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Functional electrical stimulation (FES) neuroprostheses have been regarded as

an e�ective approach for gait rehabilitation and assisting patients with stroke or

spinal cord injuries. A multiple-channel FES system was developed to improve

the assistance and restoration of lower limbs. However, most neuroprostheses

need to be manually adjusted and cannot adapt to individual needs. This study

aimed to integrate the purely reflexive FES controller with an iterative learning

algorithm while a multiple-channel FES walking assistance system based on

an adaptive reflexive control strategy has been established. A real-time gait

phase detection system was developed for accurate gait phase detection

and stimulation feedback. The reflexive controller generated stimulation

sequences induced by the gait events. These stimulation sequences were

updated for the next gait cycle through the di�erence between the current

and previous five gait cycles. Ten healthy young adults were enrolled to validate

the multiple-channel FES system by comparing participants’ gait performance

to those with no FES controller and purely reflexive controller. The results

showed that the proposed adaptive FES controller enabled the adaption to

generate fitted stimulation sequences for each participant during various

treadmill walking speeds. The maximum, minimum, and range of motion

(ROM) of the hip, knee, and ankle joints were furtherly improved for most

participants, especially for the hip and knee flexion and ankle dorsiflexion

compared with the purely reflexive FES control strategy. The presented system

has the potential to enhance motor relearning and promote neural plasticity.

KEYWORDS

functional electrical stimulation (FES), lower limbs, neurorehabilitation, gait

assistance, adaptive reflexive control strategy

Introduction

Stroke is a neurological disorder with the world’s highest prevalence. The number

of patients with stroke in 2017 was over 100 million, which has almost doubled

compared with 1990 (Arnao et al., 2016; Avan et al., 2019). About 80–90% of patients

with stroke suffer from gait disorders, affecting their life quality and bringing heavy
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economic burdens to the patient’s families and society

(Schaechter, 2004; Hara, 2013; Shmuel et al., 2013; Mountain

et al., 2020). Functional electrical stimulation (FES) is a

technology that applies low-energy electrical pulses to the

muscle resulting in active muscle contraction and further

functional limb movements (Lynch and Popovic, 2008a).

Electrical stimulation has been proven to increase muscle force,

promote neuroplasticity, and enhance rehabilitation outcomes

and is regarded as an effective rehabilitation treatment for gait

disorders (Shin et al., 2022). However, most FES systems employ

an open-loop control strategy with a constant stimulation mode

in the market (Krishnamoorthy et al., 2008; Bulea et al., 2013;

Chang et al., 2017). The open-loop control method has a simple

computation and quick response advantage, but the constant

stimulation mode cannot be adjusted for patients’ assistance

requirements in real-time. It may cause inadequate muscle

activations and poor limb coordination.

The close-loop FES control strategy integrates feedback

information, such as joint angles, electromyography (EMG),

and human-machine interactive moment to adjust stimulation

parameters based on the desired joint angle or moment

trajectories. Seel et al. (2016) applied an iterative learning control

(ILC)method to adjust the FES parameters based on inertial data

to reduce muscle fatigue effectively. Jailani et al. (2010) proposed

a knee biomechanical model that combined the joint trajectory

control and fuzzy logic control, where the electrical pulse width

was adjusted with the feedback of angle difference. However,

as the human neuromuscular system is highly nonlinear (Dietz,

1992; Nielsen, 2002), the pure trajectory control model may not

be readily applied to a real-time FES assistance system under

various scenarios (Shiavi et al., 1987; Perry et al., 1995; Chen

et al., 2018).

Some studies adopted biological-inspired control

mechanisms in FES control strategies. Zhang et al. proposed

a novel central pattern generator (CPG) based model to

generate primary bipedal gaits in an FES walking system

(Zhang et al., 2015). A long short-term memory (LSTM) neural

network, proposed by Li et al. (2021), was used for predicting

synchronous tibialis anterior (TA) EMG based on real-time

angular velocity where the TA stimulation intensity was further

modulated. Meng et al. proposed a purely reflexive control

model to generate multiple electrical stimulation sequences

(Meng et al., 2017). The gait events were mapped to muscle

activity output during human walking. The model was realized

to smooth limb coordination for walking assistance and reduce

computational burden, making it straightforward to implement

in practice. However, the stimulation parameters must be set

before use and cannot be adjusted in real-time.

To further enhance the effectiveness of FES walking

assistance, especially for meeting individuals’ assistance needs

under various walking speeds, we proposed a multiple-channel

FES walking assistance system with an adaptive reflexive control

method where the electrical stimulation parameters can be

adjusted to temporal gait parameters and sagittal shank angle. A

validation experiment was conducted by recruiting ten healthy

young participants to walk on a treadmill at various speeds

wearing the FES system. The gait performance under different

stimulation control strategies (purely reflexive controller vs.

adaptive reflexive controller) was compared and investigated.

Methods

Hardware design

As shown in Figure 1, the FES system consists of a

self-designed real-time gait phase detection system, an 8-

channel programmable electrical stimulation device (RehaStim

2, HASOMED GmbH, Germany), and a host computer (Intel 6

Core i7-8750H, 2.20 GHz, and Windows 10 system).

The wearable real-time gait phase detection system includes

force-sensitive resistors (FSR) embedded in shoe insoles and an

inertial measurement unit (IMU; JY901, Witmotion, Shenzhen,

China), as shown in Figure 1. The 6-axis IMU consists of

an accelerometer and a gyroscope measuring acceleration and

angular rate along three orthogonal axes. The STM32 chip

(STM32F103C8T6, Witmotion, Shenzhen, China) is used for

data acquisition, gait event detection, and communication with

the host computer via Bluetooth 2.0.

The algorithms described in the following sections have

been implemented in a C++ program and Qt software. The

RehaStim 2 consists of eight electrical stimulation channels

based on two separately controlled modules and is connected to

the host computer through a USB 3.1. The electrical stimulation

parameters, such as stimulation frequency, pulse width (PW),

and pulse amplitude, can be controlled by the host computer via

the ScienceMode2 communication protocol in real-time.

FES reflexive control strategy

Four muscles were selected for each leg, namely, tibialis

anterior (TA), lateral gastrocnemius (LG), biceps femoris (BF),

and rectus femoris (RF). The muscles are associated with the

flexion/extension of the hip, knee, and ankle during walking.

The reflexive control strategy generates stimulation sequences

of eight muscles based on the event impulses from the gait

phase detection system. A hierarchical FES controller is shown

in Figure 2. The top level employs a finite state control model

where the state function S switches on and off the stimulation

of muscles for movement coordination. In the low level,

the transfer function H generates the impulse responses for

stimulation amplitude by convolving with an event impulse.
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The transfer function H is a second-order low-pass Bessel

filter, as shown below.

H (t) =

(

g
1

τ
e
−1.5t

τ sin

(√
3t

2τ

))

The τ is the time coefficient derived from the filter cut-off

frequency and determines the profile of the impulse response.

The g is the gain coefficient, normalizing the impulse response

to 0 and 1.

The state functions are responsible for switching on/off the

electrical stimulation according to five detected gait phases: load

response (LR), stance (ST), pre-swing (PS), swing (SW), and

terminal swing (TSW).

STA =

{

1, state = SW or TSW

0, otherwise

SBF =

{

1, state = SW or TSW

0, otherwise

SLG,LR =

{

1, state = LR

0, otherwise

SLG,PS =

{

1, state = PS

0, otherwise

SRF,LR =

{

1, state = LR

0, otherwise

SRF,TSW =

{

1, state = TSW

0, otherwise

The FES sequences of eight muscles generated by the

reflexive controller during treadmill walking are shown in

Figure 3. The generation of electrical stimulation patterns

elicited by impulse signals for each muscle is expressed

as follows:

CTA =
(

HTA,LR ∗ ISW · 1cTA + CTA,min
)

· STA
CLG =

(

HLG,LR ∗ ILR · 1cLG + CLG,min
)

· SLG,LR
+
(

HLG,PS ∗ IPS · 1cLG + CLG,min
)

· SLG,PS
CBF =

(

HBF,SW ∗ ISW · 1cBF + CBF,min
)

· SBF
CRF =

(

HRF,LR ∗ ILR · 1cRF + CRF,min
)

· SRF,LR
+
(

HRF,TSW ∗ ITSW · 1cRF + CRF,min
)

· SRF,TSW

where, I is the gait event impulse generated from gait phase

transitions, and H is the transfer function that generates the

response output by convolving with the impulse input I. The

1c is the difference between Cmax and Cmin where Cmax is

the maximum threshold current amplitude that can produce a

maximal muscle contraction without any discomfort, and Cmin

is the minimum threshold current amplitude that can elicit a

visiblemuscle contraction. The values ofCmax andCmin for each

muscle were measured in a preparation experiment for every

participant, detailed in Appendix 1 document.

Gait phase detection

An IF-THEN type finite state machine was employed to

detect five gait events, namely, heel strike (HS), foot flat (FF),

heel off (HO), toe off (TO), and sagittal threshold angle (STA).

These gait events are furtherly used to define gait phases, such

as LR, ST, PS, SW, and TSW. The sensory signals include foot

contact signals from FSRs and angle signals from the IMU

attached to the shank. An adaptive threshold method is used to

convert the inputs to binary signals. The SH and ST are binary

signals representing the heel and toe contact states where the

logic value of 1 indicates that the heel or toe is in contact with

the ground, and 0 indicates that it is off the ground. The binary

signal Sφ represents the state of sagittal shank angle (φS) during

the swing phase (SH = ST = 0). It determines the initiation of

TSWwhen a participant extends the knee to prepare to strike the

foot on the floor. Four types of gait impulses, ILR, IPS, ISW , and

ITSW are generated for the FES controller based on gait phase

transitions, as shown in Figure 2.

ILR: the impulse indicates the initial foot contact with the

ground. In normal gait, the heel usually strikes the ground first.

However, individuals with a pathological walk may establish foot

contact with the forefoot. Therefore, the transition is detected if

any foot part touches the ground after the swing phase (last state:

SH = 0, ST = 0; and current state: SH = 1 or ST = 1).

IPS : the transition occurs when the FSR underneath the heel

is not pressed, and the forefoot is still in contact with the ground.

This event indicates a transition from the stance phase to the

pre-swing phase (last state: SH = ST = 1; and current state:

SH = 0, ST = 1).

ISW : the impulse indicates the transition from the stance or

pre-swing phase to the swing phase, where the swing phase is

when the foot is lifted entirely off the ground so that no FSRs are

pressed (last state: SH = 1 or ST = 1; and current state: SH =
ST = 0).

ITSW : the impulse indicates the transition from the swing

phase to the terminal swing phase when the hip flexes forward

and themeasured φS reaches its threshold (last state: SH = ST =
0, Sφ = 0; and current state: SH = ST = 0, Sφ = 1).

Adaptive parameters update

An adaptive method is proposed where the muscle

stimulation time ts and sagittal shank angle at TO (φTO) are

used as real-time feedback signals to meet the assistance needs

of various gait speeds. The adaptive model updates the time

coefficient parameter τ of eight muscles and PW of both

LG muscles. The time constant determines the stimulation

amplitude profile while the PW of LG muscles modulates the

ankle push-off at various speeds (Brockett and Chapman, 2016).

These parameters are updated based on the muscle stimulation

time and sagittal shank angle of the previous five gait cycles. One
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FIGURE 1

The structure of the functional electrical stimulation (FES) walking assistance system. The system consists of three main parts: a programmable

electrical stimulator, a real-time gait phase detection device, and a host computer. The FSR-embedded insole and an inertial measurement unit

(IMU) chip were connected to an STM32 microcontroller that detected gait phases by an IF-THEN type finite state machine during walking. The

sensory signals, including gait phase detection result and shank angle, were transmitted to the host PC via Bluetooth. At the same time, the

adaptive FES controller generated electrical stimulation sequences for the muscles. The stimulation parameters were adapted and applied to

eight muscles by the programmable electrical stimulator RehaStim through a USB 3.1 port.

gait cycle is regarded as the interval between consecutive heel

strikes of the same foot (SH =1, ST = 0).

According to the difference in the stimulation duration time

between the previous five gait cycles and the current gait cycle,

the closed-loop control model adjusts the corresponding τ to

change the muscle stimulation time for the next gait cycle. Take

τTA as an example.

The stimulation of TA is activated during the SW and TSW,

as shown in Figure 3. If the stimulation time of TA in the current

gait cycle is tTA (n), the average stimulation time of the previous

five gait cycles can be calculated as tTA:

tTA =
1

5

5
∑

i=1

tTA (n− i)

The difference between the tTA and tTA can be calculated as

1tTA = tTA (n) − tTA. If |1tTA| > 0.04 s, the time coefficient

τTA is updated as follows:

τTA (n+ 1) =

{

τTA (n) + L 1tTA < −0.04s

τTA (n) − L 1tTA > 0.04s

where, τTA (n+ 1) is the transfer function time coefficient of

the next gait cycle and τTA (n) is the transfer function time

coefficient of the current gait cycle. As the response time of the

transfer function fitted by a second-order low-pass Bessel filter

is about one-fourth of the overall activation time, the update

threshold is set as 0.04 with an iterative learning step L of

0.01. In addition, the value of τ is limited between 0.01 and 1

due to the requirement of muscle response time for movement

coordination during human walking.

According to the second-order low-pass Bessel filter

properties of the transfer functionHTA,TO, the cut-off frequency

fc can be calculated based on the time coefficient:

fc =
1

2π ∗ τ

Eventually, the cut-off frequency fc,TA,TO is updated to

the adaptive reflexive controller for adjusting the amplitude

stimulation profile of CTA. The same procedure is applied to all

muscles. The update progress is shown in Figure 4A.

Similarly, according to the φTO of previous five gait cycles

and the φTO of the current gait cycle, the PW values of both LG

of the next gait are interactively updated:

PWLG (n+ 1) =

{

PWLG (n) + LPW 1φTO < −2◦

PWLG (n) − LPW 1φTO > 2◦

where, PWLG (n+ 1) is the PW of LG muscle for the next gait

cycle, PWLG (n) is the stimulation pulse width at the current

gait. 1φTO = φTO(n) − φTO . The step LPW of iterative

learning is set to 20 µs. Additionally, the limited range of PWLG

is set between 250 and 500 µs. The update process is shown in

Figure 4B.
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FIGURE 2

The adaptive reflexive FES control diagram. Input signals are first translated into binary signals by an adaptive threshold. Gait phases are

identified based on a rule-based machine learning algorithm. Gait event impulses are generated when specific gait transitions between gait

phases occur. A hierarchical FES control model consists of two levels of control where the top level switches the stimulation state of muscles,

and the low level generates the stimulation sequences. The time constant parameter τ and stimulation pulse width are adaptively updated with

an iterative learning method in the low level controller based on the real-time feedback of muscle stimulation time ts and sagittal shank angle

φTO, respectively. LR, load response; ST, stance; PS, pre-swing; SW, swing; TSW, terminal swing.
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FIGURE 3

The electrical stimulation sequences for four muscles of one side generated from the reflexive FES controller. The ILR triggered the lateral

gastrocnemius (LG) and rectus femoris (RF) muscle activations for the knee extension and hip flexion. The IPS triggered the LG muscle for ankle

plantarflexion. The ISW triggered the tibialis anterior (TA) and biceps femoris (BF) muscles for the ankle dorsiflexion, knee flexion, and hip

extension at early swing. The ITSW triggers TA, RF, and BF muscles for the preparation of load response.

Experiment

Experimental set-up

For this experiment, ten healthy young adults (ten men)

were recruited. The mean [±standard deviation (SD)] age was

25.1 (±1.6) years, and the mean (±SD) height was 177.3 (±5.83)

cm, as shown in Table 1. The participants were fully informed of

the procedure and gave written consent before the experiment.

The study was approved by the Ethics Committee of Tianjin

University and was conducted in the Motion Rehabilitation

Laboratory of Tianjin University.
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FIGURE 4

Block diagram of the iterative learning control algorithm for transfer function time constant coe�cient τ of all eight muscles (A) and pulse width

parameter of two lateral gastrocnemius muscles (LG) (B) based on each gait cycle.

Eight muscles were selected in the experiment: RF, BF,

LG, and TA of both legs, to augment hip, knee, and ankle

flexion/extension, respectively. Electrical stimulation electrodes

were placed on the muscles, and the Cmax and Cmin of

every muscle were measured in the preparation session. The

measurement procedure and results are shown in Appendix 1

document. Participants wore shorts and gait detection devices.

The Vicon Plug-in-Gait (PiG) model was used to evaluate

the gait performance of the participants where retroreflective

markers were attached to the anterior superior iliac spine, the

posterior superior iliac spine, thigh, knee, ankle, tibial wand,

heel, and toe of both sides, as shown in Figure 5.

The participants were instructed to walk on a treadmill

under three different conditions: (1) without FES controller

(NFC); (2) with a purely reflexive FES controller (RFC); and

(3) with an adaptive reflexive FES controller (ARFC). In each
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TABLE 1 Participants’ demographic information.

Subjects Gender Age (years) Height (cm) Weight (kg)

A M 26 174 80

B M 27 175 78

C M 26 176 76

D M 25 181 67

E M 25 170 69

F M 25 181 60

G M 24 188 78

H M 26 185 85

I M 26 172 70

J M 21 171 62

M, male.

session, the treadmill walking speed increased from 1.0 to

2.0 km/h and then decreased to 1.0 km/h with an incrementation

step of 0.2 km/h. The participants needed to complete at least

15 gait cycles at each speed. The host computer collected

stimulation parameters, detected gait phases, and shank angle

information while the Vicon Nexus software captured marker

trajectories with a sampling rate of 100Hz. The Vicon Lock Sync

device was used to synchronize the collected data.

Data analysis

Joint kinematic data of the hip, knee, and ankle were

obtained using the PiG model. One gait cycle data were time-

normalized to 0–100% with 101 samples. A total of 165 gait

cycles were extracted for each participant. The maximum and

minimum of the hip, knee, and ankle were calculated based

on gait cycles and investigated using a one-way analysis of

variance (ANOVA) with stimulation pattern as the main factor.

A paired t-test was performed to evaluate the difference in gait

kinematics under three stimulation conditions. All statistical

analyses were performed using the MATLAB Statics Toolbox

(MATLAB2020a, TheMathWorks, USA). Statistical significance

was set as p < 0.05.

Results

Table 2 showed that the real-time gait event detection

algorithm obtained an accuracy rate of 100% to identify all five

gait phases, and the average delay time was less than 20ms.

The FES sequences for eight muscles were generated from the

transfer functions triggered by the gait event impulses during

treadmill walking, as shown in Figure 3. Figure 6 shows that

the time coefficient τTA,TO and pulse width of LG muscles

were adaptively adjusted with various walking speeds during

one participant’s trial. We can see that the rise time of the

stimulation pattern responded more quickly at 2.0 km/h speed

compared with those at slower speeds indicating that the ARFC

can efficiently adjust the stimulation pattern according to the

change in walking speeds.

Joint kinematics were compared under three stimulation

conditions for all participants, as shown in Figure 7. Results

showed that both stimulation control strategies (RFC and

ARFC) did not hinder normal gait patterns (Figure 7) and

significantly promoted the joint movement, as shown in Figure 7

and Table 3. The participants achieved larger flexion and

extension of the hip and knee as the electrical stimulation

applied to the RF and BF muscles helped in promoting the

joint movement (Table 3). The electrical stimulation on the TA

muscle led to a higher ankle maximum angle than that without

FES assistance. It can also be observed that the ARFC has a better

promoting effect than the RFC in all joint kinematic parameters.

The participants obtained a larger ROM of the hip (RFC: 35.16

± 3.92; ARFC: 37.85 ± 4.99), knee (RFC: 54.34 ± 8.05; ARFC:

59.54 ± 8.20), and ankle (RFC: 22.44 ± 6.52; ARFC: 25.07 ±
6.36) with the ARFC compared with the RFC. The ankle push-

off at the terminal stance was also increased during the ARFC

trial (RFC: −10.81 ± 7.76; ARFC: −13.92 ± 7.95). The results

indicated that the proposed ARFC method could provide better

gait assistance at different speeds.

Discussion

The FES is an effective technique to restore gait functions

for patients with motor disorders (Lynch and Popovic, 2008b;

Popovic, 2014). Due to the disturbances from internal time-

varying muscle characteristics with electrical stimulation and

external environmental uncertainties, most current FES systems

used pre-set stimulation patterns and parameters and mainly

focused on the drop foot correction. Patients may not achieve

satisfactory gait performances due to the low adaptability of

FES control strategies (Krishnamoorthy et al., 2008; Bulea

et al., 2013; Chang et al., 2017). Therefore, accurate gait phase

detection and adaptive control strategy are the critical parts

of high adaptability to provide efficient walking assistance

and rehabilitation.

A wearable real-time gait phase detection device integrating

the FSRs-embedded shoe insole and IMU was developed.

The reliability and feasibility of the combination of the

FSRs and IMU in gait phase detection have been proved in

previous studies (Prasanth et al., 2021). The FSRs can provide

the most reliable information about foot contact conditions

(Hanlon and Anderson, 2009), and the data from the inertial

sensor added the information during the swing. Therefore,

the combination of FSRs and IMU enables the identification

of multiple gait phases during a gait cycle. Pappas et al.

(2001) reported above 96% detection accuracy of HS, FF, HO,
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FIGURE 5

Schematic of the experimental setup: a participant walked on the treadmill wearing real-time gait detection devices. Electrical stimulation

electrodes were attached to the eight muscles, and the retroreflective markers were placed on the lower limbs.

TABLE 2 Accuracy and time latency for gait event detection during

various speeds.

Speed

(km/h)

Total stride

number

Gait

events

Accuracy

(%)

Average

latency (ms)

1.0∼ 1.4 900 HS 100 9.6

HO 100 14.4

TO 100 13.9

STA 100 10.5

1.6∼ 2.0 750 HS 100 10.1

HO 100 21.4

TO 100 15.0

STA 100 17.3

HS, heel strike; HO, heel off; TO, toe off; STA, the shank angle φS reached its threshold

during the swing.

and TO for both unimpaired and pathological gait with a

detection delay of less than 90ms using a threshold-based

method. Sui et al. (2020) proposed a Convolutional Neural

Network (CNN)-based gait detection algorithm, which achieved

an average error of 8.86ms for the TO detection and 9.12ms

for the HS, and a gait phase detection accuracy of 96.44%

on healthy subjects. Our study proposed a rule-based machine

learning algorithm for identifying five gait phases: HS, FF,

HO, TO, and STA. The real-time performance achieved an

accuracy rate of 100% and an average delay of less than

20 ms.

Multiple-channel FES systems with adaptive control

methods were proposed in previous studies (Ladouceur and

Barbeau, 2000; Johnston et al., 2003; Kesar et al., 2011; Street

et al., 2015; Miller et al., 2016; da Cunha et al., 2021). Mueller

et al. (2020) proposed an FES system-based ILC in which

individual fitted stimulation patterns of the antagonistic muscle

pairs for the knee and ankle joints were generated by warping

healthy subjects’ physiological joint angles trajectories. The

experimental results showed slight improvements in the peak

joint angles in the range of 4 degrees on three of four spinal

cord injured subjects. Jiang et al. (2020) proposed an adaptive

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.944291
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dong et al. 10.3389/fnins.2022.944291

FIGURE 6

An example of the time constant coe�cient τTA,TO of TA muscle and pulse width (PW) of LG muscle over in a trial of one participant with walking

speed varying from 1.0 to 2.0 km/h.

FIGURE 7

Joint kinematics of the hip, knee, and ankle joints under three di�erent stimulation conditions for individual participants.

FES control method that employed a linear model with ILC

to adjust the stimulation timing and intensity according to

the average walking speed and the error between the actual

maximum ankle dorsiflexion and target angle. Their proposed

control method obtained a better orthotic effect for foot

drop correction than the performance with constant pre-set

stimulation parameters. However, these FES control strategies

required complex calibration procedures and complicated
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TABLE 3 E�ects of stimulation condition on joint kinematic parameters using one-way analysis of variance (ANOVA).

Kinematic parameters (◦) NFC RFC ARFC F-value P-value

Hip maximum 23.69± 3.40 26.26± 3.24 27.87± 3.17 679.4 <0.0001

Hip minimum −6.60± 2.78 −8.87± 2.501 −10.04± 3.19 620.5 <0.0001

Hip ROM 30.28± 4.07 35.16± 3.92 37.85± 4.99 1264 <0.0001

Knee maximum 53.23± 9.27 58.44± 8.59 62.62± 7.55 502.8 <0.0001

Knee minimum 6.59± 5.11 4.14± 3.82 3.16± 4.30 258.4 <0.0001

Knee ROM 46.64± 8.46 54.34± 8.05 59.54± 8.20 1016 <0.0001

Ankle maximum 8.47± 2.73 10.74± 2.78 10.40± 3.38 275.1 <0.0001

Ankle minimum −7.45± 3.82 −11.69± 6.89 −14.55± 7.15 549.7 <0.0001

Ankle ROM 15.93± 4.00 22.44± 6.52 25.07± 6.36 1088 <0.0001

Ankle minimum during TS −2.35± 5.22 −10.81± 7.76 −13.92± 7.95 1165 <0.0001

NFC, no FES controller; RFC, reflexive FES controller; ARFC, adaptive reflexive FES controller.

mathematical models. Compared with these complicated

models, the biological-inspired FES strategies have shown their

advantages in motor relearning and simplicity in modeling

(Meng et al., 2017). However, the purely RFC cannot adjust the

stimulation pattern for participants’ individual needs during

various walking speeds. This study was the first attempt to

integrate the purely RFC and iterative learning algorithm

and develop a multiple-channel FES walking assistance

system based on an adaptive reflexive control strategy. An

adaptive algorithm based on the iterative learning method

was proposed to adjust the electrical stimulation parameters

corresponding to muscle stimulation time and sagittal shank

angle. A multiple-channel FES system was established, and the

validation experiment was performed by recruiting healthy

young adults. The results showed that the ARFC method

achieved a better promoting effect on joint kinematics during

treadmill walking than the pure RFC controller at various

speed conditions.

The functionality of the ARFC was evaluated in a validation

experiment involving ten healthy young male participants

compared with their gait performance under the NFC and

RFC stimulation conditions. The participants did not report

any discomfort or disturbance during treadmill walking with

the stimulation applied. The FES control strategy provided

a correct muscle activation sequence consistent with the

participant’s voluntary movements. The ARFC significantly

improved the maximum, minimum, and ROM for most

participants compared with the RFC. The ankle plantarflexion

angle using the ARFC was significantly larger than the RFC,

indicating that the adaptive change of time constant coefficient

τ and PW increased the ankle push-off and further promoted

walking speed. The ankle plantarflexion and knee flexion play a

critical role in generating forward propulsion (Neptune et al.,

2001; Anderson et al., 2004), and the patients often exhibited

a reduction in the ankle and knee movements (Bhadra et al.,

2001; Kesar et al., 2010). The ARFC also achieved a larger knee

and hip flexion angle in early swing, which would help improve

foot clearance and leg swing. It may provide more appropriate

training assistance for patients with a neurological disease

with individual stimulation pattern adjustment and potentially

enhance motor learning and promote neural plasticity.

There are still some limitations in this study. The experiment

only recruited healthy young men, and the subject size was

relatively small. The enrolled healthy young subjects have

intact motor units and good muscle responses to electrical

stimulation compared to patients with stroke who usually have

muscular atrophy combined with a damaged perception level

(Arasaki et al., 2009; Shin et al., 2022). The affected muscular

properties might have a potential influence on the modulation

of the stimulation parameters and hinder the performance

of the FES assistance (Ambrosini et al., 2014). Moreover,

we did not observe effective PW parameter adjustment for

LG muscles during treadmill walking. It might be because

healthy participants can meet the propulsion need of ankle

plantarflexion by voluntary LG muscle contraction, and the

scenario of treadmill walking limits the participants’ walking

variation. The proposed multiple-channel FES needs further

validation with stroke patients, and the overground walking

experiment should be considered in future studies.

Conclusion

This article proposed a multiple-channel FES walking

assistance system with an adaptive reflexive FES control

strategy. The validation experiment was performed by recruiting

ten healthy young men. Walking performance under three

stimulation conditions was investigated and compared. The

results showed that the system generates accurate stimulation

patterns for each muscle group while the stimulation parameters

were successfully further adapted to various walking speeds. The

ARFCmethod significantly improved the maximum, minimum,
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and ROM of the hip, knee, and ankle joints, especially for the

hip and knee flexion and ankle dorsiflexion, compared with the

purely RFC strategy. The presented system has the potential to

provide efficient gait assistance for patients and promote motor

relearning and neural plasticity. Future studies will carry out

a clinical experiment to prove the system effect’s on patients

with stroke.
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