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Magnetoencephalography (MEG) source estimation of brain electromagnetic

fields is an ill-posed problem. A virtual MEG helmet (VMH), can be constructed

by recording in different head positions and then transforming the multiple

head-MEG coordinates into one head frame (i.e., as though the MEG helmet

was moving while the head remained static). The constructed VMH has

sensors placed in various distances and angles, thus improving the spatial

sampling of neuromagnetic fields. VMH has been previously shown to

increase total information in comparison to a standard MEG helmet. The aim

of this study was to examine whether VMH can improve source estimation

accuracy. To this end, controlled simulations were carried out, in which the

source characteristics are predefined. A series of VMHs were constructed by

applying two or three translations and rotations to a standard 248 channel

MEG array. In each simulation, the magnetic field generated by 1 to 5 dipoles

was forward projected, alongside noise components. The results of this study

showed that at low noise levels (e.g., averaged data of similar signals), VMHs

can significantly improve the accuracy of source estimations, compared

to the standard MEG array. Moreover, when utilizing a priori information,

tailoring the constructed VMHs to specific sets of postulated neuronal sources

can further improve the accuracy. This is shown to be a robust and stable

method, even for proximate locations. Overall, VMH may add significant

precision to MEG source estimation, for research and clinical benefits, such

as in challenging epilepsy cases, aiding in surgical design.

KEYWORDS

source estimation, source localization, inverse problem, equivalent current dipole,
dipole fit, gain matrix, epilepsy surgery

Abbreviations: BN, brain noise; ECD, equivalent current dipole; IED, interictal epileptiform discharge;
MEG, magnetoencephalography; ON, overall noise; SDF, sequential dipole fit; SNR, signal to noise
ratio; SVD, singular value decomposition; TN, technical noise; VMH, virtual MEG helmet.
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Introduction

It is well-known, since the first publication of human scalp
EEG by Berger (1929), that synchronized neuronal activity can
produce electric field changes, recordable from the human scalp.
Thirty-nine years later, when David Cohen published the first
magnetoencephalography (MEG) recording (Cohen, 1968), it
became clear that the weak magnetic fields produced by a group
of neurons can be measured outside the human head. However,
the constraint-free inverse problem of estimating sources of
EEG or MEG signals is ill-posed, and accordingly there are still
ongoing debates and emerging new approaches (Baillet, 2010;
Supek and Aine, 2019).

Spatial sampling of the neuroelectromagnetic fields is a
key element in source estimation (Supek and Aine, 2019).
This topic has recently regained interest, with the development
of new MEG technologies, particularly optically pumped
magnetometers (Iivanainen et al., 2019, 2021; Tierney et al.,
2020). Ideally, subscribing with the Nyquist-Shannon sampling
theorem, the spatial Nyquist frequency of the MEG sensor array
should be above the highest spatial frequency of the brain signal.
Thus, increasing sensor density can improve the sampling.
However, increasing the density above a certain limit (defined by
the spatial Nyquist frequency) does not add more information,
and will only result in a higher device cost. This was shown
for both EEG (Srinivasan et al., 1998; Song et al., 2015) and
MEG (Vrba et al., 2004). Nonetheless, a MEG device can be
supplemented with sensors at different angles and distances
from the scalp, improving the spatial sampling of magnetic fields
(Nurminen et al., 2010, 2013), while alongside increasing the
device complexity and cost.

MEG measures weak magnetic fields, mainly generated by
post-synaptic dendritic currents in cortical pyramidal cells. The
sensor signals contain a mixture of contributions from multiple
brain sources (Baillet, 2010; Supek and Aine, 2019). The spatial
frequencies of the measured magnetic fields depend on the
distances between sources and sensors. Deeper sources are
associated with magnetic fields characterized by lower spatial
frequencies. When several sources are simultaneously active in
the brain, different components of the complex field may have
different spatial frequencies, yet they will be picked up with
minimum distortion by changes in conductivity of the different
head tissues: brain, scull, and scalp. This is a benefit over EEG,
which is strongly influenced by these structures, manifesting
distortions (Sarvas, 1987; Hansen et al., 2010). However, one
of the shortcomings of MEG is that the MEG sensors are not
fixed to the scalp, in contrast to EEG, and head movements
can lead to source estimation inaccuracy. Yet, this ostensible
disadvantage can in fact be used for improvement of the spatial
sampling of the neuromagnetic fields—if the head position is
measured, and utilized for generating a virtual MEG helmet
(VMH) (Medvedovsky et al., 2016). That is, a virtual helmet can

be constructed, if the same type of activity is recorded using
MEG in different head positions and then, transforming the
multiple head-MEG coordinates into one head frame. Thus,
one MEG position and multiple head positions, is converted to
one head position with multiple MEG positions. Treating the
brainwaves measured at the different MEG positions (relative
to the head) as if they were recorded simultaneously, resembles
using a MEG device with twice, thrice or N times more channels,
depending on the N head positions (Figure 1). The constructed
VMH has sensors placed in different distances and at different
angles relative to the sources of brain activity, implying that the
spatial sampling of the neuromagnetic fields might be richer
in comparison to a standard MEG recording. Indeed, it has
been shown that VMH can increase the total information, as
opposed to a standard MEG helmet (Medvedovsky et al., 2016).
However, whereas total information is an important figure
of merit (Shannon, 1949), until now the source localization
accuracy of VMH and of standard MEG helmet have not
been compared. Notably, finding the optimal settings for
constructing a VMH is a non-trivial task, as alongside the
particular enrichment of the spatial sampling by the fuller sensor
layout of VMHs, in comparison to the standard MEG helmet,
the measured noise relative to the signal of interest increases
(Medvedovsky et al., 2016).

The research questions addressed by this study are whether
the VMH scheme can improve source estimation accuracy as
opposed to a standard MEG helmet, without (simulations part
I and II) and with (simulations part III) the use of localization
information, gained by previous MEG recordings. To this
end, series of controlled simulations were carried out. Several
VHMs were constructed by applying various combinations of
rotations and translations. Since in simulations, the source
model characteristics (e.g., locations, orientations, and noise
levels) are predefined, this approach was chosen as a direct
way to evaluate and compare the source estimation accuracy
between a standard MEG helmet and the constructed VMHs.
In the simulations of part I, the VMH method was examined for
quality of source estimations, given different number of neural
generators and levels of noise. In the simulations of part II,
the robustness of the VMH method was assessed, serving as
theoretical grounds to the simulations carried out in part III. In
part III, a tailored approach to VMH was investigated. Assuming
a previous MEG recording, it was examined whether tailoring
the constructed VMH to the postulated set of sources is an
advantageous approach.

Materials and methods

Simulations and analyses were performed using MATLAB
2020a (The MathWorks) and FieldTrip open-source toolbox for
Advanced MEG Analysis (Oostenveld et al., 2011).
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FIGURE 1

Virtual MEG helmet construction and source model explained. (A) The translations [T] and rotations [R] of the head of the subject inside the
MEG helmet translate to (B) the counter movements of the MEG sensor arrays while the head remained static. In part I simulations, the
coordinates of the sensors were translated (15, 15, 15) mm and rotated in (20 20 20)◦ (red) as well as (–15, –15, 0) mm and rotated in (–20, –20,
–20)◦ (blue) in relation to the standard helmet position (0, 0, 0) (green). The combination of green and red MEG arrays represents VMHa, while
the combination of all three arrays represents VMHb. The spherical head model positioned inside the VMH is portrayed in gray. (C) A three-layer
spherical grid (10 mm between layers), covering the volume of a spherical head model (inner layer: purple, outer layer: orange, middle: lime).
Three black dots mark the locations of three dipoles within the grid in a particular simulation out of the 1,000 performed that consisted of three
dipoles. (D) Sensor space representations as 2D topographical maps of the forward projections of all three dipoles presented in panel (C). Each
map presents a 248 MEG array: left map–standard helmet [green in panel (B)], middle map—red MEG array in panel (B), right map—blue MEG
array in panel (B).

Construction of virtual helmets

A model based on a whole-head, 248-channel magnetometer
array (4-D Neuroimaging, Magnes 3,600 WH) was used in the
controlled simulations. The head shape and position were taken
from a previous technical work: calibration of the MEG device at
the Electromagnetic Brain Imaging Unit at Bar-Ilan University;
no experiment was conducted. A standard head position inside
the MEG helmet was defined according to a healthy adult male
(one of the authors of this article) in a fully supine posture.
[Comment: in the standard position the coordinates system of
the physical helmet is such that they approximately align with
the head’s planes of view: axial–(x, y) plane, coronal–(y, z) plane,
sagittal–(x, z) plane].

In order to construct VMHs, the guided movements of
the subject head situated inside a MEG helmet were emulated
by the counter movements of the standard physical MEG

array. Each recording section in a specific head position
relative to the physical MEG array was simulated by the
corresponding counter translations and rotations of the MEG
array. Consecutively, while a standard MEG helmet consisted
of a single 248-channel array, the VMHs consisted of a
combination of n MEG arrays, and hence a 248∗n channels,
n > 1 (n is the number of head positions that were virtually
simulated by the translated and rotated MEG array). In the
current study, the VMHs were constructed by combing two or
three 248-channel MEG arrays (n = 2 or 3), one located in a
standard position, and the other(s) undergoing a combination
of translations and rotations (Figure 1B). All rotations and
translations were performed relative to the (0, 0, 0) point in
head coordinates [i.e., the head was fitted with a single sphere,
and the origin of this sphere was set to the (0, 0, 0) position
in the head coordinate system]. The rotations were carried out
prior to translations, in order to rotate around an axis passing
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through the origin (translations: ±15 mm or 0 mm in each of
the x/y/z directions and, rotations: ± 20◦ or 0◦around each of
the x/y/z axes). The magnitude of the translations and rotations
were chosen according to the limitations of physical anatomy
and the fitted spherical head model (r = 95.5 mm) as well as the
spatial constraints of the standard MEG helmet (e.g., an upward
head translation, in the –Z direction, is not feasible in all VMHs).
Consequently, if a VMH was found to clash with the head model,
it was excluded from simulations—four constructed VMHs were
excluded. A full list of the concluding VMHs appears in Table 1.

Source model

Using the head shape, a three-layered spherical grid was
defined, with 10 mm between layers, and 8–12 mm in-between
points comprising each layer (642 equally spaced points per
layer, accordingly, the distances between grid points in the outer
spheres are larger than in the inner sphere). Points outside
the head or below the ears [(0, ±10, 0) mm from edges] were
ignored, leaving 1,084 grid points covering the spherical head
model (Figure 1C).

For each grid point, a dipole was defined by two orthogonal
vectors that were tangential to the layer surface. Since a single
sphere was used as a head model, no vectors were defined
normal to the layer surface. The amplitude of each vector was
randomly chosen between half to a unit vector.

Forward model

In each series of simulations, one or several dipoles were
randomly placed within the three-layer spherical grid. Once
randomly selected, the same set of dipoles (locations and
orientations) were applied when comparing between different
MEG arrays (standard MEG helmet and various VMHs), in
order to maintain fair evaluations. The forward projections of
magnetic fields were computed using FieldTrip (Oostenveld
et al., 2011), while applying a homogenous spherical conductor
model (Cuffin and Cohen, 1977). Gain matrices of 248 (number
of MEG channels) for a standard sensor array, or 248∗n
(when n is number of multiplies of MEG arrays included in
the VMHs) for VMHs by 2,168 (number of vectors in the
source space—1,084 grid points multiplied by two orthogonal
orientations), were formed.

The rank of the gain matrix, the number of degrees of
freedom, is of interest, as it can characterize the general impact
of a particular VMH on source localization, without the impact
of specific neural activation patterns, noise, and the parameters
of the inverse model. The effective rank of gain matrices (for
n = 2, Table 1) was determined using SVD (singular-value
decomposition). The rank of the gain matrix is equal to the
number of non-zero singular value of the SVD of the gain

matrix. However, the effective ranks are calculated from the
truncated gain matrices, by assuming singular values that are
greater than a tolerance value are equivalent to zero, hence,
capturing the number of independent channels (leadfields) that
are of significant effective influence (Lindfield and Penny, 2019).
The tolerance value was set to 0.1% of the maximal singular
value (Nurminen et al., 2010).

TABLE 1 A list of the examined VMHs in part II and III.

Serial no. of
the VMH or
standard

Number
of MEG
arrays

Rotations (◦) The
effective
rank of

gain
matrix

Translations
(mm)

1–Standard 1 – 214

–

2 2 (20, 0, 0)◦ 296

(–15, 15, 0) mm

3 2 (0, 20, 0)◦ 305

(–15, 15, 0) mm

4 2 (0, 20, 0)◦ 306

(–15, –15, 0) mm

5 2 (0, 0, 20)◦ 302

(–15, –15, 0) mm

6 2 (–20, 0, 0)◦ 300

(–15, –15, 0) mm

7 2 (0, –20, 0)◦ 285

(–15, 15, 0) mm

8 2 (0, –20, 0)◦ 286

(–15, –15, 0) mm

9 2 (0, 0, –20)◦ 297

(–15, 15, 0) mm

10 2 (0, 0, –20)◦ 299

(–15, –15, 0) mm

11–VMHa 2 (20, 20, 20)◦ 293

(15, 15, 15) mm

12 2 (20, 20, 20)◦ 303

(–15, –15, 0) mm

13 2 (–20, –20, –20)◦ 295

(–15, –15, 0) mm

14–VMHb 3 (20, 20, 20)◦

(–20, –20, –20)◦
352

(15, 15, 15) mm
(–15, –15, 0) mm

Each VMH was assigned with a serial number. The list differentiates by the number of
combined MEG arrays, the rotations and translations involved in the construction of
these VMHs and the effective rank of their gain matrices, as determined using SVD.
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Noise model

Alongside the implanted sources, two types of noise
components were added to the MEG channels, in a 1 to 2
ratio: technical noise (TN) and brain noise (BN). It is assumed
that magnetic noise originating from the surroundings was
thoroughly cleaned and there are no non-physiological noise
sources within the subjects (e.g., metallic dental work). The TN
and BN noise components were added to the simulated fields,
such that the noise levels of the overall noise (ON) were set to
particular fractions of the signal of interest: 0.1 or 0.3 (other
noise levels are discussed in Supplementary material).

Technical noise
An uncorrelated noise across the sensors, which accordingly

does not depend on the head position inside the MEG helmet or
on the set of neuro-electromagnetic sources. Simulating TN of
the system was obtained by assigning a Gaussian random noise
to each sensor of the standard helmet or of the combined sensor
arrays of VMHs.

TN ∼ k ∗ N (0, 1)over sensors

where : k = f ∗ 1
3 ∗ std(signal)

(1)

In order to scale the added TN to the signal of interest, the
random noise is scaled by a constant factor, k, which consist of:
(1) the noise level factor, f, determining the relative proportion
to the signal of interest (e.g., 0.1 or 0.3); (2) a 1/3 for assigning
the relative weight of the TN from ON, taking into account
that std(TN) = std(ON)/3; and (3) the mean of STD of a
simple model of the signal of interest. In order to assess the 3rd

factor, the signal of interest was modeled by conducting 1,000
iterations of randomly distributing three simultaneously active
unit dipoles throughout the grid. For each iteration, a forward
solution only in the standard MEG helmet was obtained, and its
STD was calculated. In contrast to the BN component (as will be
explained bellow), the TN is indifferent to the particular VMH,
hence, the degree of TN for the standard MEG array and for all
the other MEG arrays of the VMHs should be the same, while at
the same time the SNR should vary between the different sensor
arrays of the VMHs per each set of sources. Thus, the obtained
mean of the STDs for the standard MEG helmet (multiplied
by a weight of 0.75: the mean of the signal ranges from 0.5 to
1) was used to scale the TN. Furthermore, as will be explained
bellow, the relative scaling of TN to BN was set by the standard
head position alone.

Brain noise
A correlated noise component across MEG channels, which

is a result of the activity of multiple neuronal circuits in the
brain, different than the signal of interest. BN depends on the
head position inside the helmet and therefore cannot be of the
same magnitude on the different sensor arrays of the VMH.
Simulating BN was obtained by assigning a Gaussian random

noise to the sources (i.e., to each of the three-layer grid positions
within the brain volume), then scaling this random noise by a
constant factor to its proportion of ON, and last, using forward
calculation (multiplying by the gain matrix of the VMH) to
create correlated brain background noise on the sensors.

BN ∼ Gain · (c ∗ N (0, 1)over grid)

where : c = 2 ∗ std(TN)

std(BNsstandart helmet)

(2)

The BN is sensitive to the dispersal of the noise at the sources
relative to the sensor arrays, and thus depend on the particular
VMH. In order to scale between the relative contributions
of TN and BN to the ON, the standard head position was
used. Accordingly, the random noise at the sources of BN was
multiplied by two times the std(TN) and divided by the mean
of STD of calculated BNs at the standard helmet, all constant
factors. The latter, in practice, was obtained by running 1,000
iterations, in which random vectors (drawn from a Gaussian
distribution) were associated with all simulated brain sources
(grid points), and using forward model (multiplying on the gain
matrix), the BNs on the sensors of the standard MEG helmet
were calculated. Hence, a distribution of BNs was obtained, and
the mean STD of simulated BNs was calculated. Using these
constant factors, obtained from the standard helmet, to scale
the particular sources of BN per each simulation—the assigned
random noise over the grid, directed the std(BN) = 2∗std(TN)
relation. Next, the VMH construct is taken into account,
as the scaled sources of BN are forward projected over the
particular VMH’s sensors.

Additionally, as potential MEG recording time in each head
position decreases in proportion to the number of positions,
there is an expected decrease in number of recorded events that
are averaged per head position (that is per each MEG array
of VMHs) (Medvedovsky et al., 2016). In order to take this
into account and assuming the accumulated events are evenly
distributed between recordings in different head positions, the
ON was multiplied by the square root of n, the number of MEG
arrays in VMHs.

ON =
√
n ∗ (TN + BN) (3)

Inverse model

A single equivalent current dipole (ECD) model
(Hämäläinen et al., 1993) is a simple and widely accepted
way of inverse modeling in MEG. However, for estimation of
complex sources, single ECDs can be applied in sequential steps.
In the current study, each simulated field was source estimated
by sequential single ECD fit, applied as following:

At first the single ECD was fitted to the simulated field
using the symbolic matrix left division operator in MATLAB, \,
dividing the elements of the gain matrix corresponding to each
location in the three-layer spherical grid (i.e., with one location
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two orthogonally oriented unit vectors were associated) by the
measured field (the left division command in MATLAB uses QR
decomposition with pivoting to find the pseudo-inverse).

Li = (Gaini)
−1
leftMsim (4)

where Li is the solution of the ith location represented by a two
by one vector of the dipole source estimate; Gaini is a 248∗n by
two matrix corresponding to the dipole of the ith iteration; and
Msim is a 248∗n by one vector corresponding to the simulated
neuromagnetic field.

Mesti = GainiLi (5)

Ri = corr
(
Msim,Mesti

)
(6)

The location related with the highest squared spatial
correlation between the original and estimated fields was
chosen. Then, the field linked to this ECD (Mestimax ) was
subtracted from the original field. Successively, the next single
ECD was fitted to the residual field. This procedure was repeated
six times. Dipoles with a magnitude (Euclidean norm) that is
proportionally weaker than a threshold of 0.3 of the strongest
dipole were discarded (for details regarding the choice of 0.3
threshold, please see Supplementary Figure 1–top row and
Supplementary material).

Sequential single ECD fit has been used with some
methodological variations both in basic research (Salmelin,
2010) and in epileptiform activity source estimation for epilepsy
surgery (Medvedovsky et al., 2012). In the present article, we
refer to this method as sequential dipole fit (SDF). It is important
to note that often the single ECD is fitted after the sensors were
selected over the field maxima. Here, no sensors were selected
a priori, in order to simplify the handling of complex randomly
distributed sources, and since the way of sensors selection in
VMH is not yet defined and requires further study. While not-
selecting sensors can influence the dipole fit accuracy, the dipole
fits in VMHs and standard MEG helmet were carried out in the
same way, thus not affecting the comparison between them.

Quantitative assessment of source
localization

At each simulation, which compares between the different
VMHs and a standard MEG helmet, the placed set of dipoles:
their number, locations, and directions (expressed by amplitude
relation of the two associated orthogonally oriented vectors)
were identical. To compare the source estimations, for each
simulation, the mean distance accuracy between the locations
of the placed and solved dipoles was calculated. Placed dipoles
without a matching solution, and solved dipoles that are
superfluous, did not contribute to the calculated distance
accuracy. The number of solved dipoles, in comparison to the

number of placed dipoles, was also used as an indicator of the
success of source estimations.

Given a series of different VMHs and a particular set of
placed dipoles, a standard helmet or a specific VMH were
declared as successful in their source estimations, offering the
best solution, according to the following scheme: (1) is the
number of solved dipoles identical to the number of placed
dipoles? (2a) if so, find the helmet that gave the lowest distance
error. (2b.i) if not, is the number of solved dipoles smaller by
one missing dipole? If so, repeat 2a. (2b.ii) if not, is the number
of solved dipoles larger by one superfluous dipole? If so, repeat
2a. Etc. This scheme gave precedence to the number of located
dipoles over distance accuracy, as well as to missing dipoles over
superfluous ones (particularly important for clinical uses).

The robustness of successful source estimations by the
standard MEG helmet or a VMH was tested by inserting
small fluctuations to the locations and orientations of simulated
sources, and reassessing source estimations. This was performed
to avoid chance successes for a particular position and
orientation of simulated dipoles. It was accomplished by
the following procedure: dipoles were placed at neighboring
locations close to the investigated dipoles, with slightly jittered
orientations (change in magnitudes were randomly selected in
the range of –20 to +20% relative to originally placed dipoles).
The neighbors of a grid point included the nearest grid points
in its layer, and its neighbors’ nearest neighbors, as well as an
additional neighbor from each of the other layers, accumulating
between 4 and 20 close neighbors (14.7 ± 4.7 mm) per grid
point. Like the originally placed dipoles, the characteristics of
the neighboring dipoles, that is their amount, locations, and
orientations, were identical at each of the compared simulations.
The source estimation accuracy of these new placed dipoles was
examined by the same series of VMHs and by the standard
helmet as the original dipoles, and the degree of consistency in
obtaining a successful solution by each specific helmet served as
a measure of the robustness of that helmet to localize dipoles
within a given area. This ability of a helmet was calculated by
the following metric: the percentage of neighbors in which the
specific helmet (VMH or standard) offered the best solution
out of all examined helmets. Subsequently, this metric was
also utilized in personalizing or pre-selecting a specific helmet,
according to prior estimations of source locations.

Statistical analysis

Two-way ANOVA was used to examine the effect of both
the number of combined MEG arrays and the number of placed
dipoles on the number of solved dipoles or the distance error.
It was also used to examine the effect of threshold, or noise
level. One-way ANOVA was used to examine the effect of a
particular VMH or the standard helmet (as listed in Table 1)
on the number of solved dipoles or the distance error. This
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same analysis was performed using two-way ANOVA after
adding a categorical variable dividing the cases in which a
helmet (Table 1) offered the best solution for the originally
placed dipole pairs and the cases in which the helmet was
not the best. One-way ANOVA was also used in the 3rd
part of simulations to examine the effect of the helmet [the
standard MEG helmet, the single best VMH (no. 3, Table 1) and
the prior-based personalized VMH] on the number of solved
dipoles or the distance error. Specific comparison between the
standard MEG helmet and the prior-based personalized VMH
was performed using t-test. When ANOVA tests were carried
out, Post hoc comparisons were carried out by the Tukey’s
Honest-Significance test. A permutation test was performed
when comparing the distributions of the distance between
dipoles in placed pairs for cases that there was a favorable VMH
which offered best solution vs. cases there was no such VMH.
A similar permutation test was also performed when comparing
the distributions of the correlations between forward projected
fields over the comprising sensor arrays within VMH.

Details of simulations

The study included three sets of simulations.

Simulations part I: Comparing source
estimations by standard helmet and virtual
magnetoencephalography helmets

In the first sequence of simulations, two type of VMHs were
constructed—combining two (VMHa) and three (VMHb) 248-
channel MEG arrays [VMHa: two MEG arrays, one located in
a standard position and a second translated by (15, 15, 15) mm
and rotated in (20 20 20)◦; VMHb: three MEG arrays, the two
as in VMHa and a third one, which was translated by (–15, –
15, 0) mm and rotated in (–20 –20 –20)◦ (Figure 1B)]. In each
simulation, a set of between one and five dipoles were randomly
placed within the three-layer spherical grid. The magnetic
fields generated by the placed dipoles were forward projected,
alongside noise components which were added (please see
Section “Methods: Noise model”). Per each specific number
of placed dipoles (1 to 5) and noise level (no noise, 0.1 or
0.3) at each sensor array (standard, VMHa or VMHb), 1,000
simulations were carried out. Source estimation was performed
on the projected magnetic fields using sequential single ECD fit
as described in Section “Methods: Inverse model” and the results
from both VMHs and standard helmet were compared.

Simulations part II: Examining the robustness
of successful source estimations by virtual
MEG helmets

In the second sequence of simulations, a set of various
VMHs were constructed (the constructed VMHs are listed in
Table 1). In this part, the scenario of two active sources was

further investigated: 100 pairs of randomly placed dipoles, at
0.1 noise level, were subject to source localizations by all VMHs.
The magnetic fields of these dipoles were constructed by forward
projections and then the sources of these fields were estimated.
The estimated sources were compared to original ones; based on
this comparison the best MEG helmet(s) (standard or VMHs)
were identified for each of the randomly placed dipole pair.
Additionally, at the neighboring grid points of each dipole
within the 100 dipole pairs, similar dipoles (with a jittered
orientation) were placed and were used to assess the robustness
of each VMH to nearby locations and orientations (for details,
please see previous section on Quantitative assessment of
source localization).

Simulations part III: Constructing a prior-based
personalized virtual MEG helmet

In the third part, three consecutive series of simulations were
carried out (Figure 6, displays a flow chart): [stage 1] simulating
the 100 pairs of dipoles as before, while only the standard MEG
helmet was utilized for their localization; [stage 2] the source
estimation of stage 1 was set as a prior source distribution in
the current stage. That is, the 100 prior distributions (estimated
locations and orientations) obtained in stage 1 were re-localized
by the whole set of VMHs (excluding the standard MEG
helmet, as the source estimation was obtained by it, avoiding
a bias in its favor). Additionally, similar dipoles, with slightly
jittered orientations, were placed at neighboring grid points to
each of the estimated sources of stage 1 and were re-localized
separately. In order to determine the closest to optimal VMH
for each estimated source among the examined VMHs, the
sum of cases (estimated sources of stage 1 or their neighboring
dipoles) of which each VMH offered the best solutions was
used as an indicator to the best VMH(s) per the specific prior
source distribution. If more than one VMH was associated
with the larger sum of cases, and therefore offered overall
equally best solutions, one of the VMHs was randomly chosen
(Supplementary Figure 2); [stage 3] in order to test whether
the chosen VMH of stage 2 improved the source estimation
relative to the actual neuronal sources, the original 100 dipole
pairs simulated at stage 1 were subject to source estimation by
the VMH that was chosen in the 2nd stage. Next, the source
estimation quality was evaluated by comparing the original pair
of dipoles, to the estimated sources of stage 3.

Results

The simulated fields were captured differently by a standard
MEG array and VMH. Placed dipoles on the grid result
in forward projections that may substantially vary between
the MEG arrays that comprise the VMH (for example,
Figures 1C,D). As portrayed in Figure 1B, the VMH has sensors
placed in different distances and at different angles relative to
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the electromagnetic field. The spatial sampling of the fields
produced by the placed dipoles by the constructed VMH is
potentially richer (Figure 1D).

Simulations part I: Comparing source
estimations by standard helmet to
virtual MEG helmet

Two types of VMHs were constructed—combining two
(VMHa) and three (VMHb) 248-channel MEG arrays. In
each simulation, a set of between one and five dipoles
were randomly placed within the three-layer spherical grid
and noise components were added (for details, please see
Section “Methods”). Figure 2, presents the results of the
source estimation accuracy in these simulations. For fields
constructed from one placed dipole, VMH did not improve
source localization accuracy. For fields constructed from more
than one placed dipole, the effect of the number of arrays in
VMH (n = 1 in standard MEG helmet, and n = 2 or 3 in VMHa
and VMHb, respectively) on the accuracy of source localization
was opposite at low noise levels (0 or 0.1) in comparison to at
high noise levels (0.3 or above).

At low noise levels (0–0.1), the solved sources were localized
with a better distance accuracy, as the number of arrays in
VMH increased. A significant interaction effect was observed
between the "number of arrays" and "number of placed dipoles"
[p < 10−6 and p < 10−8, for no noise and 0.1 noise levels,
respectively; particularly for the same number of placed dipoles:
there were significant effects for two placed dipoles, between
one and three arrays p = 0.0030 and 0.0083 for no noise
and 0.1 noise level, respectively; for three placed dipoles,
between one and three arrays p < 10−6 for both no noise
and 0.1 noise levels; and for four and five placed dipoles,
between all number of arrays p was in the range of between
0.01 till 10−6, excluding a non-significant effect between two
and three arrays (for five placed dipoles p = 0.18 and 0.12,
and for four placed dipoles at 0.1 noise level p = 0.39)].
In contrast, the number of solved dipoles did not show a
significant interaction effect between number of arrays and
number of placed dipoles at low noise levels (no noise or
0.1). Notably, it is important to mention that even at the no
noise condition (0 noise level), there are still some placed
dipole combinations for which the VHMs resulted in an
increase in distance error. At higher noise levels (0.3 or
above), the solved dipoles were localized with an increased
distance error relative to the placed dipoles, while the distance
accuracy even deteriorated with higher number of arrays in
VMH (Figure 2 and Supplementary Figure 1 middle row:
right panels). Moreover, it was accompanied by localization
of superfluous dipoles (Figure 2 and Supplementary Figure 1
middle row: left panels). For more details regarding the results
of the statistical tests, please see Supplementary material.

Overall, part I set of simulations demonstrated that VMHs
can improve source localization accuracy for fields that cannot
be explained by a single ECD when noise levels are low.

Simulations part II: Examining the
robustness of successful source
estimations by virtual MEG helmets

As VMHs offer a richer spatial sampling of the magnetic
fields, the variations in distances and angles of the MEG sensors
may influence the quality of source estimations. Following, a set
of various VMHs were constructed (the constructed VMHs are
listed in Table 1), and pairs of placed dipoles at 0.1 noise level
were subject to source localizations by all VMHs.

In part I simulations the case of source estimations of two
placed dipoles at noise level 0.1 by a two-arrays helmet was not
significantly different than by a standard MEG array or three-
array VMH. Consistent with this result, Figure 3A demonstrates
that when all helmets listed at Table 1 are used for all dipole
pairs, there is no significant difference for both the number of
solved dipoles and the distance accuracy (p > 0.9 and p > 0.7,
respectively), as well as no effect for the number of comprising
arrays (p> 0.8 and p> 0.2, for number of solved dipoles and the
distance accuracy, respectively). Figure 3B displays the relation
between the effective rank of the gain matrix of each VMH
(n = 2, Table 1 and Section “Methods: Forward model”) and
the obtained distance error (R = –0.38, p > 0.2). However, the
number of examined VMHs should have been larger than 50
in order to achieve at least 80% statistical power to reject the
null hypothesis, given the value of the correlation coefficient,
R (Kohn and Senyak, 2020). Regardless of the richness of the
overall spatial sampling offered by a particular VMH, as is
expressed by its truncated gain matrix’s rank, there may be an
additional outlook on source estimation relating to each specific
pair of dipoles, which the effective number of independent
sensors of a VMH cannot reflect.

For each specific dipole pair, there could possibly be a VMH
that may offer a more precise source localization, as opposed to
other VMHs. Figure 3C, shows the percentage of cases among
the 100 placed pairs of dipoles in which each of the tested
VMHs offered the best solution (please see Section “Methods:
Quantitative assessment of source localization”). Markedly, the
standard helmet offered the best localization for only 29% of
dipoles pairs (less than the average of all helmets 33.4 ± 6.6%),
and none of the VMHs offered the best solution for more than
50% of simulated dipoles pairs (It is important to note that
one dipole pair can have several VMHs that provide equally
good solution). Figure 3B inset displays the relation between
the effective rank of the gain matrix and the percentage of
obtaining the best solution by that VMH [R = 0.31, p > 0.3,
desired sample size of approximately 80 VMHs or above
(Kohn and Senyak, 2020)].
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FIGURE 2

Source localization accuracy by VMHs. The number (top row) and the distance accuracy (bottom row) of solved dipoles vs. placed dipoles
(between one and five dipoles) at noise levels of 0, 0.1, and 0.3. The number of combined MEG arrays in VMH is marked by color: 1
(standard)-blue, 2 (VMHa)-red, and 3 (VMHb)-yellow. Each bar represents a mean ± SEM across 1,000 simulations.

In order to test whether per each dipole pair the
source estimation accuracy is related to matching a specific
VMH to a specific dipole pair, offering potentially more
appropriate spatial sampling of the generated magnetic fields,
the neighboring grid locations of each dipole pair were inspected
for source localization by all VMHs and standard helmet
(please see Section “Methods: Quantitative assessment of source
localization”). All dipoles placed at neighboring grid locations
were evaluated for the helmet (one of the VMHs or standard)
that offered the best solutions, and thus enabled to examine
whether the successful solution of a VMH per a dipole pair
is stable for nearby locations, at proximity to the originally
placed dipole pairs. Figure 4A shows two examples of binary
matrices of (Helmets, Neighbors), each of a different dipole pair,
in which each entry is yellow if the specific helmet offers the
best (most accurate) solution, and purple otherwise. The right
panel demonstrates an example of a dipole pair which shows
relatively no preference to a specific helmet (i.e., most VMHs
offered same quality of source estimations on most of their
surrounding neighbors). Alternatively, there are dipole pairs
that show specific preference, and result in successful source
estimation only by relying on the spatial sampling offered by
specific VMHs. The left panel shows an example of such a
dipole pair. Figure 4B summarizes these results, by calculating
robustness: the percentage of neighbors in which each helmet
offered the best solution out of all constructed VMHs and
standard helmet. The bar graph is divided to cases in which

the helmet offered the best solution for the originally placed
dipole pair, and to cases in which the helmet was not the best.
As is clearly evident, there is a significant difference between
these two scenarios (p < 10−10), demonstrating that when
a helmet offers the best solution for a dipole pair, it has a
tendency to provide the same for the neighboring grid points
and oppositely when a helmet cannot. This suggests that a
good solution obtained by a particular VMH construction is a
stable and robust choice per a dipole pair and across its nearby
surroundings. In conclusion of this part, although there is no
significant difference in the overall performance of all studied
helmets, there was still a preference demonstrated by the various
helmets, to more accurately estimate particular dipole pairs.
The non-randomness of this preference is highlighted by the
robustness of providing a good solution per a dipole pair and
over its neighboring grid points by the same helmet.

Simulations part III: Constructing a
prior-based personalized virtual MEG
helmet

Figure 5A compares the distance accuracy of standard
helmet (blue) to the VMH that had on average the lowest
distance error and thus was the overall best single VMH
for the whole 100 pairs of dipoles (VMH marked by no.
3, red, see also Table 1) to the theoretical or unfeasibly
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FIGURE 3

Assessing the source estimation accuracy by various VMHs. (A) The number of solved dipoles and the distance error: mean ± SEM of the 100
simulations of placed dipole pairs. (B) The relation between the mean distance error to the effective rank of the gain matrix. Each red point
represents a VMH (n = 2, Table 1) (R = –0.38, p > 0.2) [inset: same for the percentage of best solution, as explained in panel (C), green point
represents a VMH (n = 2, Table 1) (R = 0.31, p > 0.3)]. (C) For each of the tested VMHs and standard helmet, displays the percentage of cases
among the 100 placed dipole pairs in which the specific VMH offered the best solution of all the tested VMHs. The x-axis is sorted to emphasize
the relative distribution around the mean.

personalized VMHs, which matches to each dipole pair the
VMH which gave the best solution (purple). The theoretical
personalized VMH is only presented for visualization purposes,
to display the possible contribution that could have been
made by a VMH, if its selection was driven by an a priori
knowledge of the sources’ locations. [Comment: No statistical
tests were carried out, as the selection involved is biasing
toward a significant effect (i.e., circular inference or "double-
dipping")]. However, one cannot completely know the identity
of the neuroelectromagnetic sources. Therefore, in practice, to
potentially approach the benefits of the theoretical personalized
VMH (purple, Figure 5A), one can rely on a hypothesis or more
specifically a prior based on previous MEG measurements, and
tailor a VMH, close to the optimal, for these particular sources.

Therefore, the following methodology is presented: given
previous results by MEG in a standard helmet position,
the estimated sources by these recordings is set as a prior
source distribution for simulating and selecting the suitable

construct of a VMH (i.e., in current clinical practice, what head
movements to instruct the subject in order to optimally sample
the sought after neuronal sources). Here, in order to test the
feasibility and effectiveness of this approach, three consecutive
series of simulations were carried out (please see flow chart
in Figure 6 and Section “Methods: Details of simulations: Part
III”). Notably, while in practice, the simulations in stages 1 and
3 merely imitate real MEG recording, stage 2 is in its nature a
simulation stage that will consist of a series of simulations also
while implemented in real clinical or experimental applications,
aimed to select (or tailor) a VMH that can approximate optimal
results in stage 3. The chosen VMH of stage 2 is termed the
prior-based personalized VMH.

Figure 5A also presents the comparison between the average
distance accuracy obtained by a standard MEG helmet (blue) vs.
the prior-based personalized VMH (yellow). Selecting a VMH
based on a prior distribution that was obtained from previous
measurements (stage 1—simulating previous MEG recordings)
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FIGURE 4

Source estimations across neighbors via VMHs. The neighboring grid locations of each dipole of 100 dipoles pairs were used to evaluate the
source estimations by the VMHs. (A) Binary matrices of (VMHs, Neighbors), each of a different dipole pair: yellow–if the specific VMH offer the
best (most accurate) solution, and purple–otherwise. Examples: right panel–a dipole pair which shows relatively no preference to a specific
VMH, and most VMHs offered the same quality of source estimations over neighbors; left panel–a dipole pair which shows source localization
preference via specific VMHs. (B) The robustness of a helmet in the source estimation of a dipole pair is represented by calculating the
percentage of neighboring dipoles for which a specific helmet offered the best solution out of all helmets, while dividing into cases in which the
specific helmet offered the best solution per an originally placed dipole pair (left panel), and to cases it did not for other original dipole pairs
(right panel).

is shown to significantly improve source localization compared
to a standard MEG helmet (significant difference for distance
error p < 10−5, and a non-significant difference for number
of solved dipoles p > 0.4). In 18 of the 100 dipole pairs
tested, the set of examined VMHs offered the same quality of
source estimation (Supplementary Figure 2). These cases were
characterized by a significantly shorter distance between the two
dipoles in the pair (p = 0.0001) and higher correlations between
the forward projected fields of the comprising MEG arrays
of the prior-based selected VMH (p < 0.05) (Supplementary
Figure 2). Excluding these cases results in even stronger
effect while comparing the prior-based personalized VMH to
the standard helmet (significant difference for distance error
p < 10−8, Figure 5A, and a non-significant difference for
number of solved dipoles p = 0.3). On average, the prior-based

personalized VMH (yellow) outperformed the standard MEG
helmet (blue) by ∼36.4% (excluding the no-preference cases, or
∼24.8% otherwise: over all 100 dipole pairs) distance accuracy.
Markedly, the single VMH which preformed best on the studied
dipole pairs (no. 3, red and Table 1) also outperformed the
standard MEG helmet by ∼24.5% (excluding the no-preference
cases p < 0.05, or ∼19.5% otherwise, p < 0.1 marginally
significant) distance accuracy. Yet, the difference in distance
accuracy between the prior-based personalized VMH and the
single best VMH (no. 3) was non-significant (p = 0.47 excluding
the no-preference cases; or p = 0.84 otherwise). Figure 5B
demonstrates the distribution of the number of times each
VMH was selected across the studied dipole pairs, excluding
the 18 no-preference cases (inset: before random selection,
in cases there were more than one, yet less than all, VMH
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FIGURE 5

Comparing personalized VMH to standard MEG helmet. (A) A mean ± SEM of distance error across 100 dipoles pairs minus the excluded 18
cases where no VMH outperform the others in source estimation accuracy. The bars represent: standard helmet (blue), the overall best specific
VMH (serial no. 3, see Table 1) (red), the prior-based personalized VMH (per dipole pair, the selected VMH based on simulated previous
recording) (yellow) and theoretical personalized VMH (based on apriori knowledge of source locations) (purple). Statistical test was only
conducted for the comparison between the standard helmet to prior-based personalized VMH, to avoid circular inference. (B) A distribution of
the evaluated VMHs, each count represents a dipole pair for which the specific VMH was selected. For 18 dipole pairs out of 100, no VMH was
selected, as the source estimation accuracy of all evaluated VMHs was the same. In cases there were more than one, yet less than all, VMH that
preformed the best (Supplementary Figure 2), one VMH was randomly selected (inset: the distribution before random selection).

FIGURE 6

Constructing a prior-based personalized VMH. A flow chart of the sequence of simulations that were carried out in part III. (stage 1) simulating
1st set of MEG recordings in the standard position of the head inside an MEG helmet, while supposedly actual pair of active neuronal sources
are imitated by a placed pair of dipoles; (stage 2) next, the source estimation of stage 1 was set as a prior source distribution in the current stage.
These placed prior-based dipoles as well as similar dipoles at neighboring grid points were used to determine the closest to optimal VMH
among the examined VMHs (for details, please see Section “Methods: Details of simulations: Part III”) (stage 3) following, the original active
sources simulated at stage 1 are now subject to source estimation by the VMH that was chosen in the 2nd stage, and the results are compared
to the source estimations of the same original sources by the standard MEG helmet. This is done in order to examine whether the chosen VMH
of stage 2 advances the source estimation accuracy relative to the actual neuronal sources.
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that preformed the best). It is clear that indeed VMH marked
by no. 3 is overrepresented in the distribution, but it was
not selected as most suitable in all the 100 examined dipole
pairs. To avoid p-hacking a single random selection from
the equally preforming helmets was applied and presented
(yellow), yet 100 other random selections were also examined
and the significance of the obtained results remained the same
(mean distance error by the prior-based personalized helmet
10.0 ± 0.2 mm over the 100 selections, and p = [0.002.. 0.03]
compare to standard helmet and p = [0.5.. 0.9] compare to best
single helmet (no. 3); and when excluding the 18 non-preference
cases mean distance error 7.91 ± 0.08 mm and p = [0.0007..
0.0015] and p = [0.4.. 0.5], respectively).

In the above results, the standard MEG helmet was excluded
from stage 2 and the list of helmets to select the prior-based
personalized VMH, hence, avoiding the potential bias due to
the role of the standard helmet in stage 1. However, to reject
an assumption that the standard helmet could have had of
a considerable part as a candidate helmet for stage 2, the
above analyses were repeated, now also including the standard
helmet. In this scenario, the standard helmet was found to
perform the best above all others in only 2 of the 100 dipole
pairs, and alongside some of the other helmets but not all in
only three of them. As before, also in this scenario, the prior-
based personalized helmet outperform the standard helmet,
with a lower distance error of ∼34.6% when excluding the
no-preference cases, or ∼26.6% otherwise (p < 10−8), and
a non-significant difference in the number of solved dipoles
(p > 0.1). Moreover, another validity test was as following:
stage 2 was performed by solely the standard helmet, solving
the forward projected fields of the localized sources of stage 1.
The standard MEG helmet with the solved dipoles, preformed
poorer than the standard helmet with the original dipole pairs,
when calculating its source estimation accuracy relative to the
original dipole pairs. Although the standard helmet with the
solved dipoles found significantly less dipoles as compared to the
standard helmet on the original dipoles (2.0± 0.4 and 2.2± 0.6,
respectively, p < 0.005), the distance error was significantly
larger (14.4± 11.0 and 12.4± 8.8 mm, respectively, p < 0.005).

Overall, selecting per each dipole pair a VMH that offers the
best solution for its prior distribution, lead to improved distance
accuracy in a feasible manner (yellow), and to move toward
the results of the theoretically personalized VMH (purple) that
can only be obtained by having full information regarding
the actual characteristics of the dipoles. The latter suggests a
ceiling effect of ∼57.5% improvement (that was obtained under
the same constraints by the theoretically personalized VMH
excluding the no-preference cases, or ∼46.6% otherwise: over
all 100 cases) relative to standard helmet for these specific
dipole pairs and examined set of VMHs (at the three-layer
spherical grid resolution and the applied source localization
method). The prior-based personalized VMH can come near
this improvement.

Discussion

This manuscript should be read as a proof of concept
of the VMH method. Under the limitations of this study
(listed in the relevant section below), the VMH method was
assessed for source estimation accuracy relative to a standard
MEG array. The results of this study showed that at low
noise levels VMHs may significantly improve the distance
accuracy of source estimations for the neuromagnetic fields that
cannot be explained by a single generator. At theses low noise
conditions, increasing the number of combined MEG arrays
resulted in higher accuracy, particularly at large number of
sources. Importantly, while low noise levels of 0.1 are unlikely in
raw MEG data, they can be achieved by averaging similar signals.

Assuming the same resources of overall MEG recording
time, the single standard MEG head position will include
more events that can be averaged, compared to shorter
recordings at several head positions. Accordingly, the VMH
is characterized by a lesser noise suppression by a factor of
the square root of the number of combined MEG arrays
(i.e., head positions), that is if one supposes a similar event
distributions and equal recording time in each head position
(this factor was taken into account in the simulated noise,
please see Section “Methods: Noise model”). At a high noise
level, the source estimation accuracy was found to weaken
by the VMHs, in comparison to a standard MEG helmet.
The advantage in sampling did not overcome the shortage in
noise suppression, and the specificity and sensitivity offered by
VMHs deteriorated.

At low noise levels, that is for high SNR signals, the
VMH may offer significant benefits. Enriching the spatial
sampling of electromagnetic fields by constructing a VMH,
and virtually increasing the effective gain of the measurement
apparatus relative to the physical MEG helmet, may overcome
the reduction in noise suppression and on average improve
the source estimations. Nevertheless, even when no noise
components are simulated (0 noise level), there were still cases
where the standard helmet outperformed the VMHs. This
demonstrates that the improvement obtained by the VMH
concept is not a mere reflection of enhancing the SNR, and that
the error of VMH estimation is not only noise driven.

Source estimation is a non-linear problem with an intrinsic
sensitivity to the obtained spatial sampling of the generated
electromagnetic fields. In some of the cases, the sampling by the
add-on combined MEG arrays of the VMHs may in fact impair
the reached solution. Therefore, it is important to optimize the
VMH construct to the postulated sources, and thus to enrich the
sampling in a custom-made way. While one can build a physical
helmet with a sensor layout engineered to increase the rank of
the gain matrix (i.e., optimize at general, for all grid points), this
layout may not be optimal for specific neural generators (i.e., the
same sensor layout can be the best for one neural pattern, and
not the best for another). However, the advantage of the VMH
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concept is that it can be approximately optimized to the specific
neural generators.

Based on evidence from previous MEG recording, that is
assuming postulated sources, personalizing the construction of
a VMH according to individual information was shown to be an
advantageous approach. It seems that directing the changes in
the head position with respect to the MEG sensor array, while
relying on foregoing evidence, can improve source localization.
Nonetheless, the personalization approach, as was introduced in
this manuscript, is rather naïve, involving only a predefined set
of VMHs, as well as assuming an identical recording time at each
head position (i.e., emulated by the corresponding translated
and rotated MEG array). This approach has proven useful,
offering a ∼24.8% (or even a ∼36.4%, for cases that a VMH
was in fact selected) improvement in source estimation accuracy
in comparison to standard MEG for the cases and conditions
studied, which suggest a potentially non-negligible contribution,
if a relatively low noise level can be achieved (e.g., by averaging
similar signals) and for complex sources that include at least
two generators. To compare this improvement to figures known
from EEG, for example, Song et al. (2015) demonstrated a
more accurate source localization of EEG data by increasing
the number of electrodes: a ∼27% improvement in localization
distance error from 32 to 64 electrodes using minimum norm
and full coverage, and only a∼8 and∼7% from 64 to 128 to 256,
respectively. Moreover, the improvement demonstrated here
was achieved by a two steps procedure: choosing a proper VMH
based on the results from a previous recording in the standard
head-MEG position and then conducting the new recordings
and analyses according to the chosen VMH. However, the
standard head position is only offered as a seemingly neutral
position to begin with. An optimal VMH construct may not
need to rely on this standard position. This should be examined
in future studies. Moreover, given abundant recording time, a
large number of steps, each in a different head position and
duration, can be conducted, with a sequential improvement to
the source estimations and hence to the chosen or constructed
VMH. Hypothetically, this kind of procedure, which iteratively
approximates the inverse problem solution, could serve to
achieve a close to optimal solution.

Application in epilepsy

Since the main clinical interest of the authors of this
article is in the improvement of epilepsy surgery outcomes, the
application of VMH in epilepsy is receiving special attention
in the study. Nevertheless, the VMH approach is not limited
to epilepsy and can be applied in other fields of basic and
clinical neuroscience, such as estimation of brain activity
hubs triggered by cognitive tasks. In epilepsy clinical practice,
IEDs are commonly used to localize the irritative zone in
patients suffering from epilepsy (Barkley, 2004; Bast et al., 2004;

Pellegrino et al., 2016). When IEDs are averaged, high SNR
is readily attainable, making the VMH method applicable and
favorable. The magnitude of a typical interictal spike can be
approximately a factor of 2 over background—at the peak of
the spike the noise level will be close to 0.5 (a 1:2 ratio) and at
half height it will be close to 1 (a 1:1 ratio); assuming an average
of 100 spikes—the noise suppression will be by a factor of 10
(a square root of 100); therefore, at the peak - the noise level
will be ∼0.05, and at half height - it will be ∼0.1. Moreover, the
VMH benefits were demonstrated for complex fields associated
with multiple generators. Markedly, by current methods, source
estimation for complex fields, is challenging (Baillet et al., 2001;
Hansen et al., 2010; Supek and Aine, 2019). The VMH approach
can aid in such cases.

Figure 7 depicts a suggested decision tree for the
implementation of the VMH approach in the current clinical
practice, as part of the presurgical evaluation of drug-resistant
epilepsy patients. When seeking to determine the location of
epileptogenic zone(s), first, it should be decided, based on
data from preliminary standard MEG recording, whether the
VMH approach can improve source estimation in the particular
situation. If IEDs are not averageable (too few or too scattered)
or if the field of averaged IED can be explained by a single dipole,
the VMH is not a preferable approach and the recording should
be continued according to regular clinical practice (Gross et al.,
2013). Otherwise, benefit can be achieved by using either prior-
based personalized or non-personalized VMH, as determined by
the following set of conditions. If a single population of IEDs is
present and their field topography is stable throughout the IED
time course, then the personalized VMH approach is preferable.
Notably, a single population of IEDs can be comprised of several
neural generators at different locations, as is intended in this
scenario. Likewise, the personalized VMH should be preferred
if a decision can be made, whether: (1) one IED type is more
important than others or (2) one time-point during the averaged
IED time course [usually a half-way between IED start and peak
(Lantz et al., 2003)] is more important than other time points.
Both decisions can be based on data on main brain regions
of interest achieved from other studies, such as video-EEG,
MRI, PET. If preference cannot be made, the recommended
approach is to utilize the head positions that comprise the best
non-personalized VMH, given the sensor layout of the specific
physical MEG apparatus. The best non-personalized VMH
should be determined by numerous simulations of randomly
distributed dipoles (within the scope of this study, and the
limited set of simulated generators and examined VMHs, VMH
no. 3, Table 1). Of note, while it is important to classify IEDs
before averaging (Bast et al., 2004), the VMH approach can
introduce pitfalls in the classification, since IEDs of the same
type, measured in different head positions, have different field
distribution through MEG sensors. However, simultaneously
recorded EEG, which is not affected by head position, and
utilizing the EEG-classified IEDs as triggers for the averaging
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FIGURE 7

A decision scheme for implementing VMH approach in pre-surgery epilepsy clinic. After recording in a standard head position for 1 h, the
clinician reviews the spread of the collected IEDs, and determines whether to: (1) continue with standard practice or (2) personalize the VMH, or
(3) construct a VMH that generally works well for the specific MEG apparatus. The generally well VMH is pre-designed based on numerous
simulations of randomly distributed dipoles.

of MEG signals may overcome this obstacle. Our suggested
clinical decision algorithm can be feasibly implemented during
a regular 2–3-h MEG session, when the first hour will be used
to examine the characteristics of IEDs in standard MEG helmet
recording, as a basis for deciding whether to continue the study
with the regular helmet or with one of the VMHs. However,
unrestrained recording time resources may permit the use of
more sophisticated designs, including VMHs based on more
than two MEG arrays, several differently personalized VMHs for
distinct populations of IEDs, and long-duration recordings that
can enable accumulating sufficient IEDs to optimize averaging.

Limitations and future directions

The VMH concept offers a virtual rise in the number of
sensors, and the distances and angles in which the sensors are
placed relative to the electromagnetic field generators, enriching
the spatial field sampling. Source estimation depends on the
number and spatial distribution of sensors, yet, in conjunction
with the selected forward model, the method of inverting
the leadfield matrix, and the source space geometry (Baillet,
2010). Here, the simulations were carried out in simple settings
(e.g., a spherical head model consisting of a three-layer grid,
gaussian technical and physiological noise models, and SDF

source estimation model). These choices were driven by owing
clear and direct comparisons. For instance, SDF, is a non-
linear model and is based on the sequential solution of over
determined equation systems. SDF was chosen over competing
methods, as it allowed to reduce the number of parameters
used for comparison between the standard MEG array and
VMHs to only two: the number of reconstructed sources and the
distance between placed and estimated sources. This enabled a
straightforward helmet preference. Moreover, SDF is considered
here only as a tool for selecting the optimal field sampling
strategy and not as a definitive source estimation method: after
the optimal MEG array is selected, any inverse problem solution
method can be used. The significant aspect of the applied source
estimation technique is maintaining similar model attributes in
all comparisons. In that regard, although committing what is
sometime referred to as “the inverse crime” (Colton and Kress,
1998), using the same model for computing both forward and
inverse solvers, the results for more than a single placed dipole
are still not expected to be trivial (Wirgin, 2004). Furthermore,
this choice supports comparisons between helmets by avoiding
inserting artifacts that may be recovered from the particulars
of the solvers’ representations (Wirgin, 2004). Additionally, in
the carried-out simulations, sources were placed at random
locations, with an equal probability throughout the grid. In
practice, sources are not uniformly distributed. For example,
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in focal epilepsy there is a higher frequency for sources in
the temporal lobe. Yet, MEG pre-surgical clinic often evaluates
complex cases with extra-temporal sources. Random placements
of sources were applied as a simplified approach to demonstrate
the feasibility of the VMH concept. Overall, the conditions
described above may limit the generalizability of the study
conclusions. Future studies may aim to investigate the influence
of other source estimation methods, particularly distributed
approaches, and of more detailed forward models, including
more realistic head models with a non-uniformly weighted
(experimentally- or clinically- driven) source distribution, on
the VMH concept.

The VMH approach is applicable to spatiotemporally stable
sources and signals. Triggered or spontaneous recurring events,
such as interictal epileptiform discharges (IED) or evoked
responses, can benefit from the VMH. In contrast, VMH
should not be applied to investigate ongoing activity or to
analyze single events. The source estimation accuracy by a
VMH may be influenced by various factors. Using VMH,
it is important to confirm that the recorded brain activity,
combined from different head positions, is related to the
same generators. Accordingly, interictal epileptiform discharges
should be correctly classified in different head positions using
simultaneously recorded EEG. Failure to classify the signals
correctly can lead to errors in source estimation. In the case
of evoked responses, the habituation effect (Megela and Teyler,
1979) can lead to a decreased response amplitude in the
second and/or later head positions. This phenomenon can
also be detected by simultaneous EEG recordings. Temporal
interruptions between MEG recoding in different head positions
may eliminate the habituation effect. In addition, the VMH can
fail to improve source estimation accuracy or even reduce it, if
the data is too noisy or the amplitude of the signal is too low.
In the case of an epilepsy patient with infrequent IEDs, the IED
averaging can fail to reach a high SNR, which is needed for the
VMH. The same can happen, when IEDs are too variable—in
this case the signal classification will create many IED classes
with low number of IEDs in every class. Finally, in the present
work we demonstrated that VMH does not improve the source
estimation accuracy if the magnetic field can be explained by
only one equivalent current dipole.

The VMH method is unique for off-scalp MEG, but
potentially can be expanded to other devices of flexible sensor
layout. The personalized selection of a VMH based on a
prior, can be further developed toward a fully tailored VMH
procedure. Potential progresses in MEG machinery as well as
in the applied algorithms can contribute to tailoring the VMH
to the events and brain of interest, based on improving both
(1) the prior of postulated source distribution and (2) the
assembly of the VMH: refining the resolution in the head-MEG
relative positions in parallel with adjusting the corresponding
recording periods. Improving, at first stage, the established
prior probability distribution of the neural generators, utilizing

more advanced source localization techniques, which may
also support distributed solutions, could further improve the
VMH approach. In addition, future algorithms may possibly
be iterative and online adaptive, to sequentially refine the
source localization.
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