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Background: Identifying new biomarkers of major depressive disorder (MDD)

would be of great significance for its early diagnosis and treatment. Herein,

we constructed a diagnostic model of MDD using machine learning methods.

Methods: The GSE98793 and GSE19738 datasets were obtained from the

Gene Expression Omnibus database, and the limma R package was used

to analyze differentially expressed genes (DEGs) in MDD patients. Gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses were performed to identify potential molecular functions

and pathways. A protein-protein interaction network (PPI) was constructed,

and hub genes were predicted. Random forest (RF) and artificial neural

network (ANN) machine-learning algorithms were used to select variables and

construct a robust diagnostic model.

Results: A total of 721 DEGs were identified in peripheral blood samples of

patients with MDD. GO and KEGG analyses revealed that the DEGs were

mainly enriched in cytokines, defense responses to viruses, responses to biotic

stimuli, immune effector processes, responses to external biotic stimuli, and

immune systems. A PPI network was constructed, and CytoHubba plugins

were used to screen hub genes. Furthermore, a robust diagnostic model was

established using a RF and ANN algorithm with an area under the curve of

0.757 for the training model and 0.685 for the test cohort.

Conclusion: We analyzed potential driver genes in patients with MDD and built

a potential diagnostic model as an adjunct tool to assist psychiatrists in the

clinical diagnosis and treatment of MDD.
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major depressive disorder, machine learning, random forest, artificial neural network,
bioinformatics analysis

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.949609
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.949609&domain=pdf&date_stamp=2022-08-08
https://doi.org/10.3389/fnins.2022.949609
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.949609/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-949609 August 2, 2022 Time: 15:27 # 2

Liu et al. 10.3389/fnins.2022.949609

Introduction

Major depressive disorder (MDD) is a general chronic
psychiatric disorder affecting people of all ages, which can
ultimately lead to chronic disability, financial difficulties, and
shortened life expectancy (Murray and Lopez, 1997; Zhdanava
et al., 2021). In recent years, as increasing importance has been
placed on the treatment of mental illness, the proportion of
patients seeking treatment for MDD rose from 43.5% in 2007–
2008 to 52.9% in 2015–2016 (Rhee et al., 2020). In China, MDD
is the most common mood disorder, with a lifetime prevalence
of 3.4% and a prevalence of 2.1% at 12 months (Huang et al.,
2019). However, the misdiagnosis rate of MDD can reach as
high as 78%, and misdiagnosis often leads to improper treatment
(Fernández et al., 2010). The early identification of MDD is
particularly important; therefore, it is of great significance to
identify new and feasible biomarkers for the early diagnosis and
treatment of MDD.

Obtaining peripheral blood biomarkers is a more
convenient and practical method of diagnosis than brain
imaging or biopsy. Recently, many studies have focused on the
use of mRNA expression data from peripheral blood groups
to investigate the differential characteristics between patients
with MDD and healthy populations. For example, Woo et al.
(2018) analyzed gene expression in peripheral blood of 38
patients with MDD and 14 healthy controls and identified
seven differentially expressed genes (DEGs). Spijker et al.
(2010) studied the peripheral blood of 21 patients with MDD
and 21 healthy control participants and found significant
differences in the expression levels of CAPRIN1, CLEC4A,
CKRT23, MLC1, PLSCR1, PROK2, and ZBTB16, indicating
that this signature could distinguish patients with depression
from healthy individuals. Therefore, a predictive diagnostic
model based on mRNA expression could help us understand
the potential pathophysiology of MDD and may further support
clinical decisions.

Currently, machine learning is increasingly applied in the
medical field and has come to play an important role in the
diagnosis and prognosis in the fields of oncology, neurology, and
cardiology. For example, Ciobanu et al. (2020) used a random
forest (RF) approach to predict depression and suicide risk
in 39 patients with depression and 87 healthy controls using
blood methylation and transcriptomic data, with an accuracy
of 87.3% in distinguishing between the two groups. Bill et al.

TABLE 1 The information of datasets.

Dataset Platform Organism Tissue Sample

Normal Disease

GSE19738 GPL6848 Homo Sapiens Blood 34 33

GSE98793 GPL570 Homo Sapiens Blood 64 128

used a regularization gradient enhancement machine to classify
microarray gene expression data in the blood of 1581 patients
with MDD and 369 controls, with an average area under the
curve (AUC) of 0.64 (Qi et al., 2021). An artificial neural
network (ANN) model has further been applied in the diagnosis
of many asymptomatic and early diseases (He et al., 2020)
using a neural network classifier to the voice of patients with
depression. The control group variables were analyzed, and
the diagnostic accuracy rate was between 82.40 and 93.02%
(Navarro et al., 2019). ANNs can accurately predict the positive
or negative effects of Alzheimer’s disease and Mycobacterium
tuberculosis, with a total accuracy of 93.8 and 94% (Khan et al.,
2019; Swietlik and Bialowas, 2019). However, no ANN-related
diagnostic model has been applied to construct an auxiliary
peripheral blood diagnostic model for patients with MDD.

In this study, we obtained the MDD-related datasets,
GSE98793 and GSE19738, and analyzed DEGs in patients
with MDD. Functional analyses, including gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG), were performed to investigate the enriched molecular
functions and pathways. Machine learning algorithms,
including RF and ANN, were used for variable selection and
diagnostic model construction. Based on these results, we
compared the discrimination and accuracy of single genes and
diagnostic models for MDD.

Materials and methods

Data collection and data processing

The GSE98793 and GSE19738 datasets were searched from
the Gene Expression Omnibus database1 using the following
keywords: “MDD, blood, normal” [All Fields] AND “Homo
sapiens” AND “Expression profiling by array” [All Fields].
The screening standards for microarray datasets included
the following: reference to profiles of gene expression with
genome-wide whole blood; containing samples from patients
with MDD and healthy controls; all included samples were
not treated with drugs; the number of samples was greater
than 40. Eventually, GSE98793 (Leday G. G. R. et al., 2018)
and GSE19738 (Spijker et al., 2010) were screened for in-
depth investigation. The GSE98793 dataset was provided by
Kelly et al., who examined a total of 192 peripheral blood
samples, including 128 from MDD patients and 64 from healthy
volunteers. And Affymetrix Human Genome U133 Plus 2.0
Array was used to test. GSE19738 data set was provided by
Spijker, using the chip Agilent-012391 Whole Human Genome
Oligo Microarray G4112A. They detected 132 peripheral blood
samples in total from 34 healthy volunteers and 33 MDD

1 https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1

Before and after box diagram of standardization of GSE19738 and GSE98793 datasets. (A) The flow chart of this study. (B) Box diagram of the
GSE19738 dataset before correction; (C) Box diagram of the GSE98793 dataset before correction; (D) Box diagram of the GSE19738 dataset
after correction; and (E) Box diagram of the GSE98793 dataset after correction; Red represents the MDD samples, and blue represents the
normal samples.

patients, respectively. The information for patients with MDD
and healthy participants was provided in Table 1.

Differential expression analysis

The limma package in R software was used for standardized
processing of the datasets to eliminate changes in gene
expression caused by experimental techniques, and the
normalized data were used for subsequent analysis. Differential
analysis was carried out on the GSE19738 dataset, and the cutoff
value was set to | log2FC| > 1, adj. P < 0.05.

Functional enrichment analysis and
protein-protein interaction network

To explore the function and pathways of the identified
DEGs, GO and KEGG pathway enrichment analyses were
performed using the clusterProfiler R package. Statistical
significance was set at P < 0.05. The protein-protein
interaction (PPI) network between the DEGs was analyzed
using the STRING database2. The interaction score was set

2 https://string-db.Org
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FIGURE 2

DEG identification of the GSE19738 dataset. (A) DEGs of peripheral blood samples from patients with MDD and healthy controls were obtained
from the DEG heat map constructed from the GSE19738 dataset. Horizontal coordinate blue represents the control group, red represents the
experimental group, blue indicates low expression, and red indicates high expression. (B) Volcano diagram, black indicates genes with no
differential expression, blue indicates down-regulated genes, and red indicates up-regulated genes. (C) GO enrichment analysis. The outer
circle represents the number of GO term, the outer circle number represents all genes in GO term, and the inner circle number represents the
number of enriched genes. The inner circle pie chart represents the percentage of genes that are enriched. (D) KEGG pathways. The outer circle
represents the KEGG ID, the outer circle number represents all genes in the KEGG pathway, and the inner circle number represents the number
of genes enriched in the pathway. The inner circle pie chart represents the percentage of genes that are enriched. DEGs, differentially expressed
genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

to 0.900 (highest confidence), and the nodes in the network
were randomly clustered using the k-means algorithm
to reveal potential regulatory relations between nodes.
Subsequently, the ten most significant hub genes were screened
using cytoHubba.

Variable selection and diagnostic
model construction

The RF algorithm is a classifier that contains multiple
decision trees. It uses the RF package for analysis and sorts genes
according to their importance. Genes with high importance
were extracted from the list of different genes for visualization.

After the MDD characteristic genes were screened using
the RF algorithm, information redundancy was removed by
collinearity analysis. Taking the threshold of the Spearman Rho
absolute value as >0.5, the parameters with collinearity were
removed, and the model was further constructed using an ANN.

The ANN consists of the following three layers: the input,
hidden, and output layers of six, five, and two neurons,
respectively. An ANN software simulator was used to solve the
return of the mission, including the forecast revision numbers.
The network’s answer to each test case ranged from 0 to 1.
The level of activation and inhibition of the output neurons is
automatically selected by the stimulator of the ANN to minimize
losses. The error function of the ANN was chosen as the sum
of the square of the prior given value and the actual value of
the output neuron. GSE19738 and GSE98793 were used as the
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TABLE 2 GO enrichment analyses results.

GO ID Description Number P value Q value

GO: 0034341 Response to
interferon-gamma

37 1.46E-24 4.15E-22

GO: 0051607 Defense response to virus 49 3.74E-32 2.36E-29

GO:0009615 Response to virus 58 5.70E-35 4.63E-32

GO:0019221 Cytokine-mediated
signaling pathway

80 2.27E-32 1.61E-29

GO:0098542 Defense response to
other organism

61 1.42E-24 4.15E-22

GO:0045087 Innate immune response 104 8.81E-42 1.25E-38

GO:0001817 Regulation of cytokine
production

69 2.04E-25 6.84E-23

GO:0001816 Cytokine production 69 3.01E-25 9.51E-23

GO:0034097 Response to cytokine 107 2.77E-39 2.62E-36

GO:0051707 Response to other
organism

88 7.14E-30 3.11E-27

GO:0043207 Response to external
biotic stimulus

88 7.66E-30 3.11E-27

GO:0071345 Cellular response to
cytokine stimulus

93 1.43E-31 8.12E-29

GO:0009607 Response to biotic
stimulus

91 8.60E-31 4.45E-28

GO:0006952 Defense response 147 2.56E-47 1.46E-43

GO:0002252 Immune effector process 99 4.33E-30 2.05E-27

GO:0006955 Immune response 160 1.07E-45 3.03E-42

GO:0002682 Regulation of immune
system process

110 8.62E-26 3.06E-23

GO:0002376 Immune system process 185 1.02E-42 1.93E-39

GO:0009605 Response to external
stimulus

139 7.34E-26 2.78E-23

GO:0006950 Response to stress 208 1.86E-39 2.12E-36

training and test groups, respectively. GSE19738 was used in the
initial receiver operating characteristic (ROC) curve analysis,
ANN model predictive value of the MDD model. The GSE98793
dataset was used to test the model. The code is provided in
Supplementary material 1 and Supplementary material 2.

Immune cell infiltration analysis and
correlation analysis

CIBERSORT3 and the LM22 characteristic gene matrix were
used to predict the proportion of 22 immune cells in all samples
of the dataset. The CIBERSORT package was used to assess the
abundance of 22 immune cells in the GSE19738 dataset. Using
the median prediction index of the ANN model as the cutoff
value, the samples were divided into high-and low-score groups,
and the differences in immune cell infiltration among the 22
groups were analyzed.

3 http://CIBERSORT.stanford.edu/

TABLE 3 KEGG enrichment analyses results.

KEGG ID Description Number P value Q value

ko04668 TNF signaling pathway 16 4.09E-08 1.39E-06

ko04064 NF-kappa B signaling
pathway

19 1.94E-07 5.11E-06

ko04216 Ferroptosis 11 9.06E-09 3.58E-07

ko04217 Necroptosis 24 8.24E-12 9.77E-10

ko04621 NOD-like receptor
signaling pathway

27 2.20E-13 5.22E-11

ko04380 Osteoclast differentiation 20 2.17E-10 1.71E-08

ko05164 Influenza A 22 1.40E-09 8.30E-08

ko05169 Epstein-Barr virus
infection

27 4.83E-09 2.29E-07

ko05162 Measles 18 6.86E-08 2.03E-06

ko05160 Hepatitis C 18 2.47E-07 5.85E-06

ko04620 Toll-like receptor
signaling pathway

13 4.66E-06 9.21E-05

ko04625 C-type lectin receptor
signaling pathway

13 4.66E-06 9.21E-05

ko05145 Toxoplasmosis 13 7.74E-06 1.41E-04

ko05321 Inflammatiory bowel
disease (IBD)

10 1.31E-05 2.07E-04

ko05167 Kaposi
sarcoma-associated
herpesvirus infection

17 1.31E-05 2.07E-04

ko05134 Legionellosis 9 1.80E-05 2.67E-04

ko04978 Mineral absorption 9 2.74E-05 3.82E-04

ko05161 Hepatitis B 15 3.21E-05 4.23E-04

ko04062 Chemokine signaling
pathway

16 6.01E-05 7.50E-04

ko04920 Adipocytokine signaling
pathway

9 8.36E-05 9.90E-04

Results

Identification of differentially
expressed genes and enrichment
analyses

A flowchart of this study is shown in Figure 1A.
Figures 1B–E shows data distribution before and after
standardization of data sets GSE19738 and GSE98793. First,
compared to healthy participants, 721 genes were differentially
expressed in the peripheral blood samples of patients with
MDD. Among them, 404 DEGs were upregulated, and 317
DEGs were downregulated. The corresponding volcano and
heat maps are shown in Figures 2A,B.

By analyzing the GO and KEGG pathway enrichment
analyses, MDD peripheral blood raises the biological function
of genes. The results of GO annotation revealed that the
DEGs mainly comprised genes related to cytokines, defense
responses to viruses, responses to biotic stimuli, immune
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FIGURE 3

(A) Protein-protein interaction network of DEGs constructed using cytoscape. (B) The top 10 hub genes were explored using CytoHubba.

effector processes, and responses to external biotic stimuli
(Figure 2C). Prior studies have suggested that abnormal
cytokine homeostasis may be related to the pathogenesis of
MDD and that cytokine profiles may be used to distinguish
patients with MDD (Petralia et al., 2020). KEGG signal pathway
enrichment analysis results showed that the DEGs were mainly
enriched in the immune system, cell growth and death,
development, and infectious diseases (Figure 2D). MDD is
associated with proinflammatory activation of the peripheral
innate immune system, coupled with relative inactivation of
the adaptive immune system (Leday G. et al., 2018). Several
growth factors have been shown to play important roles in cell
survival, growth, programmed death, and neuroplasticity and
are associated with MDD (Li et al., 2021). The detailed data are
presented in Tables 2, 3.

Construction of protein-protein
interaction network

To further understand the relationship between DEGs at
the protein level, we built a PPI network using the STRING
database, which contains 487 nodes and 886 edges (Figure 3A).
CytoHubba plugins were used to screen the top 10 hub genes,
namely BST2, STAT2, GBP2, IFI35, IFI6, XAF1, IFIT5, IFITM1,
IRF9, and ISG20 (Figure 3B). Among them, dysregulation
of the GBP2 gene could indicate a relationship between cell
surface receptors and intracellular effectors that can transmit

extracellular information into cells, as well as an intracellular
signal transduction protein (Jiang et al., 2015). Furthermore, the
proteins encoded by IFI6 may play an important role in the
regulation of apoptosis and restrict various viral infections by
targeting different stages of the viral life cycle (Sajid et al., 2021).

Random forest screening of
characteristic genes and major
depressive disorder diagnostic model
construction and validation

Using the identified DEGs, we further screened MDD-
related characteristic genes using the RF algorithm. Six
characteristic genes related to MDD were screened according
to a gene score of >3 (Figures 4A,B). Also, we tested the
correlation between these genes, and found there was no
significant covariance between them (Supplementary Table 1).
Furthermore, based on the features of the six MDD-related
genes, we built an ANN model. The MDD diagnostic model
constructed using the ANN includes the input, hidden, and
output layers, as shown in Figure 4C. Among them, the
dimension of the input vector is six, and the dimensions of the
output vector of the control and disease. Based on the scoring
values of the ANN model, ROC analysis was performed on the
model to verify its accuracy. As shown in Figure 5, the AUC was
0.757 in the training set, indicating good accuracy. In addition,
the accuracy of the model was further tested using the GSE98793
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FIGURE 4

(A) Random forest tree. (B) MeanDecreaseGini. (C) Artificial Neural Network model. Healthy stands for healthy group, and MDD stands for MDD
group.

dataset, and the AUC of the test set was 0.685, indicating the high
accuracy of the model.

Immune infiltration and correlation
analysis

To analyze the relationship between the ANN model and
immune cell infiltration, the CIBERSORT algorithm was used
to calculate the proportion of immune cell infiltration in the
peripheral blood of the healthy and MDD groups. In the
immune analysis, we drew the immune landscape of infiltrated
immune cells of patients with MDD and normal volunteers
(Figure 6A). We found that a variety of immune cells were
significantly correlated in the disease group (Figures 6B,C).
However, we did not find any significant differences in the

immune cells between the MDD and normal groups. This may
be related to the sources of the specimens used in this study.

Discussion

Patients with depression have a high rate of misdiagnosis;
as such, it is important to find new and feasible biomarkers to
facilitate the early diagnosis and treatment of MDD. Previous
studies have reported a variety of algorithms used to construct
diagnostic models for patients with MDD. However, at present,
there are no reports on the application of ANNs to construct
auxiliary peripheral blood diagnostic models for patients with
MDD. Here, we tried to find diagnostic markers related to
MDD and applied ANN machine learning methods to construct
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FIGURE 5

Receiver operating characteristic curves for the artificial neural network. The AUC curve of GSE19738 training cohort is on the left, and the AUC
curve of GSE98793 testing cohort is on the right.

diagnostic models to explore better diagnostic models for
patients with MDD that are suitable for different populations.

We identified 404 DEGs in the peripheral blood of patients
with MDD compared to healthy controls. Through enrichment
analysis of GO and KEGG pathways, we further identified that
the biological functions of upregulated genes in the peripheral
blood of patients with MDD mainly targeted cytokines, defense
response to viruses, response to biotic stimulus, immune
effector process, response to external biotic stimulus, response
to external stimulus and immune system, cell growth and
death, development, infectious diseases, and other pathways.
We constructed a PPI network to screen out the top 10
hub genes, namely BST2, STAT2, GBP2, IFI35, IFI6, XAF1,
IFIT5, IFITM1, IRF9, and ISG20. Moreover, we selected the
following six characteristic genes in order of importance by
RF algorithm: C3AR1, BST2, TREM1, BTG3, LY6E, and IER5.
C3AR1 is a critical regulator of central immune homeostasis
in tau pathology whose signaling operates intracellularly in
human CD4 + cells and participates in several T-cell functions
(Arbore et al., 2016). Litvinchuk et al. (2018) showed that
the expression of the C3a receptor (C3AR1) is positively
correlated with cognitive decline and Braak staging in human
Alzheimer’s disease brains. BST2 has been identified as a marker
of immunomodulatory bone marrow mesenchymal stem cell
cloning, as well as an effective inhibitor of enveloped virus
release (James et al., 2015). TREM-1 is an activating receptor
expressed at high levels in neutrophils and monocytes that
infiltrate human tissues infected with bacteria. Furthermore, it is
upregulated in peritoneal neutrophils of patients with microbial
sepsis and mice with experimental lipopolysaccharide-induced
shock (Bouchon et al., 2001). Chronic stress contributes to
the development of psychiatric disorders, including anxiety

and depression. Mouse hippocampal RNA sequences showed
that stress increases the TREM1 pathway associated with
inflammation (DiSabato et al., 2021). Monocytes are in a
pro-inflammatory state in patients with severe psychiatric
disease. The expression of TREM-1 is significantly increased
in monocytes of patients with SCZ and BD and tends to
be overexpressed in patients with major depression (Weigelt
et al., 2011). Regulating the imbalance in TREM1 expression
ameliorates depression-like behaviors and impairment of
learning and memory in rats (Fang et al., 2019). In addition,
Rosie Owens suggested that neuroinflammatory conditions that
alter the balance of TREM1 expression may be important
factors affecting microglial inflammation and homeostasis
activity and may be associated with neuroinflammation and
neurodegenerative disease (Owens et al., 2017). BTG3 is a
member of the anti-proliferative protein family. IER5 may
play an important role in mediating the cellular response
to mitogenic signals (Williams et al., 1999). Savitz et al.
found using genome-wide expression analysis of peripheral
blood mononuclear cells that IER5 was differentially expressed
between 29 unmedicated depressed patients with a mood
disorder (8 bipolar disorder and 21 MDD) compared to
24 healthy controls (Savitz et al., 2013). These differentially
upregulated genes were closely related to MDD and mental and
neurological diseases.

Based on the application of the above six characteristic genes
using the ANN method, we successfully established an ANN
model and further calculated the infiltration of two groups
of immune cells in peripheral blood. In the training set, the
AUC was 0.757, indicating good accuracy. The accuracy of
the model was further tested, and the AUC of the test set
was calculated to be 0.685. The reason of that the AUC is
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FIGURE 6

Evaluation and correlation analysis of immune cell infiltration. (A) Panoramic view of 22 immune cell infiltrates in peripheral blood samples;
(B, C) High and low expression group of immune cell infiltration difference.

less than 0.7 may be due to the small sample size in the test
set. At present, many studies have reported the application of
RF, support vector machine, k-nearest neighbors (kNN), and
naive bayesian (NB) algorithms to build diagnostic models
for patients with MDD. These studies have reported high
classification accuracies ranging from 70 to 100% (Yi et al.,
2012; Yu et al., 2016; Bhak et al., 2019). In particular, Zhao
et al. compared different machine learning approaches using
the same data set which also used by us. It was found that
compared with other methods, such as SVM, RF, kNN, NB, SVM
could distinguish MDD from healthy controls more accurately
(Zhao et al., 2021). Overall, compared with previous studies,
our model evaluation provides new ideas for the application of
peripheral blood in aiding diagnostic machine learning. ANNs
are the most common form of neuromorphic computing, and
breakthrough progress has been made in many areas. Neural
networks are composed of multiple layers, each made up of a
collection of cells called artificial neurons that are connected by
artificial synapses (Subbulakshmi Radhakrishnan et al., 2021).

One difference in our study is that upregulated differential genes
are used in the analysis of differences between patients with
MDD and control groups as clinical indicators tend to focus
more on increased indicators, and upregulated genes can be
more effectively applied to the analysis of blood indicators in
outpatient and inpatient patients. In previously reported studies,
although cross-validation from the same dataset can also be used
for model validation, compared with the external validation with
completely independent data, the previous experiments do not
reflect the universality or replicability of the model (Steyerberg
and Harrell, 2016). In this study, we used previously unused
datasets to calculate the AUC of the classifier.

In this study, an ANN was used for the first time to
establish an auxiliary diagnosis model of MDD, which provides
a new method for MDD diagnosis using machine learning and
could help clinicians reduce the misdiagnosis rate of MDD.
However, this study had several limitations. First, the data
used in this study were obtained from public databases. They
did not provide comprehensive clinical information, such as
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age, sex, and BMI, which should be controlled. Meanwhile,
transcriptome data are the main data in GEO database in
the field of mental disorder, other types of data such as
genomic and proteomic data, are lacking. Second, compared
with traditional methods, such as logistic regression, the ANN
method cannot obtain an image of the patient score for each
variable. Third, the sample size of this study was relatively
small; the more samples the machine learning model is subjected
to, the more similar the sample sources are, and the more
accurate the model is constructed. Fourth, due to the relatively
small sample size of mental diseases in the public database,
the potential transcriptome biomarkers for mental disorders
was not well studied, so further comparison was not conducted
between MDD and other mental disorders. In addition, the
MDD samples we selected were not divided into subtypes
and may have different clinical characteristics. As such, the
representativeness and extensibility of the model will be limited
to some extent. In future research, we will further explore the
differential gene of MDD, expand the sample size, collect our
own data, consider the influence of clinical features and subtypes
of MDD. In order to find better diagnostic models for patients
with MDD, we will compare more machine learning method
such as SVM, RF, kNN, NB, etc. And continue to optimize and
improve the model design to provide more reliable auxiliary
tools for the diagnosis of MDD.

Conclusion

In conclusion, we adopted a popular machine learning
algorithm, RFs, and ANNs to filter the characteristics of patients
with MDD and construct a diagnostic model. This model was
then verified in an external test set. This validation established
that this model could clearly distinguish between patients
with MDD and healthy controls. This model could serve as
a potential adjunct tool to help psychiatrists make clinical
diagnoses and treatment plans.
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