
fnins-16-939687 June 25, 2022 Time: 16:0 # 1

ORIGINAL RESEARCH
published: 30 June 2022

doi: 10.3389/fnins.2022.939687

Edited by:
Shimeng Yu,

Georgia Institute of Technology,
United States

Reviewed by:
Yao-Feng Chang,

Intel, United States
Dashan Shang,

Institute of Microelectronics (CAS),
China

*Correspondence:
Hyunsang Hwang

hwanghs@postech.ac.kr

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 09 May 2022
Accepted: 03 June 2022
Published: 30 June 2022

Citation:
Lee D, Kwak M, Lee J, Woo J and
Hwang H (2022) Linear Frequency

Modulation of NbO2-Based
Nanoscale Oscillator With Li-Based

Electrochemical Random Access
Memory for Compact Coupled

Oscillatory Neural Network.
Front. Neurosci. 16:939687.

doi: 10.3389/fnins.2022.939687

Linear Frequency Modulation of
NbO2-Based Nanoscale Oscillator
With Li-Based Electrochemical
Random Access Memory for
Compact Coupled Oscillatory Neural
Network
Donguk Lee1, Myonghoon Kwak1, Jongwon Lee1, Jiyong Woo2 and Hyunsang Hwang1*

1 Department of Materials Science and Engineering, Center of Single Atom-based Semiconductor Device, Pohang University
of Science and Technology, Pohang, South Korea, 2 School of Electronics Engineering, Kyungpook National University,
Dague, South Korea

Oscillatory neural network (ONN)-based classification of clustered data relies on
frequency synchronization to injected signals representing input data, showing a more
efficient structure than a conventional deep neural network. A frequency tunable
oscillator is a core component of the network, requiring energy-efficient, and area-
scalable characteristics for large-scale hardware implementation. From a hardware
viewpoint, insulator-metal transition (IMT) device-based oscillators are attractive owing
to their simple structure and low power consumption. Furthermore, by introducing
non-volatile analog memory, non-volatile frequency programmability can be obtained.
However, the required device characteristics of the oscillator for high performance
of coupled oscillator have not been identified. In this article, we investigated the
effect of device parameters of IMT oscillator with non-volatile analog memory on
coupled oscillators network for classification of clustered data. We confirmed that linear
conductance response with identical pulses is crucial to accurate training. In addition,
considering dispersed clustered inputs, a wide synchronization window achieved by
controlling the hold voltage of the IMT shows resilient classification. As an oscillator
that satisfies the requirements, we evaluated the NbO2-based IMT oscillator with
non-volatile Li-based electrochemical random access memory (Li-ECRAM). Finally, we
demonstrated a coupled oscillator network for classifying spoken vowels, achieving an
accuracy of 85%, higher than that of a ring oscillator-based system. Our results show
that an NbO2-based oscillator with Li-ECRAM has the potential for an area-scalable and
energy-efficient network with high performance.

Keywords: oscillatory neural network, coupled oscillator, insulator-metal transition, electro-chemical random
access memory, spoken vowel, classification of spoken vowel
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INTRODUCTION

Von-Neumann computing architecture has a drawback of
inefficient data transportation between memory and processor,
referred to Von-Neumann bottleneck. Thus, bioinspired
new computing architecture has gained enormous attention,
anticipating low power consumption, and parallel processing
(Mead, 1990). Several artificial neural networks (ANNs) have
been developed inspired by brain function. Among these, an
oscillatory neural network (ONN) is composed of coupled
oscillators, motivated by the synchronization of oscillatory
neural signals to cognize complex information in neural
binding. Oscillator-based network shows complex non-linear
dynamics, which can be utilized in various applications such
as classification of clustered data (Romera et al., 2018; Dutta
et al., 2019), associative memory system (Levitan et al., 2012;
Shibata et al., 2012), pattern recognition (Nikonov et al., 2015;
Vodenicarevic et al., 2016), and Nondeterministic polynomial
(NP)-hard problem solver (Parihar et al., 2017; Dutta et al.,
2021).

For the classification of clustered data, a coupled oscillator-
based spoken vowel classification system has been reported
(Romera et al., 2018; Dutta et al., 2019). Spoken vowel
signals have formant frequencies, which are peaks in the
frequency spectrum. The set of formant frequencies depends
on the vowel, which is a feature of the input signal. Thus,
input vowel signals are transformed into a two-dimensional
domain in the form of frequency, spreading multiple frequency
clusters. The frequencies are injected into coupled oscillators
network, resulting in a synchronization map with trained nature
frequencies of the network. Consequently, vowels are clustered
according to states in the synchronization map. Compared to
conventional ANN such as multilayer perceptron, recurrent
neural network (RNN), and long short-term memory (LSTM),
coupled oscillator network has a simple structure and a small
number of trained parameters with a comparable recognition
rate (Romera et al., 2018). Therefore, an oscillator-based spoken
vowel classification system has the advantage of computing
power efficiency.

To implement these systems by the conventional CMOS
technology, an oscillator is composed of a ring oscillator
and a current-based digital-to-analog converter (DAC) to tune
oscillation frequency to the trained value (Nikonov et al., 2020).
Thus, many transistors and high operation power are required,
resulting in the limitation of a large-scale system.

In this regard, spin-torque oscillator (STO) (Romera et al.,
2018), insulator-metal transition (IMT) device (Lee et al.,
2018; Dutta et al., 2019), and ovonic threshold switch (OTS)
device (Lee et al., 2020) have been reported to overcome
the limitations of conventional CMOS-based oscillator. Among
the abovementioned oscillators, the IMT-based oscillator has
a simpler structure and lower power consumption than the
others. In particular, the NbO2-based IMT oscillator shows stable
oscillation due to the drift-free threshold switching characteristics
of NbO2 (Park et al., 2017). In an IMT oscillator, the oscillation
frequency is determined by the resistance of the load resistor
(Chen et al., 2016). Therefore, frequency controllability can be
obtained by adjusting variable resistors such as transistor and

resistive random access memory (RRAM) (Lee et al., 2018;
Dutta et al., 2019). An additional memory device is required
to store trained natural frequencies of coupled oscillators.
NbO2-based IMT oscillator with non-volatile RRAM and Li-
based electro-chemical random access memory (Li-ECRAM) has
frequency storable characteristics (Lee et al., 2018; Lee et al.,
2022). Thus, compared to the volatile transistor as load, non-
volatile memory is advantageous in terms of the simplicity of
hardware. Although frequency storable IMT oscillator with non-
volatile analog memory has been proposed, the effects of device
parameters of IMT and memory device are not identified in terms
of network performance.

This study investigated the effect of device parameters on the
performance of coupled oscillator networks to classify clustered
data. As a result, the Li-ECRAM device is an appropriate
oscillation load for high learning accuracy. Finally, we evaluated
spoken vowel classification based on a nanoscale oscillator with
NbO2 and Li-ECRAM, showing high learning accuracy.

MATERIALS AND METHODS

Measurement and Simulation Platform
The electrical characteristics of NbO2-based IMT device and Li-
ECRAM were measured using a Keysight B1500A semiconductor
device parameter analyzer with Waveform Generator/Fast
Measurement Unit (WGFMU) module. Input current pulses for
programming conductance of Li-ECRAM were generated by
Keithley B2635B. We used a Keysight 81160A Pulse Function
Arbitrary Noise Generator to generate injected sine waves.
Output waveforms of oscillators were measured by a Keysight
DSOX4154A oscilloscope. Simulation Program with Integrated
Circuit Emphasis (SPICE) simulations of coupled oscillators were
performed by using Synopsis HSPICE 2020.06.

NbO2-Based Insulator-Metal Transition
Device
The NbO2-based IMT device with a metal-oxide-metal (MIM)
stack has been fabricated using the following process. First, a 20-
nm-thick NbO2 layer was fabricated on a TiN plug with a 100 nm
diameter, as shown in Figure 1A. For a thin NbO2 deposition,
we used radio frequency (RF) magnetron reactive sputtering with
Nb metal target in an O2/Ar gas mixture in the ratio of 1/15
at room temperature. Then, a W top electrode was deposited
by direct current (DC) magnetron sputtering. Figure 1B shows
the hysteresis current–voltage (I–V) characteristics of the NbO2
device using a triangle shape with a 10 µs width. The IMT
device transforms from an insulating state to a metallic state
when the applied voltage exceeds the threshold voltage (Vth). In
contrast, after transition, if the applied voltage is smaller than
the hold voltage (Vhold), the IMT device goes back to the initial
insulating state.

NbO2-Based Insulator-Metal Transition
Oscillator
Figure 1C presents a schematic of an NbO2-based IMT oscillator.
When the load resistor is connected, two stable states exist
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FIGURE 1 | (A) TEM image of NbO2-based IMT device. (B) I–V characteristic of the NbO2-based IMT device. (C) Schematic diagram of NbO2-based oscillator.
(D) Output waveform of NbO2-based oscillator when load resistor is 10 k�. (E) Schematic diagram of injection locking with input signal. (F) Output frequency as a
function of input frequency. Colored region is synchronization window. (G) Fast Fourier transformation (FFT) result of input and output frequency. In FFT analysis,
sampling rate is 400 Ms−1.

owing to the hysteresis characteristics of NbO2 in the following
condition (Chen et al., 2016):

Ri

Ri + RL
>

Vth

VDD
and

Rm

Rm + RL
<

Vhold

VDD
(1)

where Ri is the insulating resistance of NbO2, Rm is the
metallic resistance of NbO2, RL is load resistance, and VDD
is supply voltage.

Therefore, the oscillator’s output showed self-sustained
oscillation between VDD-Vth and VDD-Vhold, accompanying the
charging and discharging of the load capacitor (CL), as shown
in Figure 1D. The oscillation frequency is determined by the
charging and discharging time. When the resistance condition is
Ri > >RL > >Rm, the charging time is significantly shorter than
the discharging time. Thus, the oscillation frequency is dominant
on discharging time and represented as follows:

f =
GL

CL ln
(

VDD−Vhold
VDD−Vth

) (2)

where GL is the conductance of the load resistor (= 1/RL).
We then evaluated injection locking to external sine wave,

a crucial phenomenon of coupled oscillator-based systems, as
shown in Figure 1E. Injection locking is a phenomenon in
which the frequency of an oscillator is synchronized (locked)
with injected frequency when the injection frequency is
within the synchronization range (locking range). Sinewave
with 1.4 V high level and 1.1 V low level was injected
through a coupled capacitor (Cc). When frequency within
the synchronization window (W) close to the natural frequency
(170 kHz) was injected, the output frequency is locked to the
input frequency, as shown in the colored region of Figure 1F.
Thus, input and output frequency was synchronized, resulting

in equal peak frequency in FFT results of input and output
oscillation, as shown in Figure 1G. In contrast, an input
frequency greater than 210 kHz, out of the synchronization
window, caused a mismatch with the output, meaning
asynchronization.

Coupled Oscillator-Based Classification
of Clustered Data
Based on the injection locking phenomenon of coupled
oscillators when input within the synchronization window is
injected, we investigated the effect of device parameters on
4-coupled oscillators with NbO2 devices for classification of
clustered data by SPICE simulation, as shown in Figure 2A.
In the simulation, we used Verilog-A NbO2 compact model
fitted from I to V characteristics (Lee et al., 2019), as
shown in Figure 1B, load capacitance (CL) is 400 pF,
and coupling capacitance (Cc) is 200 pF. Furthermore, we
introduced analog memory as a load resistor to obtain frequency
tunability as shown in Figure 2B. Two-dimensional clustered
input frequencies (fA, fB) are injected simultaneously through
coupling capacitors. After injection, output frequencies (f1–
f4) of each oscillator are checked synchronizations with the
input frequencies through synchronization-detecting circuits
(Vodenicarevic et al., 2016). Then, input frequencies are mapped
and labeled according to the synchronization state. In this
system, classifiable regions correspond to overlapped areas with
synchronization windows in the synchronization map. For
example, the A4B1 region representing oscillators 4 and 1 is
synchronized with input frequencies fA and fB, respectively, as
shown in Figure 2C. Input data within the region are classified as
the same cluster. Therefore, for accurate classification, oscillation
frequencies must be trained for classified regions to cover input
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FIGURE 2 | (A) Four-coupled oscillators configuration of a clustered data classification using (B) NbO2-based oscillator with analog memory device.
(C) Synchronization map of before and after training. W is synchronization window and classifiable region is overlapped area with synchronization windows (W × W).
(D) Flow chart of conductance update for classification of clustered data. (E) Normalized conductance response to applied number of pulses. (F) Training and test
dataset with input variation.

data. We trained the natural frequencies (fN) of oscillators
by gradient descent algorithm (Romera et al., 2018; Dutta
et al., 2019). The conductance of analog memory composing
NbO2-based oscillators must be trained to obtain optimized
nature frequencies. Figure 2D shows the flowchart for the
training of conductance. First, the conductance of load resistors
was randomized within a limited range (40 µS–200 µS). Then,
training inputs are injected to calculate the error (ε) between
input frequencies and corresponding output frequencies (fout).
Training input is the input frequency set [fA, fB] and label of
oscillators (L) with which oscillator the input is synchronized.
For example, labels for input corresponding to A1B4 region of
synchronization map are LA = [1, 0, 0, 0] and LB = [0, 0, 0, 1].
Therefore, the error is calculated as follows:

εA = [LA]
T [fout − fA

]
, εB = [LB]

T [fout − fB
]

(3)

Mean-squared error was used as a loss function (L):

Ltotal =
∑

εtotal
2/N =

∑
(εA + εB)

2/N (4)

where N is the number of oscillators (= 4). According to equation
(2), the natural frequency of coupled oscillators (fN) is linearly
proportional to the conductance of the load resistor (GL). Then,
the amount of conductance update was calculated by gradient
descent as follows:

1Gi = ηδLtotal/δGi (5)

where η is the learning rate and Gi is the load conductance
of ith oscillator. In a perceptron neural network with analog
memory-based synapse devices, such as RRAM and phase change
random access memory, the synaptic weight corresponding to the
conductance of analog memory is updated by applying identical
pulses proportional to the amount of weight update. An identical
pulse scheme is a practical method, because a non-identical pulse
scheme requires heavier circuitry than the identical pulse scheme
(Tsai et al., 2018). Therefore, the applied number of pulses to
update the conductance of analog memories is calculated as
follows:

Pi = round(1Gi) (6)
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where Pi is the applied number of pulses of ith analog device. The
conductance update process is iterated until the conductance of
analog memories saturates to the optimal value. The conductance
change characteristics of analog memory under identical pulses
are essential to update accuracy, and conductance modulation
behavior was modeled as a normalized exponential function
(Chen et al., 2017).

Gup = B
(

1− e−
P

Aup

)
+ 1 (7)

Gdown = B
(

1− e
P−Pmax
Adown

)
+ 1 (8)

B = 1/
(

1− e
−Pmax

A

)
(9)

where Gup is a function of increasing conductance,
Gdown is a function of decreasing conductance, A is
the parameter determining non-linear behavior, and B
is different in Gup and Gdown, as shown in Figure 2E.
Then, we considered fitting function in simulation.
Figure 2F shows the training and test datasets, with
20 inputs for each cluster (a total of 5 clusters) with
variation (σ).

Effect of Non-linearity (A)
To investigate the effect of non-linearity on network
performance, we evaluated classification accuracy with various
non-linearities, as shown in Figure 3A. We assumed that

the non-linearity of up and down conductance response
was symmetric owing to confirm non-linearity only.
Classification accuracy was degraded as the non-linearity
was higher. If the non-linearity is high, conductance
changes significantly even if the number of pulses is
small. Consequently, the output frequencies proportional
to the conductance of analog memory do not converge
to the optimal value when non-linearity is high, as
shown in Figure 3B. Therefore, linear conductance
modulation under identical pulses is crucial to improve
classification accuracy.

Effect of Input Variation and Hold Voltage
Figure 3C shows the classification accuracy as a function
of input variation. High input variation worsened accuracy
because the classifiable region cannot cover clustered data.
When input variation was 50 kHz, only 25% of clustered data
were covered by the classification region as shown in Figure
3D. To widen the classifiable region, a wide synchronization
window is required. According to Alder’s equation (Bhansali
and Roychowdhury, 2009) representing an injection locking
phenomenon, locking range fL corresponding to synchronization
window is inversely proportional to the amplitude of the
oscillator:

fL ∝ Vi/Vosc (10)

where Vi is the amplitude of injected sinuous signal
and Vosc is the amplitude of the oscillator. As shown in
Figure 1D, the amplitude of the NbO2-based oscillator
is Vth-Vhold. Thus, the synchronization window widened

FIGURE 3 | (A) Classification accuracy as a function of non-linearity. The non-linearity of the up and down conductance response is symmetric. (B) Output
frequency of 3rd oscillator as a function of training iteration in various non-linearity. (C) Classification accuracy as a function of input variation. To investigate only the
effect of input variation, conductance response is linear with the number of pulses. (D) Synchronization map with narrow synchronization window (Vhold = 0.55 V);
25% of clustered data was within the classifiable region due to narrow W. (E) Synchronization window and classification accuracy with various hold voltage of NbO2

device. Synchronization window was simulated in the configuration shown in Figure 1E. (F) Synchronization map with wide synchronization window (Vhold = 0.65 V).
94% of clustered data can be classified owing to wide classifiable region.
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with and enlarged Vhold, improving classification accuracy,
as shown in Figure 3D. Enlarged Vhold (= 0.65 V)
leads to a broad classifiable region, which covers 94%
of clustered data, as shown in Figure 3F. Therefore,
immunity of input variation can be obtained by an enlarged
Vhold of NbO2.

Li-Based Electrochemical Random
Access Memory
In terms of conductance linearity, Li-ECRAM is the most
appropriate analog memory as load. Since Li-ECRAM
exhibits linear conductance modulation (Fuller et al., 2017;
Tang et al., 2018), it shows linear frequency modulation in an

FIGURE 4 | (A) Optical microscope image and (B) device structure of Li-ECRAM. (C) Conductance response to identical pulses. Low non-linearity (Aup = 0.55,
Adown = −0.67) is obtained. (D) Frequency programming scheme and oscillator scheme of NbO2-based oscillator with Li-ECRAM. (E) Real-time measurement of
oscillation frequency modulation. N represents applied number of pulses in programming scheme. (F) Magnified figure of output waveform in (E). (G) Frequency
modulation with applied number of pulses.

FIGURE 5 | (A) Dataset of spoken vowel. Formant frequencies of spoken vowel is processed by linear transformation to match frequency of NbO2-based oscillator
with Li-ECRAM. (B) Conductance of Li-ECRAMs as function of training iteration. After five iterations, channel conductance of Li-ECRAMs converge to the optimal
value. (C) Synchronization map after training. Most of clustered data are covered by classifiable region. (D) Introducing Li-ECRAM and adjusting Vhold of NbO2, 85%
classification accuracy can be obtained.
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TABLE 1 | Benchmark of oscillators for spoken vowel classification.

CMOS-based ring oscillator
(Nikonov et al., 2020)

Spin-torque oscillator (STO)
(Romera et al., 2018)

VO2-based IMT oscillator
(Dutta et al., 2019)

This work

Components Ring oscillator., DAC MTJ, Bias tee NMOS, VO2, Capacitor Li-ECRAM, NbO2, capacitor

Input for frequency tuning Digital cord Current Gate voltage Identical pulse

Use of DAC O O O X

Linear frequency modulation X O X O

Frequency programmability X X X O

Classification accuracy of spoken vowel 69% 89% 90.5% 85%

NbO2-based oscillator with the device (Lee et al., 2022). A three-
terminal Li-ECRAM device was fabricated on a SiO2 wafer. First,
W source and drain were deposited by DC magnetron sputtering.
The distance between source and drain corresponding to channel
length was 100 nm. Then, a 50-nm-thick WO3 channel material
was deposited by RF magnetron reactive sputtering with
W metal target in an O2/Ar gas mixture in the ratio of 1/5
at room temperature. Consecutively, 100-nm-thick Li3PO4
electrolyte and 30-nm-thick Si reservoir were deposited by RF
magnetron sputtering. Finally, the W gate was deposited by
DC magnetron sputtering. An optical microscope image of
the fabricated device is shown in Figure 4A. Figure 4B shows
the device structure of Li-ECRAM and the bias schematic for
channel conductance modulation. When a positive current is
applied, Li-ions in electrolyte were injected into the channel.
Then, W6+ valance state changes to W5

+, increasing channel
conductance (Niklasson et al., 2004). In contrast, when a negative
current is applied, Li-ions in the channel are extracted from
the electrolyte, decreasing channel conductance. Figure 4C
shows the conductance response to applied identical gate current
pulses. The amplitude of input gate pulses (IG) for changing
conductance up and down was 10 and –10 nA, respectively,
and the pulse width was 0.5 s. Drain–source voltage (VDS) was
applied to measure channel conductance (GDS). Conductance
change has a reasonably linear relationship with the applied
number of pulses, showing a low non-linearity factor (Aup = 0.55,
Adown = −0.67). The conductance switching of LI-ECRAM is
driven by the applied charge. Conductance response is linearly
proportional to the number of pulses related to the applied ones
(Fuller et al., 2017; Tang et al., 2018). As shown in Figure 3A,
accuracy degradation is slightly degraded in using Li-ECRAM as
oscillation load compared to ideal linear case.

NbO2-Based Oscillator With Li-Based
Electrochemical Random Access
Memory Load
In the configuration of the NbO2-based oscillator with Li-
ECRAM, two devices are connected in series. Figure 4D
shows the operation scheme for frequency programming and
oscillation. In the programming scheme, gate pulses for
modulation of channel conductance are applied to the gate
side of Li-ECRAM. The current is applied to the gate to
determine conductance changes, and supply voltage is not
applied (GND). In the oscillation scheme, the supply voltage is
applied, and oscillation occurs, as shown in Figure 1D. Figure 4E

shows the real-time measurement of frequency programming
(programming-oscillation-programming-oscillation). First, we
applied two programming pulses and then confirmed 230 kHz
oscillation, as shown in Figure 4F. Nine programming pulses
were applied, and the oscillator exhibited 310 kHz oscillation.
In this way, the oscillation frequency can be tuned. As a result,
the oscillation frequency is a function of the applied number of
pulses, as shown in Figure 4G.

RESULTS

Spoken Vowel Classification Using
NbO2-Based Oscillator With Li-Based
Electrochemical Random Access
Memory
Using four-coupled oscillators with NbO2-based oscillators
connected to Li-ECRAM, we evaluated the classification of
the spoken vowel. American English vowel dataset with 5
vowels from 20 different females was used in the simulation
(Hillenbrand, 1995). To utilize a coupled oscillator network
for the classification of clustered data, input frequencies
must be within the frequency range of an NbO2-based
oscillator with Li-ECRAM. Thus, linear transformation must
process formant frequencies of spoken vowels to match with
the oscillator’s frequency range (Romera et al., 2018; Dutta
et al., 2019), as shown in Figure 5A. The conductance of
Li-ECRAMs was trained by the gradient descent learning
rule mentioned in the “NbO2-based IMT oscillator” section
and converged after five cycles, as shown in Figure 5B.
After training, oscillation frequencies were programmed for
the classifiable region of the synchronization map to catch
input vowel data, as shown in Figure 5C. Figure 5D
shows the classification accuracy of networks with various
oscillators. In this comparison, the CMOS-based ring oscillator
exhibited a non-linearity of 1.78, extracted from frequency
modulation characteristics with digital input code to DAC
(Nikonov et al., 2020). Due to the high non-linearity of the
CMOS-based oscillator, classification accuracy is low (69%).
Introducing Li-ECRAM as oscillation load with low non-linearity
(0.55/–0.67), the accuracy improved by 74%. Furthermore,
an accuracy of 85% was obtained by adjusting the Vhold
of NbO2 for input variation immunity. In a multilayer
perceptron with a similar number of trained parameters to
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an oscillator-based network, only an accuracy below 65% was
achieved (Romera et al., 2018).

Benchmark
We benchmarked oscillators for the coupled oscillator-based
spoken vowel classification system as shown in Table 1. The
small number of components means the scalability of the
oscillator. CMOS-based ring oscillator has additional circuitry
to tune the oscillation frequency (buffer, DAC) (Nikonov
et al., 2020). STO consists of a magnetic tunnel junction
(MTJ) and a bias tee to separate the injection input current
(Romera et al., 2018). However, IMT oscillators [VO2-based
(Dutta et al., 2019) and our proposed oscillator] require only
a TS device, an oscillation load (NMOS, Li-ECRAM), and a
capacitor. Linear frequency modulation corresponds to the linear
conductance change of our proposed oscillator. CMOS-based
oscillator shows non-linear frequency modulation with digital
cord input to a DAC. The VO2-based oscillator is also not
linearly proportional to the gate voltage because the channel
resistance is not linearly related to the gate voltage. STO
shows slight linear frequency modulation to the input current
amplitude. However, the proposed oscillator has linear frequency
modulation characteristics. The frequency programmability is
the ability to store frequency itself. Frequencies of each oscillator
must have trained values in the classification process. In cases
of CMOS-based, STO, and VO2-based oscillators, information
about the amplitude of analog input for frequency tuning is
stored in additional memory devices. However, in the case of our
oscillator, the conductance of Li-ECRAM related to frequency
can be stored itself. Therefore, our proposed oscillator has a
simpler structure than other reported oscillators owing to the
simple configuration and unnecessariness of DAC and additional
memory devices. Finally, our most uncomplicated hardware
system has comparable classification accuracy to other systems.
Therefore, our classification system with a simple configuration,
area, and energy-efficient oscillator promises for large-scale
hardware implementation.

CONCLUSION

In this study, we identified the effect of device parameters
of IMT oscillator with non-volatile analog memory device

as oscillation load on the performance of coupled oscillator
network. Non-linear conductance response of analog memory
to identical pulses causes a divergence of conductance update
in training iteration. Thus, the linear conductance response of
analog memory to programming pulses was essential for the
accurate training of natural frequencies. Furthermore, a narrow
classifiable region of the synchronization map proportional to the
synchronization window cannot cover injected input with large
variation, reducing classification accuracy. Large Vhold inducing
a large oscillation amplitude is required to widen the classifiable
region. As a result of the investigation, Li-ECRAM as oscillation
load is the potential for high network performance owing
to linear conductance modulation characteristics. Finally, we
evaluated the oscillatory network for spoken vowel classification
with an NbO2-based IMT device and Li-ECRAM, achieving high
classification accuracy (85%).
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