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Brain2Pix: Fully convolutional
naturalistic video frame
reconstruction from brain
activity

Lynn Le1*†, Luca Ambrogioni1†, Katja Seeliger2,
Yağmur Güçlütürk1, Marcel van Gerven1 and Umut Güçlü1

1Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands,
2Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Reconstructing complex and dynamic visual perception from brain activity

remains a major challenge in machine learning applications to neuroscience.

Here, we present a new method for reconstructing naturalistic images and

videos from very large single-participant functional magnetic resonance

imaging data that leverages the recent success of image-to-image

transformation networks. This is achieved by exploiting spatial information

obtained from retinotopicmappings across the visual system.More specifically,

we first determine what position each voxel in a particular region of interest

would represent in the visual field based on its corresponding receptive

field location. Then, the 2D image representation of the brain activity on the

visual field is passed to a fully convolutional image-to-image network trained

to recover the original stimuli using VGG feature loss with an adversarial

regularizer. In our experiments, we show that our method o�ers a significant

improvement over existing video reconstruction techniques.

KEYWORDS
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1. Introduction

A long-lasting interest of sensory neuroscience is understanding how sensory

information is represented in neural activity patterns. Decoding visual stimuli from

neural activity using deep learning is a promising approach for bringing us closer to

such understanding. Recent advances allow the successful decoding of static images

from brain data (Thirion et al., 2006; Miyawaki et al., 2008; Naselaris et al., 2009; van

Gerven et al., 2010; Kok et al., 2012; Horikawa et al., 2013; Güçlütürk et al., 2017;

Seeliger et al., 2018; Dado et al., 2020). Reconstructing natural movies is significantly

more challenging (Nishimoto et al., 2011) yet important given that neurons respond

to signals that unfold over both space and time (Nishimoto and Gallant, 2011). The

difficulty with reconstructing natural movies is in large part due to the limited temporal

information provided by imagingmethods such as fMRI as well as the complex dynamics

of the natural world that the model must learn.
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Convolutional image-to-image models have recently

achieved unprecedented results in multiple tasks such as

semantic segmentation (Long et al., 2015; Noh et al., 2015;

Ronneberger et al., 2015; Li et al., 2017; Zhang et al., 2018a),

style transfer (Güçlütürk et al., 2016; Selim et al., 2016; Isola

et al., 2017; Zhu et al., 2017), colorization (Iizuka et al.,

2016; Zhang et al., 2016, 2017), and super-resolution (Dong

et al., 2016; Kim et al., 2016; Zhang et al., 2018b). Convolutional

image-to-image networks have the great advantage of preserving

the topography of input images throughout all the layers of the

network. Consequently, the network does not need to learn a

remapping between locations and can focus on processing local

features. The reconstruction of perceived natural images from

brain responses can be considered as a form of image-to-image

problem since the visual cortex processes information in a

topographically organized manner (Henschen, 1893; Inouye,

1909; Holmes and Lister, 1916) such that the topology of

the input images is preserved within each visual area. The

retinotopic mapping of visual neurons defines relationships

between the visual field and its cortical representation in

individual subjects and has uncovered many important

aspects of the visual cortex across different species (Hubel

and Wiesel, 1962; Dumoulin and Wandell, 2008). However,

it is not straightforward to exploit this in an image-to-image

ConvNet architecture. The cortex itself can be roughly seen

as a pair of topological spheres embedded in a 3D space.

Several separate visual representations are embedded in this

cortical space, corresponding to several visual areas (e.g., V1,

V2, V3). These representations are furthermore distorted by

the geometry of the cortex and by the uneven sampling of

different parts of the visual field. Therefore, there is no natural

way of constructing a convolutional architecture that exploits

the image-to-image nature of the problem by preserving the

topography between voxel responses and pixel brightness and

color.

In this paper, we exploit the receptive field mapping of

visual areas to convert voxel responses defined in the brain to

activations in pixel-space. Early visual areas V1, V2, and V3 were

identified using retinotopy. The voxel activations of each area

are then converted to images via the mapping of the receptive

fields. Importantly, these images (visual representations) do

have a pixel-to-pixel correspondence with the images used as

stimuli. We then transform these visual representations into

realistic images using an image-to-image U-network trained

using a combination of pixelwise, feature, and adversarial

losses.

2. Related work

Recent work on image reconstruction from fMRI data has

demonstrated the success of employing deep neural networks

(DNNs) and generative adversarial networks (GANs) in neural

decoding (Nishimoto et al., 2011; Güçlütürk et al., 2017;

Horikawa and Kamitani, 2017b; Wen et al., 2017; Seeliger et al.,

2018; Han et al., 2019; Shen et al., 2019a,b). For instance, Seeliger

et al. (2018) used a GAN to reconstruct grayscale natural

images as well as simpler handwritten characters. Another

approach was voxel-wise modeling by Nishimoto et al. (2011),

where they modeled responses to complex natural stimuli to

estimate the semantic selectivity of voxels. More recently, Shen

et al. (2019a) showed that even with a limited set of

data—in the order of thousands compared to millions that

the reconstruction field is accustomed to—it was possible

to train an end-to-end model for natural image stimulus

reconstruction by training a GAN with an additional high-

level feature loss. Their reconstructions matched several high-

level and low-level features of the presented stimuli. However,

a comparable performance has not yet been achieved for

naturalistic video stimuli. The most recent notable video

reconstruction study by Han et al. (2019) made use of a

variational auto-encoder and was able to reconstruct low-level

properties of the images, where the reconstructions resembled

shadows or silhouettes of the stimulus images. Reconstruction

of perceived videos can thus be considered a very challenging

problem.

The simplest way to apply convolutional neural networks

(ConvNets) on fMRI voxel responses is to treat fMRI slices

as separate images stacked on the channel dimension (Sarraf

and Tofighi, 2016). However, these images do not respect

the topography of neural representations and contain a

large fraction of non-responsive voxels corresponding to

white matter and cerebrospinal fluid. This results in most

of the contrast of the images depending on irrelevant

anatomical factors. Another possibility is to use spatial

3D convolutions on the brain volume (Bäckström et al.,

2018). This method has the benefit of preserving the

topography of the neural responses but otherwise has the same

issues as the 2D approach. These shortcomings make such

methods unsuitable for brain decoding and reconstruction.

A more viable strategy is to map the voxel responses on

a mesh representing the cortical surface (Fischl, 2012) and

apply a geometric deep learning technique (Monti et al.,

2017; Cohen et al., 2018; Fey et al., 2018; Kondor et al.,

2018).

3. Materials and methods

Our brain2pix architecture has two components:

(1) a receptive field mapping that transforms the brain

activity of visual regions to a tensor in pixel (input)

space; (2) a pix2pix network that converts the brain

responses in pixel space to realistically looking natural

images. In the following, we describe the two components

in detail.

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.940972
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Le et al. 10.3389/fnins.2022.940972

3.1. From voxels to pixels

A receptive field mapping is a (potentially many-to-one)

function that maps the 3D coordinate of the voxels of a

visual area to Cartesian coordinates in the stimulus space. This

coordinate is defined as the region of the image that elicits the

highest response in the voxel. Given a visual ROI (region of

interest), we can refer to these mappings using the following

notation:

RF(r1, r2, r3) = (x, y) , (1)

where (r1, r2, r3) are the voxel coordinates and (x, y) are

Cartesian coordinates in stimulus/pixel space in the image space.

Since visual areas are topographically organized, this map can

be seen as an approximate homeomorphism (i.e., a function

that preserves the topology). Note that RF does not respect the

metric structure of the image since the representation of the

fovea is inflated while the periphery is contracted. We denote

the function associating a measured neural activation (BOLD

response) to each voxel as n(r1, r2, r3). Using the receptive field

mapping, we can transport this activation map to pixel space as

follows:

n(x′, y′) =
1

M(x′, y′)

∑

r1,r2,r3;RF(r1,r2,r3)=(x′,y′)

n(r1, r2, r3) , (2)

where M(x′, y′) is the number of voxels that map to the

coordinates (x′, y′). Equation (1) is limited to the case of point-

like receptive fields. More generally, the RF transport map can

be written as a linear operator:

n(x′, y′) =
∑

r1,r2,r3

W
x′,y′

r1,r2,r3n(r1, r2, r3) , (3)

where the weight tensor W is a (pseudo-)inverse of the linear

response function of the cortex under single pixel simulations.

This second formulation has the benefit of allowing each voxel

to contribute to multiple pixels and to be suitable to gradient

descent training.

In this paper, we use two strategies for determining W.

The first approach, is to apply an off-the-shelf receptive field

estimator and to use Equation (1). The second, more machine

learning oriented approach, is to learn a weight matrix together

with the network. In order to preserve the topographical

organization, we include the learnable part as a perturbation of

the receptive field estimation:

n(x′, y′) =
∑

r1,r2,r3





δ
(x′,y′)
RF(r1,r2,r3)

M(x′, y′)
· V

x′,y′

r1,r2,r3



 n(r1, r2, r3) , (4)

where δ
y
x is the discrete delta function which represents a

boolean mask to determine whether at each coordinate there is

a response or not. If there is a response, it is 1 and if there is

no response it becomes a 0. The weights V
x′,y′

r1,r2,r3 are learnable

parameters.

3.2. Image-to-image network

The input to the pix2pix network is a tensor obtained

by stacking the voxel activation maps, one map for each

combination of ROI and time lag. In fact, the network needs to

integrate the topographically organized information contained

in several layers of the visual hierarchy (V1, V2, and V3 in our

case) but also the responses at different time lags (the network

selects from the five provided inputs).

3.2.1. Architecture
The Pix2Pix architecture (Isola et al., 2017) comprises

a convolutional U-Net-based generator (Ronneberger et al.,

2015) and a convolutional PatchGAN-based discriminator. The

first and the last layers of the generator are, respectively,

convolutional and deconvolutional with four standard U-net

skip blocks in-between. All five layers of the discriminator

are convolutional with batch normalization and a leaky ReLU

activation function. Together with an L1 loss, this model

translates images to images. Our Brain2Pix model is inspired

by this concept and also makes use of a discriminator and

generator (which we call the adversarial loss). We combine

the adversarial loss with an L1 loss and a feature loss, to

translate brain signals mapped onto 2D space (RFSimages)

to reconstructions. Our feature is implemented by extracting

features of the targets and the generator’s output from a pre-

trained VGG loss. The differences between these features are

summed with the adversarial loss and L1 loss to update the

parameters of the generator (Figure 1).

The discriminator was trained to distinguish stimuli from

their reconstructions by iteratively minimizing a loss function

with a sole adversarial loss [binary cross-entropy (BCE)] and

using a history buffer to encourage the discriminator to

remember past errors. The history buffer has two functionalities;

to save reconstructions from the generator and to be sampled

from. Before any forward passes, an empty history buffer is

made with a capacity set to 50 reconstructions. As the batches

are passed through the network for training, the buffer is filled

with up to 50 reconstructions from the generator. Once the

capacity of the history buffer has been reached, there is 50%

that the reconstructions going into the discriminator is swapped

with a randomly selected reconstruction from the history buffer

during training. This way, there is always a chance that the

discriminator makes use of a reconstruction from the past to

learn, rather than only using the output of the most up-to-date

generator.

The generator was trained for converting brain responses

to stimulus reconstructions by iteratively minimizing a loss
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FIGURE 1

Illustration of the brain2pix model. (A) First, the voxels of each region of interest (ROI) voxels are extracted. The voxel receptive fields are then

projected onto the input (visual) space. Using this mapping, the 2D receptive field signal images (RFSimages) are created, which reflect voxel

activity at the locations of their receptive fields in the visual space. To account for the hemodynamic delay, these activities are taken with a fixed

delay of 5 TR (i.e., the activities are taken from the volume recorded approximately 4 s after stimulus presentation). The input to the generator

are the RFSimages, and the outputs are the reconstruction (end-to-end modeling). The loss is estimated between the target (original) image and

this reconstruction as a feature loss (VGG loss). The reconstruction is also passed through the discriminator, concatenated with the RFSimages.

The loss for training the discriminator is obtained by summing its output based on the reconstructed image and the target image (concatenated

with the RFSimages), using a binary cross entropy (BCE) loss. The BCE loss estimated on the discriminator’s output is summed with the VGG

loss, and this sum of losses is then used to backpropagate and update the parameters of the generator. (B) Example reconstruction on the test

set. The end-to-end model reconstructs static video frames, using the brain signal of the participant watching Doctor Who in the fMRI scanner

as the input.

function with three weighted components: (i) pixel-loss, which

was taken to be the absolute difference between ground-truths

and predictions, (ii) feature loss, which was taken to be the

Euclidean distance between pre-trained layer 10 VGG features of

ground-truths and predictions, and (iii) adversarial loss, which

was taken to be the “inverse” of the adversarial loss that was

used to train the discriminator. The implementation of the loss

is visualized in Figure 1.

3.2.2. Training configurations
Each loss component has a weight, which determines how

much of an affect each loss would have on the final results. Both

the adversarial loss and the L1 loss had a weight of 1, the feature

loss had a weight of 100. Optimization was done with the Adam

optimizer with a beta1 of 0.5 and a learning rate of 0.0002.

All models were implemented in Python with the MXNet

framework (Chen et al., 2015). They were trained and tested on

Nvidia GeForce 2080 Ti GPUs.

3.2.3. Receptive field estimation
Receptive fields for dorsal and ventral visual regions V1,

V2, and V3 were estimated in a data-driven way using neural

information flow (Seeliger et al., 2021). Grayscale video sections

were passed through three 3D convolutional neural network

layers corresponding to the visual ROIs. Before the ROI-specific

layers a linear layer with a single 1 × 3 × 3 channel was used

to allow learning retinal and LGN preprocessing steps. Average

pooling was applied after each layer to account for increasing

receptive field sizes, the temporal dimension was average

pooled to a TR of 700 ms before applying the observation

models, and spatio-temporal receptive fields were constrained

to be positive. For training this neural network, a low-rank

tensor decomposition was applied to estimate voxel-wise spatial,

temporal, and channel observation (readout) vectors, which

were used to predict voxel-wise activity from the neural network

activity tensors. The receptive field location (x, y) for every voxel

was then estimated as its center of mass of the low-rank receptive

field maps.

3.3. Data acquisition

We made use of a public large fMRI dataset from single-

participant responses to naturalistic video stimuli (Seeliger et al.,

2019). The exact experiments are described in detail in the

original study (Seeliger et al., 2019). In short, the participant

fixated on the center of the screen and watched 30 episodes of

BBC’s Doctor Who while their BOLD activity was measured.

The videos were presented in multiple sessions, using a head
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cast for positional stability and consistency. The recording

comprised presenting 30 full episodes once (forming the training

set, here used for model estimation), and seven short clips—

teasers and short stories, with a Doctor played by a different

actor to avoid train-test overlap—repeatedly shown at the end

of most sessions (forming the test set). The 22–26 repetitions

of the test set were averaged and used for evaluation of the

brain2pix model. The averaged test set is common in neural

coding and most reconstruction research to provide a version

of the individual’s BOLD response patterns with high signal-

to-noise ratio, freed of the substantial noise contained in fMRI

data. To assess the implications of reconstruction research it

is important to understand that the presented reconstructions

have so far usually been estimated on data from specific

individuals averaged over multiple presentations in highly

controlled settings.

Data collection was approved by the local ethical review

board (CMO regio Arnhem-Nijmegen, The Netherlands, CMO

code 2014-288 with amendment NL45659.091.14) and was

carried out in accordance with the approved guidelines. For

every session written formal consent was obtained from the

participant.

3.4. Data preprocessing

Prior to using the inputs for training the model, 3D brain

matrices were transformed to 2D receptive field signal images

(RFSimages) in two main steps. First, regions of interests (ROIs)

were selected from the brain (V1, V2, V3), based on their

corresponding masks. Second, voxels in each brain region were

mapped onto their corresponding visual space based on the

retinotopic map. More specifically, the brain signals are shifted

and stacked with 5 TRs per corresponding stimuli. This resulted

in an array of (f, TR, s, 1, 1) dimensions per brain region. With

f being the amount of frames in the dataset, TR being the brain

signals of five consecutive time-points, s being the amount of

voxels in that particular ROI, and the remaining dimensions are

left empty to later multiply with a 96 by 96 RF map to form the

2D RFSimages.

The videos were downsampled spatially (96 × 96 × 3) and

temporally to match the TRs of the fMRI recordings (one frame

every 0.7 s).We did this by using the ffmpeg software by running

ffmpeg -i original-video.webm

-an -vf "scale=96:96,fps=1.42857142857"

-y output-video.webm

for every run in the training and testing dataset. Then all the

webm files are converted to numpy arrays using the openCV

library and concatenated to become a file per run.

This resulted in a total of approximately 119.000 video

frames for training and 1,034 video frames for model evaluation.

To incorporate the hemodynamic delay we realigned the stimuli

and brain signals such that the current signals correspond to

the stimuli that were presented at 5 TRs before, allowing a time

window of 2.1–4.2 s delay from stimulus presentation (since

we are incorporating 5 TRs). Finally, each frame underwent

a fish-eye transformation, which mimics biological retinal

eccentricity (Bashivan et al., 2019). The receptive field centers we

used for mapping brain signals onto the visual space were based

on images that underwent this transformation.

3.5. Experimental design

We compared our final model with alternative

reconstruction models. This included a baseline comparison

where brain2pix was compared with previously suggested

models. We wanted to focus on early visual areas, so we trained

our model on V1, V2, and V3 individually (which we called the

ROI experiment) using the retinotopic maps provided by the

paper that provided the dataset (Seeliger et al., 2019). Finally, we

tested whether our model was robust to various ablations.

We compared our brain2pix results with baseline models

based on state-of-the-art reconstruction models. The first

baseline is similar to the method introduced by Nishimoto

et al., which used a set of naturalistic videos as an empirical

prior (Naselaris et al., 2009; Nishimoto et al., 2011). In our

experiment, we used a smaller but more targeted natural image

prior constructed from the training set. We trained an encoding

model, consisting of a dense layer, that predicts BOLD activity

from C3D features extracted from training samples, which we

used as the likelihood. We do so by first extracting c3d features

are from every image in the training set (1). Then, the c3d

features are used as input to train an encoding model, with its

corresponding voxel as output (Feature pred voxels) (2). Once

the encoder is trained, a forward pass is performed using all

the stimuli from the training dataset (Train stimulus) and the

predicted voxels are saved (Train pred voxels) (3). Finally, a

correlation matrix is made between the voxels from the testing

dataset (Test real voxels) and the Train pred voxels (4). Then, we

constructed the images by averaging the 10 clips with the highest

likelihood. The steps are shown in Figure 2.

The second baseline model we trained with an adversarial

loss and a feature loss, which is based on the end-to-end

reconstruction model from Shen et al. (2019a). We used the

generator and discriminator modules present in brain2pix,

however, we did not construct RFSimages for the input of the

model. Instead, this baseline model takes as input the fMRI

voxels that are z-scored and temporally aligned with the stimuli

(same pre-processing steps as the original brain2pix), and the

first layer is a linear layer as it does not take in voxels that are

mapped onto 2D space.

The same four evaluation metrics were used in all

experiments, namely Pearson’s product-moment correlation

coefficient (corr.) and Euclidean distance (dist.) between the

features of the presented test stimuli and their reconstructions.
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FIGURE 2

Baseline 1 method. Steps that were taken to implement the Nishimoto-like model as baseline 1 are illustrated here. Steps are described in full

details in section 3.5.

Features were extracted from the pool2, pool5, and fc6 layers

of the AlexNet model (Krizhevsky et al., 2012) and the C3D

model (Tran et al., 2015). The Alexnet model was pre-trained

on ImageNet (Russakovsky et al., 2015) and the C3D model was

pre-trained on Kinetics-400 (Kay et al., 2017).

The novelty of the current work is the application of existing

image-to-image transformation models such as the pix2pix

model in neural decoding via the use of RFSimages. As such,

this is the core difference between our work and the baseline

methods. That is, this makes it possible for our method to

exploit the underlying topographical structure in both stimuli

and brain responses. Additional details of the experiments,

additional results, and a link to the source code are provided in

the Supplementary materials.

3.6. Performed experiments

This paper consists of seven experiments: (1) The brain2pix

architecture trained on synthetic data with fixed receptive field

locations, (2) training brain2pix using real fMRI data with a fixed

receptive field for reconstruction, which we termed FixedRF, (3)

training brain2pix on real data with learnable receptive fields

for reconstruction, which we termed LearnedRF, (4) training

traditional models for comparison with the brain2pix model

(baseline experiment), (5) training brain2pix on fMRI data

from various brain regions with fixedRF (ROI experiment), (6)

removing essential components from the brain2pix architecture

with fixedRF (ablation experiment), and (7) experimenting with

various sizes of training data with a fixedRF.

Quantitative analysis comprised correlation values and

distance values. These metrics were calculated by first passing

each ground-truth and reconstructed frame through the

pre-trained networks, Alexnet and C3D, to obtain the stimulus

features and reconstruction features. Then the Pearson

correlation coefficient and Euclidean distance were calculated

between the ground-truth features and reconstruction features

per frame. They were then averaged over all the frames in the

test set.

Student’s t-test was used to test if the mean reconstruction

performance of the Brain2Pix model over the test set (n = 1,034)

was significantly above chance level performance for each of the

12 evaluation metric combinations.

Binomial test was used to test if the overall reconstruction

performance of the Brain2Pix model was significantly higher

than a baseline model by taking every time any test set

reconstruction metric (n = 1,034 × 12) of Brain2Pix model was

higher than the baseline model as a “success” in the binomial

distribution.

The code of implementation can be found in the

Supplementary material in the GitHub repository 1.

1 https://github.com/neuralcodinglab/brain2pix
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FIGURE 3

Sequential of reconstructed frames. Consecutive frame sequence from a video fragment of the test data [ground truth (GT)] and the

corresponding reconstructions (Recon.).
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FIGURE 4

Baseline experiment. Comparison between the reconstructions of the brain2pix and the baseline models. The reconstructions of brain2pix are

shown in columns 2 and 4, with their corresponding ground truth (GT) in the middle column 3, and inputs in columns 1 and 5. The

reconstruction of the baseline models are shown in columns 6 and 8 together with their corresponding GT in the middle column 7.
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4. Results

4.1. Brain2Pix on synthetic data

Before experimenting on real data, we used synthetic data to

test feasibility and tune hyperparameters of brain2pix. Instead

of mapping BOLD responses for each ROI and voxel onto the

pixel space, we mapped target stimuli onto pixel space using the

same exact method. This filtering of target images with the RF

centers gave us the same amount of input pixels for the model,

all at the same location. However, their activations were not

based on actual brain signals, but rather on the pixels of the

target images, which resulted in the same number of pixels as the

number of voxels provided by the three brain regions used. We

got clear reconstruction images from this, which confirmed that

the number of RF pixels provided by V1 + V2 + V3 ROIs could

theoretically carry enough spatial information for the model to

generate realistic and accurate results.

4.2. Brain2Pix variants

The brain2pix variants described in detail below differed

in how they transformed brain responses from volumetric

representation to image representation.

4.2.1. FixedRF: Providing the model with
mapped out brain signals

The protocol for our main model is to use the (fixed)

receptive field estimates. Once the brain signals were mapped

onto visual space and the model was assembled, we ran it

to obtain reconstructions (see Figures 3, 4 under Brain2pix >

FixedRF). The results show individual frames from a snippet

of the fMRI test set. The figure contains a selection of frames

from the test set and their corresponding reconstructions. This

figure shows that the model successfully reconstructed frames

that contained head shapes, silhouettes, facial expressions, and

also objects (such as a white blanket in frames 289–292). The

figure also depicts a smooth transitioning between frames, which

allows better reconstruction of video clips. Tables 1, 2 contain

the quantitative results of the model under “B2P-FixedRF.” This

model achieves the highest performance in terms of correlation

for most of the studied feature layers. However, for the distance

values, it shows the best results for only one layer.

4.2.2. LearnedRF: Layers that output 2D acting
as RFSimages

The second variant (referred to as LearnedRF) used a dense

layer to perturb the image representation in the FixedRF variant

as a function of the volumetric representation in order to

improve it even further. Reconstructions of this model are

shown in Figure 4 under Brain2pix > LearnedRF. We found

that the LearnedRF variant has the highest performance in terms

of correlation for the Alexnet pool2 and Alexnet fc6 layers (see

Tables 1, 2).

The differences in the quantitative and qualitative results

between LearnedRF and FixedRF were not large, suggesting that

both the RFmodels capture the correct topographical structures.

Both brain2pix variants contain significantly above chance

level performance (p < 0.05; Student’s t-test) and significantly

outperformed both baselines that are described in the following

sections (p < 0.05; binomial test) (Figure 4). By design, fc6 of

Alexnet is very invariant and almost not retinotopic so learnable

RF is likely introducing unnecessary complexity, which could be

leading to overfitting in this one instance.

4.3. Baselines

4.3.1. Baseline 1: Nishimoto-like model
The reconstructions (Rec.) resulting from this method are

shown in Figure 4 in the columns under the header “Baselines

> Baseline 1 > Rec.”. Unlike our method, this method

did not make use of retinotopic information, and could be

overfitted to the training image distribution. This resulted

in difficulty of the model in reconstructing things that are

not present in the training set, such as the Ood character.

Additionally, some reconstructions do not come close to the

target perceptually, such as the 10th row in Figure 4 where a

computer is reconstructed although it is supposed to be a person.

Quantitative results are shown in Tables 1, 2, which indicates

all lower correlation values and mainly higher distances (except

for C3D pool5 and C3D fc6) compared to our model. The

correlations (performance estimation) are generally lower than

Baseline 2, but higher than a model with only FC-layers,

explained in the next subsection.

4.3.2. Baseline 2: Shen-like model
The second baseline model we trained with an adversarial

loss and a feature loss, which is based on the end-to-end

reconstruction model from Shen et al. (2019a). We used the

generator and discriminator modules present in brain2pix,

however, we did not construct RFSimages for the input of the

model. Instead, this baseline model takes as input the fMRI

voxels that are z-scored and temporally aligned with the stimuli

(same pre-processing steps as the original brain2pix), and the

first layer is a linear layer as it does does not take in voxels that

are mapped onto 2D space.

Reconstructions of this method is shown in Figure 4 below

“Baselines > Baseline 2 > Rec.”. Although we trained both the

models with the same amount of epochs and the same amount

of data, quantitative and qualitative results show that our model

outperforms the Shen et. al. baseline model (see Tables 1, 2).
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TABLE 1 Baseline experiment correlation values.

B2P-learnRF B2P-fixedRF Baseline 1 Baseline 2 Baseline 3

AlexNet pool2 0.4573 0.4615 0.2526 0.4141 0.0479

AlexNet pool5 0.3555 0.3507 0.2318 0.3269 -0.0394

AlexNet fc6 0.4653 0.4608 0.2016 0.4196 -0.0214

C3D pool2 0.4831 0.4869 0.3662 0.4212 0.1284

C3D pool5 0.2356 0.2426 0.0489 0.2030 0.0427

C3D fc6 0.2426 0.2519 0.0412 0.2185 0.0434

Correlation values between the features of the reconstructions of the baseline experiment and features of the target taken from various layers obtained from passing target/reconstructions

through a pre-trained network (Alexnet and C3D). Here, comparisons are done for the brain2pix models and baseline models. Bold values indicate the highest correlation values.

TABLE 2 Baseline experiment distance values.

B2P-learnRF B2P-fixedRF Baseline 1 Baseline 2 Baseline 3

AlexNet pool2 4.6089 4.6252 5.5266 5.3511 56.8820

AlexNet pool5 1.2425 1.2692 1.2432 1.2532 3.3593

AlexNet fc6 1.4062 0.0899 1.7322 1.4861 5.5175

C3D pool2 1.3842 1.3983 1.4238 1.8132 31.6262

C3D pool5 3.4850 3.4626 2.6601 3.8881 9.6941

C3D fc6 0.9269 0.9332 0.8655 1.1847 4.8835

Distances between reconstruction and target features of various layers obtained from passing reconstructions/targets through a pre-trained network (Alexnet and C3D). Here, comparisons

are done for the brain2pix models and baseline models. Bold values indicate the lowest distance values.

For instance, some static black and white noise is present in the

reconstructions of row 2, 4, 6. Additionally, the Ood character

is not recognizable. This model appeared to perform better than

the Baseline 1 on the DoctorWho dataset. Our analyses indicates

that our method outperforms both baselines.

4.3.3. Baseline 3: Fully connected layers
We added another baseline where we replaced all of the

convolutional layers of brain2pix with fully connected layers.

The output of this model appear to be random noise and did

not suggest that it would be capable of reconstructing images.

Samples of the reconstructions of this baseline were not included

since since they look like random noise and therefore were not

informative.

4.4. ROI experiments: V1, V2, V3, V1–3

In order to isolate the role of the regions of interest, we

performed a series of follow up experiments where only data

from one ROI was provided to the network. We used a fixed

receptive field matrix (Equation 1). All the experimental details

are identical to the main experiment. Figure 5 shows the ROI-

specific reconstructions. Reconstructions based on V1 tend to

have sharper pixelwise correspondence, whereas some high-level

features, such as global illumination, were not captured very

well. The combined brain2pix model with all ROIs (V1–V3) on

the other hand was able to capture the color profile of the scenes

very well. These two models generated images that captured

further readily interpretable high-level information such as the

existence of a person in the scene and even the expressions on the

faces of individuals in the scenes. It is interesting to note that the

ROIs did not contain higher-level brain regions, such as lateral

occipital cortex that play a large role in object perception and

fusiform face area that specializes in face processing.

The quantitative results are given in Tables 3, 4. The

combined model performs substantially better than the

individual models with the V1 model having the worst

performance. V2 and V3 were similar to each other in

quantitative performance. The poor performance of the model

based on V1 can be due to two main reasons: Either (1)

the adversarial and feature losses have larger weights in the

training processes, biasing the model toward using higher-order

features for reconstructions, or (2) V1 being less informative

than downstream areas as far as the loss function is concerned.

4.5. Ablation experiments: Removal of
components from the model

The ablation studies were performed to test the impact of

VGG-loss and adversarial loss on the performance of the model

(see Tables 5, 6). “No adversarial” refers to the brain2pix without

a discriminator loss, using only the VGG-feature loss to optimize

the model. In this ablation case, the model did not learn to
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FIGURE 5

ROI experiment. Reconstructions from the brain2pix FixedRF method trained on various brain regions. Columns 1–3 show the inputs (in),

reconstructions (re), and ground truths (gt) of all combined regions (V1–V3), respectively. Columns 4–6 show these results for only V1, columns

7–9 for V2, and finally columns 10–12 are results belonging to t he model trained only on V3.

reconstruct images but rather outputted square patterns that

repeated across all images. The second model is the “no feature”

model, which was trained without the VGG-loss, thus only

making use of the adversarial loss. This resulted in images that

look like reconstructions but did not approximate the target.

4.6. Experiment with various data sizes

Finally, we wanted to see how the model performs when

less data is fed into the network. This was done by training

our model on a selected amount of Doctor Who frames

from the training set. The full training set, which was

worth ≈ 24 h of data was split into the following: 4
5 ≈

19 h, 3
5 ≈ 14 h, 2

5 ≈ 10 h, 1
5 ≈ 5 h which resulted

in training sizes of 95.200, 71.400, 37.600, and 23.800 frames

with 50 epochs for each condition. The reconstructions of

the splitted data is then compared with the full ∼ 24 h

worth of data (also trained on 50 epochs). The reconstructions

of this experiment are shown in Figure 6. Although the

highest amount of data shows the best reconstructions, we

still see notable reconstructions based on smaller amounts

of data, which suggests that it is not necessary to record

23 h worth of data to achieve reconstructions with the
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TABLE 3 ROI experiment correlation values.

V1–3 V1 V2 V3

AlexNet pool2 0.4615 0.2626 0.4247 0.4178

AlexNet pool5 0.3507 0.1920 0.3387 0.3294

AlexNet fc6 0.4608 0.2704 0.4453 0.4304

C3D pool2 0.4868 0.2640 0.4704 0.4685

C3D pool5 0.2426 0.1299 0.2224 0.2157

C3D fc6 0.2519 0.1349 0.2302 0.2228

Correlation between Alexnet and C3D features for the ROI experiment. V1, V2, V3 are

the individual regions of interests and V1–V3 are all three visual layers combined. Bold

values indicate the lowest/highest entries.

TABLE 4 ROI experiment distance values.

V1–3 V1 V2 V3

AlexNet pool2 4.6252 5.9592 4.8401 5.1095

AlexNet pool5 1.2691 1.6985 1.2673 1.2898

AlexNet fc6 0.0899 2.0553 1.4820 1.4877

C3D pool2 1.3983 1.8996 1.3949 1.4288

C3D pool5 3.4626 4.5135 3.5756 3.5542

C3D fc6 0.9332 1.1592 0.9873 0.9417

Distances between Alexnet and C3D features for the ROI experiment. V1, V2, V3 are the

individual regions of interests (ROIs) and V1–V3 are all three ROIs combined.

Bold values indicate the lowest/highest entries.

TABLE 5 Ablation experiment correlations values.

brain2pix No feature No adversarial

AlexNet pool2 0.4615 0.3950 0.1626

AlexNet pool5 0.3507 0.3168 0.1301

AlexNet fc6 0.4608 0.4273 0.1567

C3D pool2 0.4868 0.4396 0.16286

C3D pool5 0.2426 0.2123 0.0396

C3D fc6 0.2519 0.2255 0.0495

Correlation between Alexnet and C3D features of the test stimuli and their

reconstructions. The brain2pix is compared with two models with either no feature loss

or no adversarial loss. Bold values indicate the lowest/highest entries.

brain2pix model. The quantitative results can be found

in Tables 7, 8.

5. Discussion

In this paper, we introduced a new neural decoding method

for reconstructing video frames, which we call brain2pix,

exploiting the receptive fieldmapping of visual areas bymapping

brain activation to a linear pixel space where it is then processed

with a fully convolutional image-to-image network. To the

best of our knowledge, this is the first end-to-end approach

capable of generating semantically accurate reconstructions

TABLE 6 Ablation experiment distance values.

brain2pix No feature No adversarial

AlexNet pool2 4.6252 5.6450 13.1021

AlexNet pool5 1.2691 1.4201 1.5935

AlexNet fc6 0.0899 1.5991 2.1505

C3D pool2 1.3983 1.5988 7.5023

C3D pool5 3.4626 3.6445 5.6622

C3D fc6 0.9332 0.9657 2.7328

Distances between reconstruction and target features of various layers obtained from

passing through a pre-trained network (Alexnet and C3D). Here, comparisons are done

for the brain2pix models and ablation models.

Bold values indicate the lowest/highest entries.

from a naturalistic continuous video stream. Furthermore, our

approach was shown to outperform other baseline decoding

methods.

Since our method was applied on fMRI data, it also inherits

the modality specific limitations common to all methods for

visual decoding in fMRI.

First, the BOLD signal is an indirect measurement of

the population receptive field activity rather than a direct

single neuron measurement. As such, the stimulus-feature-

response mapping embodied by the model might have modality

dependent discrepancies compared to the true mapping defined

by the underlying neuronal activity.

Second, the relatively low signal-to-noise ratio of visual

stimulus driven BOLD signal dictates certain experimental

decisions that can be considered not ideal. As such, the fMRI

data in the test set were averaged over their 22–26 repetitions in

contrast to the single trial fMRI data in the training set, which

is a very common procedure in the neural coding literature

(Kay et al., 2008; Nishimoto et al., 2011; Güçlütürk et al., 2017;

Horikawa and Kamitani, 2017a; Dado et al., 2020). The rationale

behind this procedure is to be able to sample as much of the

stimulus space as possible in the training set for generalizability

and increase the signal-to-noise ratio as much as possible in the

test set for statistical power. Consequently, this allows the model

to cover a wider spectrum of the stimulus–response relationship

by learning the underlying features and still be evaluated with

sufficient statistical power on a subset thereof.

Similarly, the scarcity of certain stimulus features in the

training set typically causes a bottleneck in neural coding, which

prevents accurate estimation of stimulus response mappings.

For example, it has been previously shown in an encoding setting

that the accuracy of predicting voxel responses from DNN

features is positively correlated with the mean activity of those

DNN features across the training set (Güçlü and van Gerven,

2015). We can also observe manifestations of this phenomenon

in present work. For example, qualitative analysis shows that

ourmodel cannot accurately reconstruct certain objects like text.

The most likely explanation of this result is the lack of sufficient
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FIGURE 6

Time experiment. Reconstructions from the brain2pix fixedRF method trained on various amounts of fMRI data after 50 epochs of training.

Ground truth (GT), ∼24 h is the entire dataset, ∼19 h is 4
5
, ∼14 h is 3

5
, ∼10 h is 2

5
, ∼5 h is 1

5
of the dataset.

TABLE 7 Splitted data correlation values: the model was trained on data worth of 5, 10, 14, 19, and 24 h.

B2P (∼24 h B2P (∼19 h) B2P (∼14 h) B2P (∼10 h) B2P (∼5 h)

AlexNet pool2 0.4615 0.4388 0.4262 0.4132 0.4342

AlexNet pool5 0.3507 0.3289 0.3236 0.3195 0.3206

AlexNet fc6 0.4608 0.4399 0.4270 0.4339 0.4376

C3D pool2 0.4869 0.4797 0.4270 0.4558 0.4714

C3D pool5 0.2426 0.2037 0.1933 0.2061 0.2057

C3D fc6 0.2519 0.2171 0.2061 0.2325 0.2226

Bold values indicate the lowest/highest entries.

frames with text or text features in the training set which should

be expected considering the nature of the stimulus material.

Moreover, while our model performs better than baselines

in general, it too suffers from some failure modes that can be

qualitatively seen in the reconstructions. For example, ourmodel

tends to reconstruct some less frequent objects as faces, likely

because faces are one of the most frequent in the training set.

Finally, even though the stimulus material has big

differences from episode to episode, it still shares many

commonalities between training and test sets. A more stringent

evaluation strategy could be to have a test set sampled from a

completely different material.

One of the next challenges that we can try to tackle is

decoding at higher frame rates rather than using the same

number of frames as brain signals in order to reconstruct even

finer temporal details. Additionally, in our current experiments

we focused mainly on optimizing our model based on responses

from the early visual regions V1, V2, V3. A natural extension
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TABLE 8 Splitted data distance values: the model was trained on data worth of 5, 10, 14, 19, and 24 h.

B2P (∼24 h) B2P (∼19 h) B2P (∼14 h) B2P (∼10 h) B2P (∼5 h)

AlexNet pool2 4.6252 4.5781 4.6371 4.8827 4.4931

AlexNet pool5 1.2692 1.2459 1.2602 1.2399 1.2485

AlexNet fc6 0.0899 1.4191 1.5028 1.4302 1.4385

C3D pool2 1.3983 1.3372 1.3657 1.4069 1.3307

C3D pool5 3.4626 3.6748 3.6790 3.6987 3.6451

C3D fc6 0.9332 0.9942 1.0039 1.0900 1.0114

Bold values indicate the lowest/highest entries.

of the current work is to extend our focus to the higher

level areas in the temporal and parietal cortex. Since these

areas process coarse-grained semantic information, experiments

feeding their responses to deeper layers of the network could

reveal reconstructions driven by semantics. We can also apply

the model on imagery data.

Neural decoding studies are crucial for understanding

the functioning of the human brain, broadly benefiting

the field of neuroscience. Furthermore, neural decoding

algorithms make up a major component of brain-computer

interfaces (BCIs). Brain-computer interfaces enable disabled

people to perform tasks that they would not be able to

perform otherwise, by substituting their lost faculties. These

technologies can range from a communication interface for

a locked-in patient, to a neuroprosthetic limb, and more.

While the algorithms that we develop and study in this

paper are specialized to reconstruct visual stimuli from brain

responses, we foresee that the suggested principles can be

applied to different applications, with some adaptations. For

instance, we use a relatively slow signal (BOLD response),

which reflects the neural responses that take place several

seconds prior to them. A time-critical BCI system would

need to make use of a signal with no such delays to

perform well.

While admittedly the promise of algorithms that

reconstruct internally generated or externally induced

percepts is yet to be fully achieved, scientists that attempt

to extract information from the brain should ensure

the safety and privacy of the users (Ienca et al., 2018).

Future studies should make sure to follow similar strict

regulations, ensuring only a positive impact of these

fascinating methods that allow us to peek into the

human mind.
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