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Brain-inspired spiking neural networks (SNNs) are successfully applied tomany

pattern recognition domains. The SNNs-based deep structure has achieved

considerable results in perceptual tasks, such as image classification and target

detection. However, applying deep SNNs in reinforcement learning (RL) tasks

is still a problem to be explored. Although there have been previous studies on

the combination of SNNs and RL, most focus on robotic control problems with

shallow networks or using the ANN-SNN conversion method to implement

spiking deep Q networks (SDQN). In this study, we mathematically analyzed

the problem of the disappearance of spiking signal features in SDQN and

proposed a potential-based layer normalization (pbLN) method to train spiking

deep Q networks directly. Experiment shows that compared with state-of-art

ANN-SNN conversion method and other SDQN works, the proposed pbLN

spiking deep Q networks (PL-SDQN) achieved better performance on Atari

game tasks.

KEYWORDS

brain-inspired decision model, SDQN, reinforcement learning, potential

normalization, spiking activity

1. Introduction

Inspired by biological brain neurons, the spiking neural network uses differential

dynamics equations and spike information encoding methods to build computing node

models in neural networks (Maass, 1997). The traditional artificial neuron models,

such as Perceptron and Sigmoids, sum the inputs and pass them through a non-linear

activation function as model output. Unlike ANNs, the spiking neurons accept signals

from presynaptic inputs with a particular synapses model. They then integrate the post-

synaptic potential, firing a spike when the somatic potential exceeds a threshold. The

neuron potential is reset when the spike is released to prepare for the next integrate-

and-fire process. According to the complex structure and dynamic characteristics of

biological neurons, the spiking neuron model has many forms, including the leaky

integrated-and-fire (LIF) model, Izhikevich model, Hodgkin-Huxley, and spike response

model.
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Spike neural networks can be applied to different domains

of pattern information processing. SNNs have achieved

competitive performance on many tasks compared with ANN.

Spiking Resnet is trained for image classification (Fang et al.,

2021), and Spiking-YOLO (Kim et al., 2020) uses the ANN-

SNN conversion method to implement faster and more efficient

object detection. Brain visual pathway-inspired spiking neural

networks process image features with biologically plausible

computing method (Hopkins et al., 2018). CRSNN (Fang and

Zeng, 2021) implemented causal reasoning with SNN and Spike-

Timing-Dependent Plasticity (STDP). QS-SNN (Sun et al., 2021)

takes advantage of a spatio-temporal property of spike trains and

processes complement information with spiking rate and phase

encoding. In addition, Zhao et al. (2018) and Cox and Witten

(2019) implement basal ganglia-based SNNs models in many

decision-making tasks. Besides, using neural networks to decode

neuronal spike trains and activity enables an understanding of

how the brain processes sensory and behavioral signals. Deep

neural networks decoder are used to reconstruct pixel-level

image features from two-photon calcium neural signals (Zhang

et al., 2022). Additionally, Xu et al. (2022) proposed a DSPD

framework to reconstruct multi-modal sensory information

from neural spike representations. The neuromorphic hardware

based on SNNs, such as TrueNorth (Merolla et al., 2014),

SpiNNakers (Furber et al., 2014), and Loihi (Davies et al., 2018)

reduces the energy consumption by thousands of times than

chips based on traditional computing architecture.

Although there have been previous studies on the

combination of SNNs and RL, most focus on robotic control

problems with shallow networks and few neurons. Reward-

modulated spike-timing-dependent plasticity (R-STDP) is used

for training SNN to control robot keeping within the lane.

Lele et al. proposed SNN central pattern generators (CPG) and

leaned with stochastic reinforcement-based STDP to control

hexapod walking (Lele et al., 2020). PopSAN (Tang et al.,

2020) trained spiking actors with a deep critic network and

validated on OpenAI gym continuous control benchmarks and

autonomous robots. This work adopts actor-critic architecture

and explores the combination of deep reinforcement learning

and spiking neural networks. However, they only achieved

implementing actor network with SNN, the critic for state-

action value estimation was still using ANN. Therefore, they

did not exploit the low-power advantage of implementing

SNN. Because of the optimizing hardness and learning

latency, agent based on SNN is challenging to be trained

in reinforcement learning tasks. ANN-to-SNN conversion

method (Rueckauer et al., 2017) is used to implement DQN

with a spiking neural network (Patel et al., 2019; Tan et al.,

2020). They first trained ANN-based DQN policy and then

transferred the network weight to SNN, using SNN to plat

Atari game as shown in Figure 1. Zhang et al. (2021) used

knowledge distillation to train student SNN with a deep Q

network teacher, but the student SNN does not being trained

by the RL method with reward and does not interact with the

environment.

Direct training of SNNs can obtain better performance

advantages than ANNs to SNNs method and improve energy

efficiency (Wu et al., 2019; Zheng et al., 2020). Although many

successful cases of implementing a directly trained SNNs model

in computer vision tasks, the direct training of SNNs in the deep

reinforcement learning (DRL) model is facing more difficulty.

One of the most important factors hindering the application

of SNN in DRL is the disappearance of spike firing activity in

deep spiking convolutional neural networks. The studies by Liu

et al. (2021) and Chen et al. (2022) proposed direct training

methods for spiking deep Q networks in RL tasks, but they do

not deal with the vanishing problem in spiking activity in SDQN.

In this study, we mathematically analyzed the problem of the

disappearance of spiking signal features in SDQN and proposed

a potential-based layer normalization (pbLN) method to train

spiking deep Q networks directly. Experiments show that our

study achieves better performance than SDQN based on the

ANNs to SNNs method and other trained spiking DQNmodels.

We summarize our contributions as follows:

• We analyze how the spiking mechanism influences

information feature extraction in deep SNNs and found

that the binary property of the spike hugely dissipates the

variance and shifts themean of network inputs. The pattern

features of information are quickly vanishing in spiking

deep Q networks.

• We propose the potential-based layer normalization

method to keep the unique sensitivity of spiking neuron in

deep Q networks.

• We construct a spiking deep Q network and implement it

in gym Atari environments. The spiking deep Q network

is directly trained with a surrogate function, and the

experiments show that the pbLN improves the performance

of SNN in RL tasks.

2. Methods

In this section, we introduce our study with three aspects.

First, we construct a spiking deep Q network to estimate

state-action value. Second, we analyze the feature vanishing

in SNN and its influences on reinforcement learning. Third,

we propose the potential-based layer normalization method

and train the spiking deep Q network with a backpropagation

algorithm.

2.1. Spiking deep Q network

In order to better reflect the characteristics of SNNs in

the reinforcement learning environments, we construct our
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FIGURE 1

Playing Atari games with spiking neural networks. The raw original video image is input into the spiking convolutional neural networks to extract

image features, and finally the action selection implemented by the SNN output layer. The selected action is used to control the activity of the

agent in the environment to obtain more rewards.

FIGURE 2

Spiking deep Q network with potential-based layer normalization. It has the same network structure as DQN, with three layers of convolution

and two layers of full connection. The network outputs an estimate of the state-action value, which is used for the selection of actions and TD

based learning.

spiking Q networks as same as the DQN architecture shown

in Figure 2. Three-layers spiking convolution neural networks

process raw game screen images from gym Atari simulation to

generate vision embedding. Then the vision embedding spike

trains are processed by fully connected (FC) spiking neurons

population to output control action. We use weighted spike

integration to generate continuous real state-action values from

discrete spikes.

The neuronmodel in the spiking QNetwork is adapted from

the leaky integrate-and-fire (LIF) model.

τ
du

dt
= −u+ x (1)

where u is membrane potential, and τ is the decay constant. x

is postsynaptic potential (PSP). When the membrane potential

exceeds thresholds Vth, the neuron fires a spike, and the
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membrane potential is reset to Vreset . Here, we use Heaviside

step function H to implement the spiking procedure, and our

model’s neuron dynamic process can be described as follows:

ult+1 = ult +
1

τ
(−ult + xlt) (2)

olt+1 = H(ult+1 − Vth) (3)

ult = Vreset , if olt = 1. (4)

Let α = 1 − 1
τ as decay factor of neuron potential, we get

the clear format of Equation 2 as ult+1 = αult + (1 − α)xlt .
The olt represents the number l layer spike outputs. Neuron

input xt of convolutional layers in vision processing is a 2D

convolution operation on the previous layer’s spike features and

can be written as:

xlt = (wl ∗ ol−1t )[m, n] =
∑

j

∑

k

wl[j, k]ol−1

[m− j, n− k] (5)

wherewl is kernel weight of l convolutional layer. In the FC layer,

xt is the weighted sum of the previous layer spikes:

xlt =
∑

j

wl
jo
l−1
t,j (6)

State-action value is generated from the time-window

mean value of weighted sum spikes output from FC layer

as Equation (7) and T is the time-windows length of SNN

simulation.

qi =
1

T

T−1
∑

t=0
Wi · Ot (7)

Unlike the ANN-SNN conversion based method or SNN-

DNN hybrid training, our proposed model is directly optimized

using the TD error about the network output with target

values as

L(w) = E[(r + γ max
a

Q(s′, a′,w)− Q(s, a,w))2] (8)

The proposed deep spiking Q network is directly trained

by the Spatio-temporal Backpropagation (STBP) algorithm (Wu

et al., 2018). For the final output weight Wi, we have the

derivatives:

∂L

Wi
= ∂L

∂Q

Q

∂Wi
= 1

T

T−1
∑

t=0
δLOt (9)

where δL is Q learning temporal difference

δL = 1

2
[r + γ max

a
Q(s′, a′,w)− Q(s, a,w)] (10)

The derivative temporal chain of the networks weight wl
j is

written as:

∂L

∂wl
j

=
T−1
∑

t=0

∂L

∂olt+1

∂olt+1
∂ult+1

∂ult+1
∂wl

j

=
T−2
∑

t=0

∂L

∂olt+1

∂olt+1
∂ult+1

[
∑

j

(1− α)ol−1t,j + α
∂ult
∂wj

] (11)

At the non-differentiable point of the neuron firing a spike,

we use the surrogate function to approximate the derivative of

ot with respect to ut as follows:

∂olt+1
∂ult+1

= 2τ

4+ (πτult+1)
2

(12)

2.2. The feature information vanishing in
spiking neural networks

In the process of deep network training, the change of

network parameters will cause a change in the distribution

of the network outputs, which is called Internal Covariant

Shift (ICS) (Ioffe and Szegedy, 2015). Network parameters in

ANN models are updated with training operations such as the

gradient descent algorithm. Due to linear transformations and

nonlinear activation in each layer, small changes in the low-level

network layer will be amplified as the number of network layers

deepens, and the network output will also change accordingly.

Compared with ANN, SNN has more difficulty in processing

information except for the ICS problem. First, unlike the linear

transformation of ANN neurons, spiking neurons use kinetic

equations to process input signal, which has a large nonlinear

characteristic. Second, the spike outputs change the distribution

of inputs severely, and the useful features of information are

lost in deep layers. Thus, it needs more effort to solve the ICS

problem in SNNs.

For N layers SNN, the proceeding procedure can be written

as Algorithm 1. Because the spiking neuron model needs to

accumulate the membrane potential in the whole simulation

time window, the information is processed along both time and

space dimensions. Considering the binary distribution of spikes

ot , the means of spike E(ot) and variance D(ot) have below

property E[(ot)
2] = E[ot] and D(ot) = E(ot)(1− E(ot)).

LEMMA 1. Let ψ(i, j) = (1 − α)2α2(j−i), synapse weight W is

randomly initialized with E(W) = 0 and is independent with ot ,
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Input: Observation state S as x00
Parameter: Decay factor τ ; simulation time-window T;

membrane potential threshold Vth; layer numbers N.

Output: State-action values Qs.

1: Initialize neuron weight wl ∀ l = 0, 1, 2, ...,N − 1.

2: for t = 0 to T − 1 do

3: for l = 0 to N − 1 do

4: Calculate layer neuron inputs xlt ←
∑l

j w
l
jo
l
t,j.

5: Membrane potential update ult+1 ← αut
l
+ (1 − α) ∗

pbLN(xlt).

6: Layer spike outputs olt+1 ← H(U l
t+1 − Vth).

7: end for

8: end for

9: Calculate state-action values Q← 1
T

∑T−1
t=0 WiO

N−1
t+1 .

10: return Q

Algorithm 1. Proceeding process of spiking deep Q networks.

the variance of neuron potential is calculated as

D(ult+1) = D(Wl)

t
∑

i=0
ψ(i, t)E[ol−1i ] (13)

Supposing the neuron in layer l fired the first spike after

t time steps, we denote the variance of neuron membrane

potential at time t + 1 and layer l as Equation 15. Lemma 1

shows the relationship of neuron membrane potential ut with

previous inputs spike history and synaptic weight. Additionally,

the presynaptic spike inputs’ effect decays with the time factor α

forψ(i, j) ∈ (0, 1]. Refer to the proofs in Supplementary material

for details.

THEOREM 1. Let ε = D(W l)
2V2

th

, the neuron in layer l firing spikes

with:

E(olt+1) ≤ εE[
t

∑

i=1
ol−1i ] (14)

ε is the signal loss ratio transmitted by spiking neural

networks. Additionally, if ε < 1, the mean of neuron’s spikes

E(ot) tends to zero with the increase of the number of layers.

The variance of spikes D(ot) is also decreasing, which results in

neuronal firing spikes vanishing rapidly and the deep layer of

SNNs is very prone to no spiking activity. This problem makes

deep SNNs lose signal features in information processing. In

addition, in deep spiking convolutional neural networks, which

use local connections and sharing weight operations, the spike

signal disappearance problem is more prominent. It makes it

hard for the deep SCNN to be directly trained and weakens the

performance of SNN models.

2.3. Potential based layer normalization

According Equation (16), the problem of spike information

vanishing in SNNs can be alleviated by initializing synapse

weights with greater distributional variance or setting the

spiking neuron model with a little potential threshold.

But increasing D(W) will damage performance and make

converging the model difficult. Besides, too small threshold

potential will make neurons too active to distinguish useful

information. To solve this contradiction, some works using the

potential normalization methods in spiking neural networks,

such as NeuNorm (Wu et al., 2019) using auxiliary neurons to

add spikes together and proposing inputs with scalar norm, and

tdNorm (Zheng et al., 2020) extending batch normalization to

time dimensions.

But these methods are suitable for supervised learning tasks

such as image classification or object detection because, in those

tasks, the SNNs are trained with batched data inputs. Compared

with supervised learning, the environment information of

reinforcement learning is more complex. First, in RL tasks

spike vanishing problem of deep SNN models is quite serious.

For example, we counted each layer’s spiking deep Q network

firing activity distribution when applied to Atari games. The

statistical evidence in the Result section shows that the SDQN

suffers serious spiking information reduction in deep layers.

Second, unlike supervised learning, SNN agents in RL have no

invariant and accurate learning labels and need to interact with

the environment to collect data and reward information. The

hysteresis of learning samples makes the SDQNmodel unable to

effectively overcome the drawbacks caused by the disappearance

of spike signals in output layers. Third, the input format in the

RL task is not batched, so the normalization methods used in

supervised learning can not be applied to SDQN.

In this study, we propose a potential-based layer

normalization method to solve the spike activity vanishing

problem in SDQN. We apply the normalization operation

methods on PSP xt in convolution layers. The previous layers’

spikes are processed as Equation 5 and further normalized as

follows:

x̂t =
xt − x̄t√
σxt + ǫ

(15)

x̄t =
1

H

H
∑

i=1
xt,i (16)

σxt =
1

H

√

√

√

√

H
∑

i=1
(xt,i − x̄t)2 (17)

where in convolution layerH = C×H×W with C for channels

number, and [H,W] is the feature’s shape in each channel.

PSP xt is normalized into distribution with zero mean

and one variance is shown as Equation 17. This normalization

method is different from NeuNorm and tdNorm. NeuNorm
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FIGURE 3

Operations of neural potential-based layer normalization. The bars in the figure represent the distribution of PSP potential. The gray bars show

the original PSP potential X, and it is first normalized to zero means and one variance X̂ magenta bars. The final shift factor β and scale factor λ

make the PSP potential suiting to spiking neurons.

applied normalization operation on neuron spikes ot .

Additionally, tdNorm used batch normalization method on the

time dimension, which needs to calculated [xt+1, xt+2, ..., xt+T]
in advance.

Normalizing xt will weaken the characteristic information

in the feature maps, and the zero means and one variance do

not suit the spiking neuron. Thus, we adapted the LIF neuron

model as:

ut+1 = αut + (1− α)[λt ∗ x̂t + βt] (18)

λ0 = Vth − Vreset , β0 = Vreset (19)

where λt and βt are learnable parameters, which are initialized

at the beginning as Equation 21. The process of pbLN changes

the distribution of neural PSP and is depicted in Figure 3. The

parameter λt has the same effect of increasing D(W), and βt

plays a role in the dynamic firing threshold. By separating the

learnable parameters, the SNN model avoids the oscillation

of the learning process caused by increasing D(W) and the

over-discharge of neurons caused by the threshold being too

small, which reduces the information processing capability of

the model.

The effect of pbLN on membrane potential is shown in

Figure 4. When the spike signal of the previous layer is input,

the membrane potential begins to rise. Compared with the

LIF model, neurons with the function of pbLN are affected by

neighbors and can hold the membrane potential values so that

the neuron can fire a spike as long as it receives little input in

the future. This puts the neuron in an easy-to-fire state where

it can process long-time interval signals and reduces the loss of

features when passing on the input information.

3. Results

PL-SDQN is a spiking neural network model based on LIF

neurons and has the same network structure as traditional

DQN. It contains three convolutional layers with a “c32k8-

c64k4-c64k3” neural structure. The hidden layers are fully

connected with 512 neurons, and the output is ten values as

the weighted summation of the outputs of the hidden layer.

We directly trained PL-SDQN on reinforcement learning tasks.

The results show that spiking deep Q networks combined with

the potential-based layer normalization method can achieve

better performance on Atari games than traditional DQN and

ANN-to-SNN conversion methods.

3.1. Statistic evidence of spiking activity
reduction in deep layers

We counted each layer’s firing spikes of SDQN to show

the deep layer spike vanish phenomenon and the promoting

effect of the pbLN method. The SDQN model is initialized by

random synaptic weight and then used to play the Atari game.
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FIGURE 4

Neuron potential is maintained by the normalization method. The gray dotted line is the change of membrane potential of neurons without

normalization when receiving spike inputs. Additionally, the solid black line is neuron potential changed by normalization. Neurons are di�cult

to fire when the time interval of external stimulation is relatively large. Instead, with normalization operations, the membrane potential is

a�ected by the neighbor neurons, and the leakage trend will slow down, which increases the probability of neurons firing spikes.

We calculated the ratio of neurons with firing activity to each

layer’s total number of neurons.

We tested each game ten times and counted the firing rate

of each layer. These experiments’ average and SD are shown in

Figure 5. The results show that convolution layers in SDQN are

difficult to transfer spiking activities. Spikes from the first layer

(conv1) are rarely transmitted to the next layer. There is almost

no spike firing activity in the second (conv2) and third (conv3)

layers.

Compared with the vanishing problems in SDQN, the

proposed pbLN method improves the deep layer spiking

activities. The bottom rows in Figure 5 show that the pbLN

method not only increases the first layer’s activity to make later

layers fire more spikes it also improves the inner sensitivity of

each layer of the network to spike inputs.

3.2. Performance and analysis of Atari
games

We compared our model with the vanilla DQN model

and ANN-SNN conversion based SDQN model, and the

performance are obtained on 16 Atari games. All models are

trained directly with the same settings and optimized by Adam’s

methods as Supplementary Table S1. The ANN-SNN conversion

based SDQN implements the same method as the state-of-the-

art works proposed by Li and Zeng (2022) with simulation time

window Tcon = 256. Additionally, the PL-SDQN is directly

trained by the backpropagation method with simulation times

set as T = 16. We train all of the models for 20 million frame

steps. We conducted ten tests and recorded the mean and SD of

scores. The results are shown in Figure 6 and Table 1.

PL-SDQN model that we proposed achieves better

performance than vanilla DQN and conversion based SDQN

model. The data in Table 1 shows that our model has achieved

performance advantages over the other two methods in 15

games. Additionally, the curves in Figure 6 show that our

method achieves faster and more stable learning than the vanilla

DQN.

3.3. Experiments on potential
normalization e�ects

In order to show the improvement of our proposed pbLN

method on the spiking deep Q model, we compared PL-SDQN
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FIGURE 5

Fire rates on di�erent convolutional layers of SDQN. The blue bars depict the spike fire rate in SDQN without normalization. Additionally, the

orange bars are for our model PL-SDQN. The black vertical line on top of each bar is the SD of 10 experimental data.

with other directly trained SDQN models in articles by Liu

et al. (2021) and Chen et al. (2022). Because the other works

compared with different DQN backbones, we recorded the

promotion rate of SDQN model scores for the special DQN

methods the authors compared in their article.

The result in Table 2 shows that our PL-SDQN model is

more robust on different games and achieves better performance

than other SDQN methods. Compared with the SNN model

in Chen et al. (2022), the PL-SDQN has better generalization

and robustness in more experiments for successfully surpassing

DQN benchmarks on 14 games out of a total of 15 games tested.

We analyze that our model has an advantage in the test

game because the spiking activity vanishing in deep layers

of SNN reduces the performance of the SDQN model. The

proposed pbLN method can well counteract the impact of the

input signal change on the model’s performance to improve the

ability to spike neural networks in the reinforcement learning

task. Unlike PL-SDQN, the SDQNmethod based on ANN-SNN

conversion faces the problem of spike accuracy and requires

a long simulation process. The performance of ANN-SNN

conversion SDQN is challenging to surpass the original ANN

model. The other directly trained SDQN models compared in

Table 2 do not focus on the spike information vanishing problem

in spiking neural networks. Although the layer normalization

method weakens the specificity of the convolutional layer

channels, it helps boost the spiking convolution neural network’s

performance for increasing neuronal activity.

The primary computational consumption of potential-based

layer normalization is concentrated in the features mean and

variance calculation. The computational complexity of mean
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FIGURE 6

PL-SDQN performance on Atari games. The learning curves in the figure show that our PL-SDQN model achieves faster and better performance

than the original DQN benchmarks. Although in the Breakout game, the DQN model learns faster at the beginning, our model catches up with it

quickly and achieves better performance at the end. We smooth each curve with a moving average of 5 for clarity.

TABLE 1 Details of Atari game experiments.

DQN ANN-SNN conversion PL-SDQN

Game Score ±std (Score%) Score ±std (Score%) Score ±std (Score%)

Atlantis 3,049,750.0 161,861.4 (5.31%) 304,6920.0 13,48,868.6 (44.27%) 32,67,760.0 86,339.7 (2.64%)

BeamRider 10,423.2 2,245.1 (21.54%) 10,449.0 262,0.4 (25.08%) 11,480.4 33,42.4 (29.11%)

Boxing 99.3 0.9 (0.91%) 98.6 3.2 (3.25%) 99.5 0.9 (0.90%)

Breakout 343.1 41.3 (12.04%) 352.2 64.7 (18.37%) 427.7 140.1 (32.76%)

CrazyClimber 1,39,420.0 11,530.6 (8.27%) 12,8,380.0 23,239.8 (18.10%) 14,7,950.0 30,6,32.1 (20.70%)

Gopher 38,662.0 28,245.6 (73.06%) 22,438.0 10,076.7 (44.91%) 24,064.0 12,3,55.3 (51.24%)

Jamesbond 14,45.0 15,72.0 (108.79%) 14,20.0 190.0 (13.38%) 146,0.0 215,0.1 (147.27%)

Kangaroo 12,680.0 208.8 (1.65%) 13,850.0 113,2.5 (8.17%) 145,00.0 845.0 (5.83%)

Krull 10,271.0 1,365.5 (13.29%) 10,923.0 513.0 (4.70%) 11,807.0 568.2 (4.81%)

MsPacman 2,964.0 711.7 (24.01%) 36,91.0 434.8 (11.78%) 4,077.0 12,92.5 (31.70%)

NameThisGame 7,732.0 1,289.2 (16.67%) 8115.0 1,702.1 (20.97%) 12,202.0 22,10.7 (18.12%)

RoadRunner 1,310.0 764.8 (58.38%) 1,072.0 329.2 (19.34%) 51,930.0 47,14.4 (9.08%)

SpaceInvaders 1,728.5 461.6 (26.71) 176,0.0 483.5 (27.47%) 24,33.5 574.7 (23.62%)

StarGunner 53,050.0 1342.5 (2.53%) 55,910.0 12,796.9 (22.89%) 63,560.0 40,64.7 (6.40%)

Tutankham 262.0 28.9 (11.03%) 254.5 55.4 (21.77%) 271.5 70.4 (25.93%)

VideoPinball 5,07,442.5 327,1,89.1 (64.48%) 55,2917.6 20,0852.5 (36.33%) 67,35,53.0 100,66.2 (1.49%)

The vanilla DQN, ANN-SNN conversion based SDQN and our proposed model PL-SDQN are compared. We test these models for 10 rounds and record raw scores’ mean and standard

deviation (STD).

The best scores of each game are highlighted by bold values.
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TABLE 2 The comparison of our PL-SDQNmodel with state-of-art spiking deep Q networks.

SDQN(Liu2021) SDQN(Chen2022) PL-SDQN(Ours)

Game (DQN%) (DQN%) (DQN%)

Atlantis 98.79 84.24 107.15

BeamRider 97.48 99.57 110.14

Boxing 99.17 298.23 100.20

Breakout 90.86 144.38 124.66

CrazyClimber 102.82 109.79 106.12

Gopher 95.78 148.96 62.24

Jamesbond 127.57 113.92 101.04

Kangaroo 214.49 94.56 114.35

Krull 106.77 28.69 137.55

NameThisGame 98.85 152.41 157.81

RoadRunner 89.72 917.26 3,964.12

SpaceInvaders 80.5 106.85 140.79

StarGunner 112.96 153.73 119.81

Tutankham 103.90 280.48 103.63

VideoPinball 87.01 159.98 132.73

Total ≥ 100 % 6/15 11/15 14/15

To show the SNN advantage, we record the percentage as SDQN/DQN * 100%. The best scores of each game are highlighted by bold values.

and variance operation is O(X) and O(X2) severally. Thus, we

can get the pbLN method’s computational complexity asO(X2).

Except for the SDQN model, the pbLN method can be used for

other SNNmodels that do not process data in large batch format,

such as recurrent spiking neural networks and SNNs for robot

control tasks.

4. Discussion and conclusion

In this study, we directly trained the deep spiking neural

networks on the Atari game reinforcement learning task.

Because of the characteristics of discrete bias and the hard

optimization problem, spiking neural network is difficult to

apply to the reinforcement learning field in complex scenarios.

We mathematically analyze why spiking neural networks are

difficult to generate firing activity and propose a potential based

layer normalization method to increase spiking activity in deep

layers of SNN. This method can increase the firing rate of

the deep spiking neural network so that the input information

features can be transferred to the output layer. Additionally, the

experiment results show that compared with vanilla DQN and

ANN-SNN conversion based SDQN methods, our PL-SDQN

model achieves better task performance. Besides, our model

has better generalization and robustness compared to other

directly trained SDQN methods on Atari game reinforcement

learning tasks.
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