2014; Zhou et al., 2014; Kan et al., 2016, 2018; Ozbay et al,
2017). The susceptibility map is finally reconstructed from the
tissue-generated field map using dipole inversion processing
(Liu et al., 2009; de Rochefort et al., 2010; Wharton et al., 2010;
Wei et al., 2015; Liu Z. et al., 2018; Polak et al., 2020). The
mean susceptibility value of the cerebrospinal fluid in the lateral
ventricles is usually defined as a zero reference, given that it
is essentially water and contains negligible iron (LeVine et al.,
1998; Haacke et al., 2015).

Based on the concept described above, we adopt a gradient
echo sequence with the following parameters from our previous
study (Uchida et al, 2019): number of echoes: 5; minimal
first echo time: 6.4 ms; A echo time: 6.4 ms; repetition time:
36 ms, flip angle: 15; field of view: 192 x 192 x 160 mm?;
matrix: 192 x 192; and slice thickness: 1 mm, yielding an

3 on a 3 Tesla MRI scanner.

iso-voxel resolution of 1 mm
The QSM reconstruction algorithm includes the Laplacian-
based algorithm (Bagher-Ebadian et al., 2008), variable-kernel
sophisticated harmonic artifact reduction for phase data to
remove the background field owing to the existence of an air-
tissue interface (Kan et al., 2016, 2018; Ozbay et al., 2017), and
improved sparse linear equations and least-squares techniques
(Li et al., 2015; Wei et al., 2015). Note that different approaches
have been proposed for each post-processing step, which
influences the accuracy of the magnetic susceptibility values and
the edge of the brain mask (Haacke et al., 2015). Details of MRI
acquisition parameters and postprocessing techniques in QSM
studies for AD continuum subjects are summarized in Table 1
(Acosta-Cabronero et al., 2013; Hwang et al., 2016; Moon et al.,
2016; van Bergen et al., 2016b, 2018; Ayton et al., 2017; Kim et al.,
2017; Meineke et al., 2018; Tiepolt et al., 2018; Chen et al., 2020;
Kagerer et al., 2020; Kan et al., 2020; Tuzzi et al., 2020; Cogswell
et al., 2021; Ravanfar et al., 2021; Uchida et al., 2022b).

Clinical applications of
quantitative susceptibility mapping

Quantification of iron content

Quantifying tissue iron concentration in vivo is the best
clinical application of QSM to understand the role of iron in
the pathophysiology of neurological diseases associated with
abnormal iron distribution. The mean susceptibilities of the
bulk tissue in deep gray matter nuclei have been validated
using total iron content ex vivo or in vitro and measured using
various modalities, including synchrotron X-ray fluorescence
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TABLE 1 Overview of MRI acquisition parameters and postprocessing techniques in QSM studies for AD continuum subjects.

Study MRI Field Head coil Voxel size TE (ms) ATE Number  Acquisition  Phase Background  Dipole
scanner strength (mm) (ms) of echoes  sequence unwrapping  field inversion
removal

Acosta- Trio, Siemens 3T 12-channel 1x1x2 20 NA NA FLASH Laplacian-based NA MEDI

Cabronero et al. phased-array head

(2013) coil

van Bergen et al. Achieva, Philips 7T 32-channel receive 0.5 % 0.5 x 0.5 6 6 3 (2 echoes GRE Laplacian-based V-SHARP LSQR

(2016b) array head coil used)

Moon et al. Signa, GE 3T 8-channel head coil 0.94 x 0.94 x 2 35 4.09 8 GRE (based on Magnitude- PDF MEDI

(2016) SWAN) guided

Hwang et al. Achieva, Philips 3T 8-channel SENSE 0.63 x 0.63 x 1.26 34 NA 1 GRE Quality-guided PDF MEDI

(2016) head coil

Ayton et al. Trio, Siemens 3T 12-channel head coil 0.93 x 0.93 x 1.75 20 NA NA GRE Laplacian-based V-SHARP iLSQR

(2017)

Kim et al. (2017) Achieva, Philips 3T 8-channel SENSE 0.68 x 0.68 x 2.2 34 6 7 3D FFE NA PDF MEDI
head coil

Tiepolt et al. Magnetom, 7T 24-channel head coil 0.7 x 0.7 x 0.7 10 NA NA GRE SDI QSM processing algorithm

(2018) Siemens

van Bergen et al. Signa, GE 3T 8-channel head coil Ix1x1 6 4 6 bipolar GRE Laplacian-based SHARP iLSQR

(2018)

Meineke et al. Ingenia, Philips 3T 32-channel RF 0.6 x 0.6 x 2 35 4 7 GRE JEDI QSM processing algorithm

(2018) receive head-coil

Chen et al. Achieva, Philips 3T NA Ix1x1 6 6 5 GRE Best-path based V-SHARP

(2020)

Kan et al. (2020) Ingenia, Philips 3T 20-channel receiver 1x1x1 6 6.2 5 MP-QSM Laplacian-based V-SHARP iLSQR
head-neck coil

Kagerer et al. Signa, GE 3T 8-channel head coil Ix1x1 6 4 6 (3 echoes GRE Laplacian-based V-SHARP LSQR

(2020) used)

Tuzzi et al. Siemens 9.4T 31-channel receive 0.13 x 0.13 x 0.61 16.5 NA 1 GRE Laplacian-based RE-SHARP iLSQR

(2020) RF array head coil

Cogswell et al. Prisma, Siemens 3T NA 0.52 x0.52x 1.8 6.7 3.9 5 GRE STI Suite QSM processing algorithm LSQR

(2021)

Uchida et al. Ingenia, Philips 3T 32-channel Ix1x1 6 6.2 5 MP-QSM Laplacian-based V-SHARP iLSQR

(2022b) head coil

e 32 epiyon

B40"UISIa13UOI)

AD, Alzheimer’s disease; FFE, fast field-echo; FLASH, fast low-angle shot; GRE, gradient (recalled) echo; iLSQR, iterative LSQR; JEDI, joint background-field removal and segmentation-enhanced dipole inversion; LSQR, sparse linear equation and
least-squares; MEDI, morphology-enabled dipole inversion; MP-QSM, magnetization-prepared spoiled turbo multiple gradient echo sequence with inversion pulse for QSM; MRI, magnetic resonance imaging; NA, not applicable; PDF, projection onto
dipole fields; QSM, quantitative susceptibility mapping; RE-SHARP, Regularization-enabled SHARP; SDI, superfast dipole inversion; SHARP, Sophisticated Harmonic Artifact Reduction for Phase; SWAN, susceptibility weighted angiography; TE, echo
time; V-SHARP, Variable-radius SHARP.
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iron mapping (Zheng et al,, 2012, 2013), atomic absorption
spectrometry (House et al, 2007), and inductively coupled
plasma mass spectrometry (Langkammer et al., 2010, 2012b).
The challenge is that the estimation of iron concentration in
white matter regions is less accurate and more complex due
to the counteracting contribution from diamagnetic myelinated
neuronal fibers that confounds the interpretation (Langkammer
et al,, 2012a). Another challenge is the estimation of age-related
iron changes in deep gray matter nuclei and myelin changes
in white matter regions (Bilgic et al, 2012; Keuken et al,
2017; Lee et al., 2018; Zhang et al, 2018; Ning et al., 2019).
In order to draw any conclusions regarding the presence of
abnormal iron accumulation, it will be necessary to know the
range and variation of normal susceptibilities for all ages. A 4D
developmental QSM atlas serves as a template for studying brain
iron deposition and myelination/demyelination during normal

aging and in various brain diseases (Zhang et al., 2018).

Assessment of myelination

Evaluating white matter alterations in the AD brain, in
addition to gray matter alterations, has been of great interest.
The magnetic susceptibility of white matter is mainly influenced
by iron and myelin components (Shmueli et al., 2009; Haacke
et al., 2010). Human brain myelination changes over the
entire lifespan (Lebel et al., 2012); it is prominent in the
brain development that occurs during early life (Deoni et al.,
2012; Lee et al, 2018), in the normal aging processes that
occur later in life (Lee et al, 2012; Zhang et al, 2018),
and during pathological demyelination (Liu C. et al, 2011;
Langkammer et al., 2013; Cao et al., 2014). As white matter
fiber bundles are myelinated, susceptibility values are more
diamagnetic (Li et al., 2014; Zhang et al, 2018). Therefore,
QSM provides valuable information regarding the temporal
and spatial patterns of brain myelination and demyelination.
Further research is warranted to quantify the changes in myelin
content in various physiological and pathological conditions
such as brain development, aging, neurodegenerative diseases,
and demyelinating diseases (Vinayagamani et al., 2021).

Measuring venous oxygen saturation

In addition to gray and white matter structures, blood
vessels in the brain are also key factors in AD pathogenesis.
Close monitoring of central venous oxygenation serves as a
novel biomarker for studying cerebral hemodynamics (Eskreis-
Winkler et al, 2017), which can aid in understanding the
pathophysiology of vascular disorders in which blood oxygen
supply is impaired. Differential diagnosis between AD and
vascular cognitive impairment is quite difficult because their
pathophysiologies are overlapped as well as their concurrence.
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Brain oxygen extraction fraction (OEF) is differentially altered
by AD and vascular cognitive impairment (Jiang et al., 2020).
QSM has recently been used to measure venous oxygen
saturation; hence, the cerebral metabolic rate for oxygen and
OEF can be calculated (Gauthier and Hoge, 2012; Fan et al,
2015; Zhang et al., 2015; Kudo et al., 2016; Uchida et al., 2022a).
Briefly, the OEF calculation from the QSM is expressed as
follows:

where Ay is the susceptibility difference between the vein and
surrounding brain tissue, Ay 4, is the difference in susceptibility
per unit of hematocrit between fully deoxygenated and fully
oxygenated blood, Hct is each subject’s hematocrit, and P, is a
correction factor for the partial volume effects that was defined
based on the simulated calculation (Kudo et al., 2016). Rapid
acquisition of magnetic susceptibility and evaluation of venous
oxygen saturation can aid in the determination of predictors
for progressive ischemic regions in urgent care settings (Kan
et al,, 2017, 2019). QSM-derived OEF map shows the area of
the penumbra as an indicator of brain cell viability. It has
been reported that brain tissues with increased OEF values
can predict ischemic penumbral tissues based on diffusion-
perfusion mismatch areas defined by a dynamic susceptibility
contrast (Uchida et al., 2022a).

Biomarker for neurodegenerative
diseases

Brain iron accumulation has been proposed as one
of the pathomechanisms in neurodegenerative diseases,
including Parkinson’s disease (Langkammer et al., 2016; Acosta-
Cabronero et al,, 2017; Uchida et al., 2019, 2020b), amyotrophic
lateral sclerosis (Kwan et al., 2012; Acosta-Cabronero et al.,
2018a), Huntington’s disease (Dominguez et al, 2016; van
Bergen et al., 2016a), and AD (Acosta-Cabronero et al., 2013;
Ayton et al, 2017; Kim et al, 2017; Tiepolt et al., 2018;
Gong et al,, 2019; Cogswell et al., 2021). QSM can be used to
detect abnormal iron deposits in specific affected regions of
neurodegenerative diseases, such as in the nigrostriatal system
for Parkinson’s disease, the motor cortex for amyotrophic
lateral sclerosis, the basal ganglia for Huntington’s disease, and
limbic system for AD. Although abnormally high levels of iron
are thought to induce free radicals resulting in neuronal loss
and clinical symptoms, whether iron deposition is a cause or
a result of neurodegeneration remains elusive. The former is
supported by clinicoradiological studies revealing iron leakage
owing to blood-brain barrier disruption in small vessel diseases
(Mikati et al., 2014; Tariq et al.,, 2018; Uchida et al., 2020a)
and subtle blood-brain barrier dysfunction in early stages
of Alzheimer’s continuum with the €4 allele of APOE gene
(Figure 1; Yamanaka et al., 2019).
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Representative images from BBB ky,, map (A), QSM (B), and [*'C]PiB-PET SUVR (C) from a APOE &4 non-carrier (£3/¢3), a heterozygote (£3/¢4),
and a homozygote (e4/e4). The ky, map from the homozygote (e4/¢4) displays the lowest k,, values, which are associated with increased SUVRs
of [M1C]PiB-PET. On the other hand, there were indiscernible differences for QSM among the groups. BBB, blood—-brain barrier; PiB, Pittsburgh
compound B; QSM, quantitative susceptibility mapping; SUVR, standard uptake value ratio (adapted with permission from Uchida et al., 2022b).

Relationship between quantitative
susceptibility mapping and
Alzheimer’s disease pathology

Altered iron metabolism in Alzheimer’s
disease pathogenesis

Altered iron metabolism has been hypothesized
to be associated with the pathogenesis of AD (Ayton

et al, 2015). Histochemical and histopathological studies

Frontiers in Neuroscience

have shown evidence of altered iron metabolism and
accumulation in AD brain tissues, with iron colocalizing
with AP aggregates as senile plaques and intracellular
hyperphosphorylated tau aggregates as neurofibrillary
tangles (Aillaud and Funke, 2022). QSM has been used
to study the relationships between cerebral iron load and
established biomarkers for AD (Acosta-Cabronero et al,
2013; Ayton et al, 2017; Kim et al., 2017; Tiepolt et al,
2018; Gong et al, 2019; Cogswell et al., 2021). Overall,
these findings suggest that magnetic susceptibility in deep
gray matter may be a biomarker for AD pathogenesis.
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Meanwhile, the sensitivity of QSM for the cerebral cortices
is insufficient for reliable detection. This is partly due to
superficially eroded masking applied and noise levels,
such as adjacent to vessels or edges of the brain mask. An
advanced multi-scale approach to QSM can improve the
ability to detect susceptibility values in the cerebral cortices
(Acosta-Cabronero et al., 2018b).

Association of quantitative
susceptibility mapping with Ag
pathology

Senile plaques, which are pathological aggregates of

extracellular AB proteins, contain iron (Lovell et al,
1998). In an amyloid mouse model of AD, magnetic
susceptibility increased over time relative to controls in
a longitudinal study, which used a linear mixed effects
modeling analysis that incorporated estimates from multiple
brain regions (Klohs et al, 2013). Notably, AP itself has
slightly diamagnetic susceptibility in a phantom experiment
(—0.024 to —0.019 ppm) (Gong et al.,, 2019). Paramagnetic
source of PB-amyloid plaques in vivo is largely attributed
to focal iron deposition (Jack et al, 2004). Accordingly,
QSM, which is sensitive to the concentration of iron in
brain tissues, may play a key role in tracking the progressive
pathology of AD and provide a means to measure the
efficacy of iron chelation therapy (Crapper McLachlan
et al., 1991; Dixon et al, 2012; Liu J. L. et al, 2018;

Cummings et al., 2019).

Association of quantitative
susceptibility mapping with tau
pathology

Neurofibrillary tangles, which are pathological insoluble
aggregates of hyperphosphorylated tau proteins, also contain
iron (Good et al., 1992). Susceptibility values of tau protein
are diamagnetic as well as AB and variable due to echo
time (—0.071 to —0.037 ppm) (Gong et al., 2019). In animal
models of tau pathology, reactive microglia and astrocytes
have been reported to induce neuroinflammation and iron
accumulation (Yoshiyama et al., 2007; Maphis et al., 2015).
Therefore, QSM may be a sensitive in vivo biomarker for
these pathological traits. In an analogous model of tau
pathology, semi-automatic segmentation of QSM was employed
to calculate magnetic susceptibility in gray matter and white
matter regions, and it might be useful for detecting early
tau pathological changes (O’Callaghan et al, 2017). These
QSM protocols could be incorporated into clinical protocols
for human AD and other tauopathies that are currently
ongoing.
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Association of quantitative
susceptibility mapping with
neurodegeneration

Based on the ATN system (Jack et al., 2018), biomarkers
of neurodegeneration (labeled “N”) include structural MRI,
positron emission tomography (PET) with 2-deoxy-2-[fluorine-
18]fluoro-D-glucose ('*F-FDG-PET), and cerebrospinal fluid
total tau proteins. In terms of associations between QSM and
structural MRI, voxel-based QSM analyses revealed increased
susceptibilities of the hippocampus in patients with AD
compared to age-matched cognitively normal controls (Acosta-
Cabronero et al,, 2013; Kim et al., 2017; Kan et al., 2020),
whereas voxel-based morphometry revealed atrophic changes
of the hippocampus (Matsuda, 2016; Kan et al, 2020).
Additionally, a longitudinal study of cognitively normal adults
showed that accumulation of iron in the putamen could
predict its shrinkage (Daugherty and Raz, 2016). Although
less investigated for associations between QSM and the
other biomarkers of neurodegeneration, a combined !®F-
FDG-PET and QSM study in different AD cohorts revealed
glucose hypometabolism and brain iron accumulation in
the hippocampus, temporal, and parietal lobes (Rao et al,
2022).

Association of quantitative
susceptibility mapping with cognitive
decline

10-40%
individuals have evidence of cerebral AP deposition (Jansen

Approximately of cognitively normal older
et al., 2015), which suggests that A alone may not be sufficient
for the development of AD symptoms. Histopathological
studies have proposed that AP and iron colocalize and act
synergistically to affect downstream AD pathogenesis (Smith
et al., 1997; Gong et al, 2019). Biochemically, A and tau
proteins bind ferric iron and reduce it to its redox-active
form, ferrous iron, which reacts with hydrogen peroxide
to generate reactive oxygen species that lead to ferroptosis
pathway (Sayre et al., 2000; Everett et al., 2014; Conrad et al.,
2016). Furthermore, a number of clinicoradiological studies
emphasize cerebral iron accumulation combined with Af and
tau proteins to accelerate cognitive decline (van Bergen et al.,
2016b; Ayton et al., 2017; Kim et al., 2017; Tiepolt et al., 2018).
However, recent whole-brain analyses of QSM with amyloid
and tau PET have revealed contradictory evidence, with each
pathologic substrate arising independently and in spatially
different areas (Cogswell et al, 2021). In voxel-based QSM
and amyloid PET analyses, there were clusters in which iron
levels were negatively correlated with AP deposits, some of
which were associated with global cognition (Chen et al., 2020).
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TABLE 2 Overview of QSM studies for AD continuum subjects.

Study Modality Sample size Mean age (y) &= SD  Disease severity = Regions of Regions of Associations with established AD
interest reference biomarkers and cognition
Acosta- MPRAGE, QSM AD: 8, HC: 11 AD:72 +6,HC: 70 + 5 MMSE: AD: 22 + 4 AMY, CN, GP, HP, Posterior ventricular No associations of QSM with HP atrophy

Cabronero et al.
(2013)

van Bergen et al.
(2016b)

Moon et al.
(2016)

Hwang et al.
(2016)

Ayton et al.
(2017)

Kim et al. (2017)

Tiepolt et al.
(2018)

van Bergen et al.
(2018)

Meineke et al.
(2018)

Chen et al.
(2020)

Kan et al. (2020)

Kagerer et al.
(2020)

Amyloid PET, fMRI,
QSM

QSM

QSM

Amyloid PET, QSM

MPRAGE, QSM

Amyloid PET, QSM

Amyloid PET, QSM

QSM

Amyloid PET, QSM

MP-QSM

Amyloid-PET,
BOLD, QSM

MCI: 15, HC: 22

AD: 27,HC: 18

AD: 18, MCI: 18,
HC: 18

AD:19, MCI: 17, HC:
64

AD: 19, MCI: 19,
HC: 19

AD: 10, HC: 10

Elderly: 116

AD: 6, MCI: 8, HC:
10

Elderly: 150 (PET:
97)

AD: 38, HC: 19

APOE4+: 18,
AOE4-:51

MCI: 75.27 £ 7.63, HC:
71.91 £5.25

AD:78.63 & 8.11, HC:
46.89 + 14.69

AD: 69.9 + 9.81, MCIL:
66.9 & 5.51, HC:
65.2 £ 6.41

AB+:76.4 % 1.0, AB-:
74.0 +0.9

AD: 69.79 £ 10.27, MCI:
65.95 £ 6.75, HC:
65.37 £6.29

AD:74.1, HC: 67.1

74.81 £7.52

AD: 58 £ 6, MCI: 63 £ 6,
HC:59£7

Elderly: 69 £ 8 (PET:
71+ 6)

AD:80 £6,HC: 71 £5

APOE4+: 66.28 & 5.29
APOE4-:66.04 £ 7.87

MMSE: MCI:
28.61 & 1.65

MMSE: AD:
14.70 £ 5.81

MMSE: AD:
17.56 & 3.5, MCI:
27.61£2.17

NA

MMSE: AD:
17.37 & 3.42, MCL:
27.63 £2.11

MMSE: AD:
23.6+73

MMSE: Elderly:
28.99 £1.10

MMSE: AD:
19.2 +£ 3.2, MCI:
25.6 £2.1

GCS: Elderly: 0.31
6+ 0.57 (PET:
0.33 £0.54)

NA

MMSE: APOE4+:
29.12 £ 1.58,
APOE4—:
29.440.89

PUT, TH, whole
brain

AMY, CN, EC, GP,
HP, NAc,
neocortices, PUT,
TH

CN, GP, PUL, PUT

HP, PUT, whole
brain

Cingulate, CN, HP,
neocortices

AMY, GP, HP,
neocortices, PC,
PUL, PUT, TH,

GP, neocortices, PUT

Whole brain

CN, GP, HP, PUT,
TH

AMY, Cingulate, CN,
EC, GP, HP,
neocortices, PUT

Whole brain

DMN

region

Frontal central CSF

NA

Posterior ventricular

region

Middle frontal white
matter region

Posterior ventricular

region
CSF
Deep frontal white

matter

Corpus callosum

CSF

CSF

Deep frontal white
matter

Positive associations of QSM with Af deposition in

medial prefrontal cortex in MCI group

No associations of QSM with age and severity of
cognitive deficits

Increased QSM values of whole white matter in AD
subjects

Colocalization of QSM with AB deposition in frontal,
temporal, and occipital lobes in MCI group, inverse
associations of QSM with cognition in A+ subjects

Increased QSM values of neocortices in AD subjects

No associations of QSM with amyloid-PET

Positive associations of QSM with amyloid-PET in CN,
GP, PUT, and neocortices

Increased QSM values of CN and PUT in AD subjects

Inverse associations of QSM with cognition
independent of amyloid-PET in HP

Increased QSM values of AMY, CN, and HP in AD

subjects

Positive associations of QSM with DMN activity that in
APOE4+ subjects
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FIGURE 2

Diagram of voxel-based morphometry and magnetic susceptibility analyses (A) and results of the voxel-based analyses (B). The top of the
left-hand panel shows the procedure of the voxel-based morphometry analysis. The top of the right-hand panel shows the procedures of the
susceptibility estimation and spatial normalization of the map for the voxel-based magnetic susceptibility analysis. The bottom panel shows the
results of voxel-based morphometry and magnetic susceptibility comparisons between elderly volunteers and patients with Alzheimer's disease.
A corrected P-value of < 0.05 with the family-wise error correction was applied as the threshold to detect regional volume decreases and
susceptibility increases in the Alzheimer's disease group. GM, gray matter; VBMSM, voxel-based magnetic susceptibility and morphometry; WM,
white matter (adapted with permission from Kan et al., 2020).
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Computed the mean of 10 evaluation score

and cortices (Choi et al., 2018; Spotorno et al., 2020; Cogswell
et al., 2021), these associations were partly caused by off-target
binding of tau PET ligands. Postmortem studies using multiple
tau tracers have shown that off-target tau binding is secondary
to monoamine oxidase and iron deposition in the presence of
inflammation (Harada et al., 2018; Lemoine et al., 2018; Baker
etal, 2019).

The extent of elevated magnetic susceptibility in QSM
and standardized uptake value ratios in amyloid and tau PET
do not overlap, which may imply that more complicated
factors contribute to these signal changes. When the anterior
hippocampus was segmented into seven layers using high-
resolution ex vivo MRI, the molecular changes in AP and
tau protein aggregations had specific effects on the magnetic
susceptibilities of AD brain tissues (Zhao et al., 2021). However,
layer-specific PET analysis is impractical due to its low
resolution.

Expectations

Numerous concomitant disease processes, including altered
iron metabolism, contribute to AD pathogenesis. Proteins such
as AP and tau that are associated with AD pathology are involved
in molecular crosstalk with iron homeostatic proteins (Reed

Frontiers in Neuroscience

et al., 2009). Furthermore, lipid peroxidation and oxidative
stress, hallmark features of ferroptosis, are considered an early
event in AD pathogenesis (Pratico and Sung, 2004). From the
viewpoint of these pathomechanisms related to perturbations in
iron homeostasis, iron itself should be included as pathological
biomarker for AD (Masaldan et al., 2019), in addition to the
proposed ATN classification system (Jack et al., 2018). Taking
account of its presence prior to AP and tau aggregates, the
possibility of iron chelation therapy is implicated (Crapper
McLachlan et al., 1991; Smith et al, 1997; Dixon et al.,
2012; Guo C. et al., 2013). With current imaging techniques
allowing for in vivo quantification of brain iron, AB, tau, and
neurodegeneration, the efficacy of the disease modifying therapy
on these AD pathologies could be more specifically monitored
(Borlongan, 2012). An overview of QSM study design and main
findings for AD continuum subjects are summarized in Table 2
(Acosta-Cabronero et al., 2013; Hwang et al., 2016; Moon et al.,
2016; van Bergen et al., 2016b, 2018; Ayton et al., 2017; Kim et al,,
2017; Meineke et al., 2018; Tiepolt et al., 2018; Chen et al., 2020;
Kagerer et al., 2020; Kan et al., 2020; Tuzzi et al., 2020; Cogswell
et al., 2021; Ravanfar et al., 2021; Uchida et al., 2022b).
Voxel-based morphometry and QSM analyses are useful for
mapping the landscape of whole-brain volume and magnetic
susceptibility changes in patients with AD (Ashburner and
Friston, 2000; Acosta-Cabronero et al., 2013; Kim et al., 2017).
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A magnetization-prepared spoiled turbo multiple gradient
echo sequence has been developed to simultaneously acquire
3D T1-weighted structural and multi-echo phase images for
voxel-based morphometry and QSM analyses (Kan et al.,
2020). The key advantage of this technique is that any image
registration between these images prior to spatial normalization
is unnecessary, as these datasets have exactly the same geometry
(Figure 2).

Atlas-based analysis, which can help generate universal and
sharable susceptibility measures in a biologically meaningful
set of anatomical structures, is also useful (Lim et al., 2013).
Moreover, the multi-atlas label-fusion method for automated
segmentation of QSM images has been developed as a more
accurate quantification tool for determining the magnetic
susceptibilities of individuals (Li et al., 2019). Figure 3 shows
a machine learning model trained with the extracted magnetic
susceptibilities using the multi-atlas label-fusion method to
detect early cognitive impairments (Shibata et al., 2022).

More advanced QSM techniques should be highlighted:
R2* relaxometry analysis combined with QSM can distinguish
microstructural changes of white matter demyelination from
iron deposition, thereby providing a sensitive and biologically
specific measure for white matter lesions (Kan et al., 2022).
Recent breakthroughs in small vessel imaging within the central
nervous system, such as venous oxygen saturation and blood-
brain barrier function using QSM techniques, are promising
biomarkers in research and clinical settings for AD (Uchida
et al., 2020a,b).

Limitations

One of the major limitations of the magnetic susceptibility
measured by QSM is its non-specific nature. In AD brain
research, the contrast to the surrounding brain tissues is
considered to be caused mainly by iron deposition; however,
it can be caused by other substances, such as calcium, lipids,
and myelin (Li et al., 2011; Deistung et al., 2013). Current QSM
approaches are unable to identify the chemical configurations
underlying abnormal magnetostatic behaviors. Another is that
multiple iron containing species may interact differently with
AP and tau proteins (Sayre et al., 2000; Everett et al., 2014).
It remains unclear whether QSM is equally sensitive to iron
in different states, as each species of iron may have a different
intrinsic magnetic susceptibility. These complexities of the
QSM technique could result in experimental variability in the
associations of magnetic susceptibilities with PET signals and
explain some of the seemingly contradictory findings in different
populations. Precise relationships between QSM and established
AD biomarkers should be elucidated in the near future by
applying ultra-high field acquisition protocols (Alkemade et al.,
2020; Tuzzi et al., 2020) and machine learning algorithms (Kim
et al., 2020).
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Conclusion

The QSM technique provides a sensitive and biologically
specific contrast of magnetic susceptibilities. Hence, it can
be used for in vivo characterization in accordance with
tissue magnetic susceptibilities, ranging from common
applications, such as cerebral iron deposition, to more recent
applications, such as assessment of impaired myelination,
quantification of venous oxygen saturation, and measurement
of blood-brain barrier function. Therefore, the acquisition
sequence for post-processing susceptibility maps should be
included in routine applications due to its high-throughput
computing nature with important implications. We conclude
that QSM has the ability to provide pathophysiological
information on brain tissue properties and the potential
to measure the efficacy of novel therapeutics in clinical

settings for AD.
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