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Neuronal networks in dissociated culture combined with cell engineering

technology offer a pivotal platform to constructively explore the relationship

between structure and function in living neuronal networks. Here, we

fabricated defined neuronal networks possessing a modular architecture

on high-density microelectrode arrays (HD-MEAs), a state-of-the-art

electrophysiological tool for recording neural activity with high spatial and

temporal resolutions. We first established a surface coating protocol using a

cell-permissive hydrogel to stably attach a polydimethylsiloxane microfluidic

film on the HD-MEA. We then recorded the spontaneous neural activity of

the engineered neuronal network, which revealed an important portrait of

the engineered neuronal network–modular architecture enhances functional

complexity by reducing the excessive neural correlation between spatially

segregated modules. The results of this study highlight the impact of HD-

MEA recordings combined with cell engineering technologies as a novel tool

in neuroscience to constructively assess the structure-function relationships

in neuronal networks.

KEYWORDS

microfluidic devices, microelectrode array (MEA), complex networks, cultured
neuronal network, cell engineering

Introduction

Connectomics analyses provided anatomical information of the nervous system
of animals at resolutions ranging from individual cells to brain regions (Gao
et al., 2019). The studies have revealed several non-random properties such as the
modular architecture as a structure that is evolutionarily conserved in the nervous
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system (van den Heuvel et al., 2016) and provided mechanistic
insights into how network structure defines system functions
in both normal and pathological brains (Lynn and Bassett,
2019; van den Heuvel and Sporns, 2019; Suárez et al.,
2021). While many studies have deciphered the structure-
function relationships in the nervous system in vivo (Meunier
et al., 2010; Lee et al., 2016), recent advances in cell
engineering technology using micropatterned proteins and
microfluidic devices have enabled the use of cultured cells
to study these relationships in a well-defined in vitro system
(Feinerman et al., 2008; Lewandowska et al., 2015; Pan
et al., 2015; Albers and Offenhäusser, 2016; Yamamoto
et al., 2016b, 2018; Forró et al., 2018; Hong and Nam,
2020, 2022; Takemuro et al., 2020; Duru et al., 2022;
Ihle et al., 2022).

The two major technologies employed to record network
activities in cultured neurons are fluorescence calcium
imaging, which offers advantages in spatial resolution, and
microelectrode arrays (MEA), which offer advantages in
temporal resolution. Recently, high-density MEA (HD-MEA)
technology has been developed to mitigate the trade-off
problem between spatial and temporal resolutions (Berdondini
et al., 2009; Frey et al., 2010; Hierlemann et al., 2011; Bertotti
et al., 2014; Obien et al., 2015; Yuan et al., 2020; Steinmetz
et al., 2021). More precisely, recent HD-MEA devices offer
spatial resolutions of over 3,000 electrodes mm−2 with the
electrode pitch below 20 µm and a temporal resolution
below 100 µs (Bertotti et al., 2014; Lewandowska et al., 2015;
Kim et al., 2020; Yuan et al., 2020; Steinmetz et al., 2021;
Duru et al., 2022; Shimba et al., 2022). The electrode pitch is
comparable to the size of a neuronal cell body, and the temporal
resolution is higher than a typical delay of synaptic transmission
(∼0.6 ms) (Lisman et al., 2007). Thus, the combination of
the cell engineering and HD-MEA technologies provides a
new framework to assess structure-function relationships in
biological neuronal networks with unprecedented spatial and
temporal resolutions.

Here, we fabricated neuronal networks possessing a modular
architecture on HD-MEA using a polydimethylsiloxane (PDMS)
microfluidic film and recorded their spontaneous activity at a
resolution of 50 µs. Engineering neuronal networks of HD-
MEA has been challenging due to the surface topography
originating in the passivation layer and the underlying
electronics of the device (Frey et al., 2010; Hierlemann et al.,
2011), which inhibits stable sealing of microfluidic devices
(Duru et al., 2022). We resolved this issue by coating the HD-
MEA surface with a cell-permissive hydrogel which smoothened
the surface topography of the HD-MEA, enabling a gap-less
adhesion of the PDMS microfluidic film to the HD-MEA.
Recordings of neural activity at high temporal resolution
revealed that modular architecture suppresses excessive neural
correlation between spatially segregated modules and enhances
functional complexity of the network. Correlation coefficients
were used to assess the degree of synchrony between

two electrodes, while functional complexity was used to
quantify the degree of integration-segregation balance in each
network (Zamora-López et al., 2016). Furthermore, functional
modularity was calculated from correlation matrices to evaluate
the degree of modularization in a network. Finally, we
evaluated the spatiotemporal structure of the network dynamics
by analyzing the statistics of neuronal avalanches (Beggs
and Plenz, 2003; Plenz and Thiagarajan, 2007). Our results
highlight the impact of HD-MEA recordings combined with
cell engineering technologies as a tool to assess the structure-
function relationships in neuronal networks.

Materials and methods

Microelectrode array and hydrogel
coating

MaxOne HD-MEA chips (MaxWell Biosystems), bearing
26,400 electrodes with an interelectrode separation of 17.5 µm,
were used in this study. The HD-MEA chip, as received,
was first exposed to air plasma (Yamato PM100) for 60 s to
hydrophilize the electrode area. The chip was then sterilized
in 70% ethanol for 30 min and subsequently rinsed in sterile
deionized water three times.

The electrode area was then coated by a cell-permissive
hydrogel and poly-D-lysine (PDL). The hydrogel layer was
formed by drop casting 50 µl of collagen solution [1:1 mixture of
type-I collagen solution (5 mg ml−1, Koken AteloCell IAC-50)
and Neurobasal medium (Gibco 21103-049) supplemented with
2% B-27 (Gibco 17504-044) and 1% GlutaMAX-I (Gibco 35050-
061)] on the electrode area of approximately 2.1 × 3.9 mm2,
removing excessive volume of the solution with a micropipette,
and then inducing gelification of the remaining solution in an
CO2 incubator (37◦C) overnight and in a refrigerator (4◦C)
overnight. The sample was then dried in a clean bench overnight
to complete vitrification (Takezawa et al., 2004; Matsumura
et al., 2016). PDL solution [50 µg ml−1 PDL (Sigma P-0899)
in Dulbecco’s PBS] was then drop-casted onto the electrode
area coated with the hydrogel. After 1 h, the PDL solution
was aspirated, and the chip was rinsed in deionized water
three times. Finally, the chip was dried and stored at room
temperature until use. The surface topography of the HD-MEA
and the hydrogel layer was analyzed by confocal microscopy
(Keyence VK-X260).

Microfluidic device

PDMS microfluidic films for cell patterning were fabricated
as detailed previously (Takemuro et al., 2020). Briefly, the master
mold was fabricated by patterning two layers of SU-8, i.e., SU-8
3005 (3,000 rpm, 60 s; ∼5 µm) and SU-8 3050 (1,500 rpm,
60 s; ∼100 µm), via photolithography. The geometry of the
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microchannels was defined by the first layer, whereas the
geometry of the square through-holes was defined by the
second layer. The microfluidic film was then fabricated by
drop casting Sylgard 184 (Dow Corning; ratio, 7.5:1) onto the
master mold and thermally curing it at 70◦C for 2 h. Two
types of micropatterned neuronal networks were fabricated,
i.e., “random” and “modular” networks. The random network
comprised an isolated square through-holes of 400 × 400 µm2,
whereas the modular network comprised four square through-
holes of 200 × 200 µm2 connected neighbor to neighbor by
microchannels. The fabricated microfluidic device was gently
removed from the master mold using forceps and cut in a size of
approximately 3 × 4 mm2 using a sharp knife. The device was
then cleaned and sterilized by sonication in 100% ethanol, rinsed
in deionized water three times, dried in air, and further sterilized
under UV-light for 30 min. Finally, the device was placed on the
hydrogel-coated electrodes using forceps.

Cell culture

Primary cortical neurons were obtained from the cerebral
cortices of embryonic day 18 rats. First, the cerebral cortices
were collected from rat embryos and placed in a 60-mm dish
containing 4.5 ml of Hank’s balanced salt solution (HBSS; Gibco
14175-095) supplemented with 10 mM HEPES (Gibco 15030-
015) and 1% penicillin/streptomycin (Sigma P-4333). After
cutting the tissue into small pieces of approximately 1 mm3,
the tissue and HBSS were transferred to a 15-ml centrifuge
tube. The tube was then supplemented with 0.5 ml of 2.5%
trypsin (Gibco15090-046; final concentration, 0.25%) and 0.2 ml
of 10 mg/ml DNase (Roche 10104159001; final concentration,
0.4 mg/ml) and incubated at 37◦C for 15 min. After the
incubation, all excess solution was aspirated, and the tissue
was rinsed three times with fresh HBSS. The tissue was then
triturated with fire polished glass pipettes to disperse the cells.

Prior to culturing the rat cortical neurons, the well of the
HD-MEA chip was filled with the neuronal plating medium
[minimum essential medium (Gibco 11095-080) supplemented
with 5% fetal bovine serum (Gibco 12483) and 0.55% glucose
(Sigma G-8769)], and the chip was incubated in a CO2 incubator
(37◦C, 5% CO2) for at least 3 h. Cortical neurons were then
plated at a density of 5.3 × 104 cells/cm2. After 1 h, the
entire medium was replaced with the Neurobasal medium
supplemented with 2% B-27 and 1% GlutaMAX-I, and half
the medium was replaced with fresh Neurobasal medium
twice every week.

Data recording and analysis

Spontaneous neural activity was recorded using the MaxLab
Live software (MaxWell Biosystems) at a sampling frequency

of 20 kHz for 30 min. Electrodes used for recording were
selected by scanning the activity of each electrode located in
the through-holes and finding “active electrodes,” i.e., electrodes
with a firing rate over 0.02 Hz and a signal amplitude above
a threshold. Each chip contained eight independent networks,
and the average number of active electrodes per network was
85.9± 23.7 (n = 31 networks).

Action potentials were detected from high-pass filtered
(> 300 Hz) signal with a threshold of –5 × SD. As the objective
of the work was to elucidate the functional consequence
of the topological control in cultured neuronal networks,
spike sorting was not performed to separate spike trains of
single neurons. The recorded voltage traces and scatter plots
was grouped into modules using a custom MATLAB script.
Pairwise correlation between electrodes i–j, rij, was calculated

as rij =
Cov(ni,nj)
√

Var(ni)Var(nj)
, where i and j are electrode indices,

ni = ni(t) is the spike train of electrode i, and Cov and Var are the
covariance and variance over the entire time bins, respectively.
The bin width was set to 50 ms, and ni(t) was one if the
electrode detected more than one spikes in the t-th time bin,
and zero otherwise. Definition and calculation of other statistical
measures are described in the corresponding sections below.

From the correlation matrices, functional complexity C
(Zamora-López et al., 2016; Yamamoto et al., 2018) was
evaluated as:

C = 1−
1

Cm

m∑
µ = 1

∣∣∣∣pµ

(
rij
)
−

1
m

∣∣∣∣ (1)

where pµ (rij) is the probability of rij to be in the µ-th bin,
Cm = 2 (m− 1) /m is a normalization factor, and m = 20. For
the statistical analysis of the functional complexity, electrodes
with a mean firing rate below 0.5 Hz were excluded from the
analysis as non-active electrodes, and networks with more than
20 active electrodes were used.

The degree of modularization in the functional connectivity
of the networks was also quantified from the correlation
matrices by calculating modularity Q of the matrix
(Newman, 2006):

Q =
1

2E

N∑
i = 1

N∑
j = 1

(
Aij −

kikj

2E

)
δmimj (2)

where A = [Aij] is a binarized correlation matrix generated by
thresholding rij at 0.7, 2E =

∑
ij Aij is the total number of edges

(Aij = 1) in the matrix, ki =
∑

j Aij is the node degree of i, δmimj

is the Kronecker delta function which is equal to one if nodes i
and j belong to the same module (mi = mj) and zero otherwise.
A positive value of Q indicates the presence of modular structure
with a maximum of Q = 1. In contrast, Q = 0 if the matrix lacks
modular structure and is random.
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Neuronal avalanche statistics was computed on the local
field potential (LFP) signals that were detected simultaneously
with the spiking activity. More precisely, LFP was extracted by
down-sampling the recorded voltage traces to 1-ms resolutions
and band-pass filtering at 1-100 Hz, and a negative peak
deflection in the LFP (nLFP) was detected at each electrode
by thresholding the LFP signal at –3 × SD (Beggs and Plenz,
2003). The nLFP raster was then binned at 4 ms, and avalanches
were detected as a series of bins between two empty bins.
The avalanche size was then evaluated as number of nLFPs
in an avalanche, and the avalanche duration as the number of
consecutive bins with more than one nLFP multiplied by 4 ms.
Finally, the distribution of avalanche sizes and durations were
plotted as probability histograms in double logarithmic axes.

Statistical analysis

Data are presented as mean ± standard deviation (SD).
Student’s t-test and chi square test were used as described in the
respective sections. The significance level was set to p < 0.05.
The statistical analyses were performed on MATLAB R2020a or
Microsoft Excel.

Results

Hydrogel coating of HD-MEA

A confocal micrograph of the HD-MEA and its surface
profile is shown in Figure 1A. The depth of the surface groove
was approximately 1.5 µm, greater than the diameter of axons
and dendrites (Bartlett and Banker, 1984). We, thus, coated the
HD-MEA surface with a collagen hydrogel layer with a thickness
of 0.44 ± 0.32 µm in its dried state (mean ± SD; n = 16
measurements from 8 samples in 3 preparations; Figure 1B).
With the reported swelling ratio of approximately five (Kim
and Kim, 2016), the hydrogel layer was sufficient to coat the
surface topography of the HD-MEA. Primary neurons cultured
on the HD-MEA with a PDMS microfluidic film placed on
top are shown in Figure 1C. Without the hydrogel layer, non-
specific growth of neurites was observed due to the space that
remained at the base of the PDMS microfluidic film. Surface
treatment with the hydrogel suppressed the non-specific neurite
outgrowth, and the fraction of compliant networks, i.e., patterns
without non-specific neurite growth, increased from 0.25 (n = 8
networks) to 0.67 (n = 32 networks; Figure 1D).

Insertion of the hydrogel layer increases the cell-electrode
distance. We, therefore, assessed how much the hydrogel
coating degrades the signal amplitude of the extracellular action
potentials. Representative waveforms of extracellular action
potentials recorded without and with the hydrogel layer are
shown in Figures 2A, B, respectively. Presence of the hydrogel

layer decreased the median signal amplitude by 29%, from
23.2 to 16.5 µV (Figure 2C). The signal amplitude, however,
remained well above the noise level (<5 µVrms) of the current
MEA setup, securing the use of hydrogel coating as a novel
approach to interface PDMS microfluidic device and HD-MEA.

Although the cell-electrode configuration in the current
experiment seemingly contradicts with the classic point-
contact model of extracellular recordings, non-contact
recordings of extracellular action potentials have previously
been demonstrated in cardiomyocytes (Sharf et al., 2019), and
their mechanism can be described by the volume conductor
theory (Obien et al., 2015). Briefly, if we model a neuron as a
two-dimensional disk in which current sources with current
density j0 are uniformly distributed, the electric potential φ at
some point P on the axis of symmetry perpendicular to the disk
is given by:

φ =
j0
2σ

(√
h2 + R2

0 − h
)

(3)

where h (> 0) is the distance between the center of the disk to
point P, R0 is the radius of the disk, and σ is the conductivity
of the environment (Nunez and Srinivasan, 2009; Purcell and
Morin, 2013; Sharf et al., 2019). If we write the electric potential
at h = 0 as φ0, the relative magnitude of the potential at distance
h is given by:

φ/φ0 =

√
h2 + R2

0 − h

R0
(4)

Dependence of φ/φ0 on h is plotted in Figure 2D for
various R0. Although electric potential rapidly decreases with
increasing distance for small current sources, the dependence
of the magnitude on distance becomes weaker with increasing
size of the current source. If we assume that the thickness of
the hydrogel layer is equal to the neuron-electrode distance
and solve for R0 that gives –29% decrease in signal amplitude
(φ/φ0 = 0.71) at h = 2.2 µm (=0.44 × 5), we obtain
R0 = 6.3 µm, which is consistent with the typical size of a
neuronal cell body. Therefore, while it is inevitable that the
insertion of the hydrogel layer decreases the signal amplitude,
the extracellular recording of action potentials from cells
separated by a few µm is physically reasonable.

Spontaneous activity in engineered
neuronal networks

Figure 3 summarizes representative recordings of
spontaneous neural activity from two types of micropatterned
neuronal networks, i.e., a “random” network and a “modular”
network. The random network was an isolated square of
400 × 400 µm2, in which neurons grew uniformly and formed
random connections (Figure 3A). The size was chosen so
that each network stably generates spontaneous activity after
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FIGURE 1

Hydrogel coating of HD-MEA. (A) 3D confocal micrograph of the HD-MEA chip (top) and its surface profile (bottom). (B) Thickness of the
hydrogel films in their dried state measured by confocal microscopy. Data shown as mean ± SD, with plots for individual data points. (C) Primary
neurons cultured on HD-MEA chip without (left) and with (right) the hydrogel coating. A magnified view of the microchannel region of a
separate sample is also presented for the hydrogel-coated chip. The cells were stained with Neu-O (Er et al., 2015), and yellow dashed lines
depict presumptive locations of microfluidic structures. (D) Fraction of compliant patterns with and without the hydrogel coating. ∗∗p < 0.01
(chi square test).

FIGURE 2

Effect of hydrogel coating on signal amplitude. (A,B) Recorded extracellular signals (high-pass filtered at 300 Hz) from representative electrodes
without (A) and with (B) the hydrogel coating. Detected action potentials are indicated with red arrowheads. Close-up views of the waveforms
are shown in the insets. (C) Distribution of the mean signal amplitude for each electrode. (D) Relative magnitude of the electric potential (φ/φ0)
as a function of distance (h) from the current source. Distance dependent decay depends strongly on the diameter (R0) of the current source.

approximately 10 days of culture (Yamamoto et al., 2016a).
The activity of the network was predominantly governed by
the network bursts, i.e., a population activity that entrained a
large fraction of the network (Figure 3B; Orlandi et al., 2013;
Yamamoto et al., 2016a). This caused the pairwise correlation
coefficient rij to be high between a large fraction of electrode
pairs (Figure 3C).

Modular networks, in contrast, exhibited a richer repertoire
of population activity. Modular networks comprised four
squares, or modules, of 200 × 200 µm2 connected by
microchannels with widths and heights of 6.7 ± 0.79 µm
(n = 12) and 4.3 ± 0.05 µm (n = 10), respectively (Figure 3D).

The microchannel allowed axons and dendrites of a fraction

of neurons to project to neighboring modules and form

functional couplings between them (Takemuro et al., 2020).

While activity of the neurons in the same module was strongly

correlated, the interaction of neurons in separate modules

was weaker, leading to probabilistic coherence (Figures 3E, F).

Cross-correlation functions between pairs of electrodes in

the same module exhibited a large peak around a lag of

zero, whereas the peak was much smaller for electrode

pairs in separate modules. This clearly contrasted with the

cross-correlation functions in a random network, where the
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FIGURE 3

Spontaneous activity in random (A–C) and modular (D–F) networks at 14 DIV. (A,D) Micropattern geometry and a micrograph of the PDMS
microfluidic film placed on the sensing electrode area of the HD-MEA chip. (B,E) Raster plot (top) and representative propagation maps
(bottom). A propagation map for a given network burst was generated by setting a marker at the position of electrodes that were active during
the burst and coloring the markers based on the time delay from the onset of the burst. (C,F) Correlation coefficient matrix. For the modular
network, electrodes belonging to separate modules are assigned different colors in (E,F).

electrode-to-electrode difference in the shape of the function
was less pronounced (Supplementary Figure 1).

Detailed comparisons of activity statistics in the random
and modular networks are summarized in Supplementary
Figure 2. Network bursts were also observed occasionally in
modular networks. Within a network burst, the timing of
neuronal spikes in a single module was much less varied
than that across separate modules (Supplementary Figure 3A).
The high spatiotemporal resolution of the HD-MEA, however,
allowed us to capture the propagation of the activity even
inside a single module (Supplementary Figure 3B). Recordings
of spontaneous activity could also be obtained from more
mature cultures, which we confirmed at least up to 21 DIV
(Supplementary Figure 4).

Functional complexity and modularity

To statistically evaluate the impact of network structure on
the dynamics of spontaneous activity, we further assessed
functional complexity, functional modularity, and the
statistics of rij and neuronal avalanches in the random and
modular networks. Functional complexity C is a measure
of integration-segregation balance important for proper
functioning of the nervous system, with C = 1 and 0 indicating
maximally and minimally balanced states, respectively
(Zamora-López et al., 2016; Yamamoto et al., 2018). Previous

studies using calcium imaging have shown that patterning
cortical neurons in modular architecture broadens the
distribution of rij and increases the value of C (Yamamoto et al.,
2018; Takemuro et al., 2020). Analyses of the spontaneous neural
activity recorded at 10–14 DIV revealed that the value of C was
significantly higher in the modular network than in the random
network, confirming the previous observations (Figure 4A;
p < 0.01, n = 14 for both random and modular networks; two-
tailed t-test). The analysis of Newman modularity Q (Newman,
2006) in the correlation matrices further revealed that the
functional connectivity is more modularized in the modular
network (Figure 4B; p < 0.01, n = 13 and 11 for random
and modular networks, respectively; two-tailed t-test). These
data highlight that structural confinement induced functional
modularization in the cultured neuronal network.

We next took the advantage of high temporal resolution of
MEA recordings to assess how the mean correlation coefficient
R =

∑
ij(i 6=j) rij/

(
N2
− N

)
of modular networks depends on the

temporal bin width (Figure 4C). To this end, we classified R
into three categories: (1) Rin, the mean value of rij evaluated
within each module; (2) Rneib, the mean evaluated across
neighboring modules; and (3) Rnon-neib, the mean evaluated
across non-neighboring modules. As a general trend, the
values of R were dependent on the bin width of the spike
train and increased when a larger bin was used. Comparison
at a constant bin width revealed that of Rin was larger
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FIGURE 4

Structure-function relationships in cultured neuronal networks.
(A) Functional complexity for the random and modular
networks. (B) Modularity of binarized correlation matrix for the
random and modular networks. Data shown as mean ± SD, with
plots for individual data points. (C) Dependence of mean
correlation coefficient on the bin width of the spike train. Rin,
correlation between electrodes in the same module; Rneib,
correlation between electrodes in neighboring modules;
Rnon−neib, correlation between electrodes in non-neighboring
(diagonal) modules. ∗p < 0.05, ∗∗p < 0.01 (two-tailed t-test).

than Rneib and Rnon-neib at any bin width, indicating that
intramodular correlations were greater than intermodular ones.
The difference between Rneib and Rnon-neib was smaller than
that against Rin. However, Rnon-neib was significantly smaller
than Rneib for the bin width between 5 and 20 ms (p < 0.05;
n = 14 networks; two-tailed t-test). The lower value of Rnon-neib

is expected as non-neighboring modules are spatially more
distanced than neighboring modules, increasing the signal delay
via signal propagation and synaptic transmission. Importantly,
such analysis was impossible with low-temporal resolution
recordings of neural activity and highlights a novel potential
of MEA recordings in the assessment of structure-function
relationships in living neuronal networks.

Neuronal avalanche statistics

Finally, we compared the spatiotemporal structure of
the spontaneous neural dynamics in random and modular
networks by analyzing the neuronal avalanches in LFP signals
(Figure 5A). Neuronal avalanche is defined as a sequence of
time bins during which an nLFP was detected in at least one
electrode. An nLFP reflects the summation of local inward

currents, and its analysis uncovers whether the system operates
near a critical point, at which activity stably propagates and
maximizes information transmission within a network (Beggs
and Plenz, 2003; Plenz and Thiagarajan, 2007). Accumulating
experimental evidence further support the hypothesis that
the mammalian cortex self-organizes into a critical state
(Muñoz, 2018; Plenz et al., 2021). We thus analyzed the nLFP
statistics in each network (Figure 5B) by calculating the
branching parameter, as well as the probability distribution of
avalanche sizes and durations.

Stability of the propagation can be measured by evaluating
the branching parameter σ∗ (Priesemann et al., 2014):

σ∗ =
〈
σ∗i
〉
=

〈
round

(
ni+1

ni

)〉
(5)

where σ∗i is an estimate for the i-th bin in all avalanches of a
recording, ni is the number of active electrodes at i-th bin, round
is the rounding operation to the nearest integer, and <> is the
average over all i’s. σ∗i was not calculated for ni = 0. Evaluation
of σ∗ revealed that this value was slightly above 1 for both
random and modular networks, suggesting a near-critical state
with a tendency toward supercriticality (Figure 5C). When the
network is in a critical state, neuronal activity neither increases
nor decreases in avalanches and thus stably propagates in time
and space. When the network is supercritical, the activity tends
to expand once initiated.

The difference between the random and modular
architectures was most evident in the avalanche size distribution.
For a neuronal network operating near a critical state,
distributions of avalanche sizes S and avalanche duration T are
scale-invariant and obey a power law such that p (S) ∝ S−τ and
p (T) ∝ T−α, where τ and α are the power-law exponents. The
distribution of avalanche sizes and durations averaged over the
samples are shown in Figures 5D, E, respectively, for both the
random and modular networks. The avalanche size distribution
for the random network exhibited a deviation from the power
law as a small peak near S = 20–40, which is an indication of
supercritical dynamics. A peak was less prominent and shifted
toward a smaller value of S in the recordings from the modular
networks, which is most likely due to the segregation of the
neuronal network in subpopulations. This result suggests that
fabrication of structured networks with a larger number of
modules may help to realize engineered neuronal networks
with dynamics near criticality, along with a proper balancing of
excitation and inhibition that develops with the days in culture
and is a strong control parameter for avalanche dynamics
(Yada et al., 2017; Muñoz, 2018; Plenz et al., 2021).

Discussion

We described herein a feasible protocol using a cell-
permissive hydrogel to interface HD-MEA surface with
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FIGURE 5

Neuronal avalanche analysis. (A) LFP signal from a representative electrode. (B) nLFPs extracted from all electrodes in a modular network.
Marker sizes are varied proportional to their amplitudes. (C) Branching parameters calculated from the random and modular networks. Data
shown as mean ± SD, with plots for individual data points. n.s., no significance (two-tailed t-test). (D,E) Size distributions (D) and duration
distributions (E) of neuronal avalanches in random and modular networks. Networks with sufficient activity were selected based on the same
criteria used for the analysis in Figure 4A, and average probability distributions calculated from 14 networks are shown for both the random and
modular networks.

microfluidic devices for controlling the structure and function of
cultured neuronal networks. Spontaneous activity was recorded
for two types of neuronal networks, i.e., random and modular
networks. The analysis of the correlation coefficient and
functional complexity revealed that the network activity in
the modular network was less synchronized with enriched
variability compared to that in the random network. The result
is in agreement with a previous report using fluorescent calcium
imaging (Yamamoto et al., 2018; Takemuro et al., 2020), but
the HD-MEA recording enabled a high-temporal resolution
recording of the neural activity with a time step of 50 µs.
Analysis of high-temporal resolution data further elucidated the
dependence of the mean correlation coefficients on time bin
width, which revealed that the mean correlation coefficients with
and without connections between modules differ significantly as
time bin widths range from 5 to 20 ms. HD-MEA recordings also
enabled the analysis of LFP signals and neuronal avalanches in
micropatterned neuronal networks.

Multiple methods, including laser lithography (Schürmann
et al., 2018), microcontact printing (James et al., 2000; Nam
et al., 2006), agarose-gel patterning (Suzuki et al., 2005; Hong
and Nam, 2020), and microfluidic devices (Pan et al., 2015;
Forró et al., 2018), have been used to pattern dissociated
neurons on MEAs. Patterning dissociated neurons on HD-
MEA has been demonstrated using microfluidic devices, firstly
by Lewandowska et al. (2015) and later by Kim et al. (2020)
and Duru et al. (2022). The major challenge in patterning
neurons on HD-MEA devices lies in the surface topography
of the device, which originates in the passivation layer and
the underlying electronics, which inhibit stable sealing of the
microfluidic device, as was shown in Figure 1C. Lewandowska
et al. (2015) bypassed this problem by aligning the straight
microchannels parallel to the surface grooves, whereas Duru

et al. (2022) resolved this issue more comprehensively by
establishing a protocol to bond microfluidic devices with diluted
PDMS gel.

In the present work, we proposed a method to interface
surface topography of the HD-MEA with PDMS microfluidic
devices by coating the HD-MEA with a stable hydrogel
membrane. Our method is economical and allows repeated use
of an HD-MEA chip for at least three times. More importantly,
this method enabled the use of sub-10 µm microchannels, which
was challenging in the PDMS-gluing approach due to clogging
of the channels (Duru et al., 2022). One limitation of the present
approach is that chip preparation requires three additional days
prior to cell seeding, whereas the PDMS gluing can be completed
in several hours (Duru et al., 2022). As the present experiments
adopted a previously published protocol for the preparation of
the hydrogel film (Matsumura et al., 2016), it remains to be
investigated whether the process can be simplified to reduce
the preparation time. Another limitation is the increase in
cell-electrode distance due to the insertion of the hydrogel
layer. Increased cell-electrode distance inevitably decreases the
signal amplitude (Figure 2) and may impede applications in
recordings that demand higher signal-to-noise ratio. In these
cases, other approaches may need to be considered for sealing
microfluidic devices, such as the one that uses a thin layer of
PDMS gel to glue microfluidic devices to the electrodes (Duru
et al., 2022). We finally note that certain HD-MEAs have been
developed with a more planar surface than the device used in
the present research (Bertotti et al., 2014; Zeck et al., 2017), and
in such a case, interface treatment might not be necessary. The
approach reported herein is nevertheless important as a method
to stably interface microfluidic devices to microstructured
surfaces in general, such as implant biomaterials (Zhang et al.,
2022).

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.943310
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-943310 December 30, 2022 Time: 14:17 # 9

Sato et al. 10.3389/fnins.2022.943310

Cell engineering based on microfluidics has become
an indispensable technology for studying structure-function
relationships and modeling neuronal network functions in vitro,
and the high-temporal resolution of the MEA, along with
its potential to record LFPs, enables the analysis of novel
aspects of the engineered networks. In addition to network
modularity, precise control of axon orientation (Peyrin et al.,
2011) and even dendritic spines (Mateus et al., 2022) has been
demonstrated using microfluidic devices. Combination of such
neuroengineering technology with state-of-the-art MEA devices
will open new application of in vitro systems as a tool in
fundamental neuroscience and pharmacology.
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