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The assessment of disease activity using serial brain MRI scans is one of

the most valuable strategies for monitoring treatment response in patients

with multiple sclerosis (MS) receiving disease-modifying treatments. Recently,

several deep learning approaches have been proposed to improve this analysis,

obtaining a good trade-o� between sensitivity and specificity, especially when

using T1-w and T2-FLAIR images as inputs. However, the need to acquire two

di�erent types of images is time-consuming, costly and not always available

in clinical practice. In this paper, we investigate an approach to generate

synthetic T1-w images from T2-FLAIR images and subsequently analyse the

impact of using original and synthetic T1-w images on the performance of a

state-of-the-art approach for longitudinal MS lesion detection. We evaluate

our approach on a dataset containing 136 images from MS patients, and 73

images with lesion activity (the appearance of new T2 lesions in follow-up

scans). To evaluate the synthesis of the images, we analyse the structural

similarity index metric and the median absolute error and obtain consistent

results. To study the impact of synthetic T1-w images, we evaluate the

performance of the new lesion detection approach when using (1) both

T2-FLAIR and T1-w original images, (2) only T2-FLAIR images, and (3) both

T2-FLAIR and synthetic T1-w images. Sensitivities of 0.75, 0.63, and 0.81,

respectively, were obtained at the same false-positive rate (0.14) for all

experiments. In addition, we also present the results obtained when using the

data from the international MSSEG-2 challenge, showing also an improvement

when including synthetic T1-w images. In conclusion, we show that the use of

synthetic images can support the lack of data or even be used instead of the

original image to homogenize the contrast of the di�erent acquisitions in new

T2 lesions detection algorithms.
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1. Introduction

Artificial intelligence, particularly deep learning (DL), is

currently widely used in medical imaging applications (Zhou

et al., 2021; Chen et al., 2022). Tasks such as processing

images (Razzak et al., 2018), segmenting anatomical structures
(Fritscher et al., 2016) or diagnosing diseases such as

stroke (Feng et al., 2018), brain tumors (Işın et al., 2016),
and multiple sclerosis (Nair et al., 2020), are subjects of

numerous domains of research. DL has been demonstrated

to be a revolutionary tool in the field, improving state-of-

the-art results. However, the algorithms developed with DL

techniques have the major drawback of needing a large amount

of data to train the model. Traditional data augmentation

approaches, such as geometric transformations, intensity

operations, filtering (Shorten and Khoshgoftaar, 2019), and

deformable techniques such as deformable image registration

or randomized displacement field, have been used to overcome

this inconvenience. Nevertheless, some of these techniques

have their own limitation such as the case of the geometric

transformations which do not account for variations resulting

from different imaging protocols or sequences, sizes, shapes,

locations and appearances of the specific pathology (Yi et al.,

2019) and produce highly correlated images in the training set,

which prevents model improvements. Therefore, novel ways to

mitigate these limitations have been studied including the use of

image synthesis with DL (Chlap et al., 2021) .

Image synthesis consists of the generation of new parametric

images, including derivingmore tissue contrast from a collection

of image acquisitions (Lundervold and Lundervold, 2019).

Image synthesis makes the synthesis of new medical images

possible, including images that may not have been available in

the original dataset. In medical imaging, image synthesis has

been explored using different approaches, such as atlas based

approaches (Burgos et al., 2015), machine learning approaches

(Jog et al., 2017) and, lately, deep learning techniques (Pinaya

et al., 2022), especially the use of generative adversarial networks

(GANs) (Yi et al., 2019). This last method is currently widely

used. The GAN framework was proposed by Goodfellow et al.

(2014) and has lead to impressive results. Using GANs, it is

possible to generate realistic- looking images from an implicit

distribution that follows the real data distribution (Kazeminia

et al., 2020). GAN approaches for synthesis can be either

conditional, where an example of the desired output is specified

and therefore labeled datasets are needed; or unconditional,

where the output is a sample of a random class, using as unique

input a noise vector. Unconditional strategies are less applied in

the medical field. However, there were several studies, such as

the one by Bermudez et al. (2018), where a deep convolutional

GAN (DCGAN) learned to mimic the distribution of an entire

high resolution magnetic resonance (MR) image, resulting

in synthetic images that human observers could not reliably

distinguish from the real images. From the conditional point

of view, there are a large variety of works. For instance, in the

image translation from computed tomography (CT) images to

MR images, Wolterink et al. (2017) proposed a strategy using

unpaired data of CT and MR cardiac images fed in a Cycle

Consistency GAN (CycleGAN) (Zhu et al., 2017) for image

translation and corresponding segmentation mask. The use of

cross-modality in MR studies, such as the proposal by Lee

et al. (2020), where a missing MR image (modality) can be

inferred using its remaining contrast pairs with the application

of collaGAN, an image imputation method (Lee et al., 2019). In

Hi-Net (Zhou et al., 2020), the authors used different synthesis

combinations, such as T1 and T2 sequences, to synthesize

Fluid-attenuated inversion recovery (FLAIR) sequences, T1

and FLAIR sequences to synthesize T2 sequence, and T2 and

FLAIR sequences to synthesize T1 sequences. Zhou et al.

(2020) showed how their method outperformed state-of-the-

art methods such as the pix2pix model (Isola et al., 2017) or

CycleGAN (Zhu et al., 2017) by utilizing the correlation between

different modalities for a modality-specific network that learns

the representation of each individual modality and a fusion

network dedicated to learn the common latent representation of

the multimodal data.

Manymedical image analysis approaches can take advantage

of image synthesis as an strategy to overcome the lack of

data or the necessity of several MR sequences. This is the

case for multiple sclerosis (MS) which is a central nervous

system inflammatory demyelinating disorder. MRI plays an

essential role in establishing an accurate and early diagnosis

of MS (Hemond and Bakshi, 2018), and monitoring treatment

response, mainly by assessing new T2 lesion formations. There

are several approaches of new T2 lesions detection pipelines

using DL (McKinley et al., 2020; Salem et al., 2020). Two typical

constraints in the pipelines are the lack of annotated data and

the necessity of these models to use more than one MR image

modality in order to determine the number, size and location

of the lesion. Hence, some image synthesis proposals have been

developed to overcome this drawback. For instance, Salem et al.

(2019) proposed a model to generate synthetic MS lesions inMR

images, while Wei et al. (2019) developed a model to synthesize

the FLAIR modality by mapping multisequence source images.

We contribute to literature through the application of image

synthesis to improve new T2 lesions detection for MS studies.

To do so, synthetic T1-w MR images obtained of the original

T2-FLAIR sequence are used in an algorithm for new T2 lesions

detection. For the synthesis of the images, we propose an

adversarial synthesis method based on the pix2pix approach

(Isola et al., 2017). The performance of the synthetic images

is evaluated when using them in the new T2 lesions detection

pipeline from Salem et al. (2020). We also present the results

of applying the proposed strategy to the MSSEG-2 challenge

(Commowick et al., 2021). Our primary contribution is to

demonstrate that the addition of synthetic T1-w images can

contribute to the improvement of the sensitivity of the new

T2 lesion detection algorithms when added to the original T2-

FLAIR image as input to the detection models.
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2. Materials and methods

In the development of this analysis, we used an in-

house clinical dataset. The synthesis pipeline is based on 3D

conditional GANs inspired by the pix2pix approach (Isola et al.,

2017), while the recent proposal of Salem et al. (2020) is used for

the detection of the new T2 lesions.

2.1. Dataset

The dataset used in this study contains 136 cases of MS

patients with clinically isolated syndrome (CIS) where 73 cases

had new T2 lesions in follow-up scans. The mean time between

MR scans was 12 months (range 3–27 month). Basal and follow-

up scans were obtained using a Siemens Tim Trio 3T with a 12-

channel phased array coil. The MRI protocol included sagittal

T1- weighted 3D magnetization-prepared rapid acquisition of

gradient echo (MPRAGE) [repetition time (TR) = 2,300 ms,

echo time (TE) = 2.98 ms, inversion time (TI) = 900 ms, voxel

size = 1.0 x 1.0 x 1.2 mm3] and transverse fast fluid-attenuated

inversion recovery (FLAIR) (TR = 5,000 ms, TE = 394 ms,

TI = 1,800 ms, flip angle = 120◦, voxel size = 1.0 x 1.0 x 1.0

mm3). The protocol was approved by the Vall d’HebronHospital

(Barcelona, Spain) Research and Ethics Committee. Informed

consent was obtained from each participant before enrolment

in the study.

As the gold standard to evaluate the detection method, the

number of new/enlarging T2 lesions was obtained after the

review of the MRI images by an expert observer (a technician

with more than 15 years of experience in assessing new T2

lesions for MS under neuroradiologist supervision) who was not

blinded to the radiological report or clinical information.

In addition, we used the MSSEG-2 challenge dataset

(Commowick et al., 2021) to extend the evaluation of our

approach. A total of 100 MS patients were gathered where

only 3D FLAIR sequences were acquired at a first and second

timepoints (separated in from 1 to 3 years in time) using a total

of 15 different MRI scanners (three GE scanners, six Philips

scanners, and six Siemens scanners). The image characteristics

vary with different resolutions and different voxel size (from 0.5

mm3 to 1.2 mm3). Data was separated according to 40 scans

for training and 60 for testing. This database allows us to test

the usefulness of our approach when missing T1 images in the

training set.

2.2. Methodology

2.2.1. Preprocessing
The preprocessing done to all the images was the following.

First, all images were registered to the MNI512 template. An

affine transformation was applied to the follow-up image, while

for the basal image, the concatenation between two affine

transformations, one from basal to follow-up scans and the one

from follow-up scans to the MNI512 template, was applied.

ANTs (Avants et al., 2009) with default linear interpolation was

used for this purpose. Later, skull stripping was applied with

HD-BET (Isensee et al., 2019), and finally, the images were

normalized in the range [0–1].

2.2.2. Proposed T1-w synthesis approach
The image generation architecture is based on the pix2pix

architecture (Isola et al., 2017) which is a conditional GAN

architecture where the network learn the mapping from the

input to the output image as well as the loss function to train

this mapping. Similarly to GANs, pix2pix architecture consists

of a generator and a discriminator. During the training process,

the generator tries to generate realistic samples in order to fool

the discriminator while the discriminator tries to distinguish

between real and synthetic samples (Xin et al., 2020).

A semantic image clustering of the T2-FLAIR image, which

was obtained with the FSL FAST algorithm (Zhang et al.,

2001; Jenkinson et al., 2012), together with its T1-w intensity

pair as ground truth (Figure 1A) is used as input to the

adversarial network. A different number of image clusters

obtained using FSL FAST are considered in our experimental

evaluation. We consider a minimum of 3 clusters corresponding

to gray matter, white matter and cerebrospinal fluid (CSF), 5

clusters corresponding to gray matter, white matter, CSF and

two partial volumes of the border between the tissues, and

finally 7 and 9 clusters. These last clusterings of the image

do not have a biological meaning but are considered here

to study the impact on the synthesis model when smaller

intensity clusters are used to perform the intensity mapping

between modalities.

From each cluster volume and the T1-w image, patches

of 32 x 32 x 32 are extracted and used as inputFrontiFron

to the generator, which is a 3D ResUNet architecture of 8

blocks (Figure 2A), in essence a U-Net with residual layers.

The UNet architecture (Ronneberger et al., 2015) is widely

used in medical imaging due to its ability of capturing context

through the extraction of high and low-level features and

enable precise location. Adding residual connections allows

merging feature maps from higher resolution layers with

deconvolved maps to preserve localization details and improve

back-propagation (He et al., 2016). Distinct from the original

UNet architecture, which uses skip connections implemented

with concatenations, we use summations to reduce the model

complexity (Guerrero et al., 2018). After each residual layer

in the downscaling path, pooling is applied. The discriminator

is a ResNet with 4 blocks (Figure 2B), where the residual

blocks are followed by pooling. Labels smoothing is used

during the training of the model to improve the generalization

and prevent the network to become over-confident about its
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FIGURE 1

Pipelines used in this work; (A) pipeline for the synthesis of T1-w images, and (B) pipeline for new T2-w lesion detection in longitudinal analysis.
The dashed line in (A) indicates that original T1-w images are used only in the training of the synthesizer.

prediction, therefore improving the accuracy (Müller et al.,

2019).

Both the generator and discriminator have residual layers.

Proposed by He et al. (2016), residual architectures facilitate the

training of deeper networks, making them easier to optimize,

and helping to improve the accuracy. Each block consists of two

convolutions followed by batch normalization. The size of the

kernel for the convolutions inside the residual blocks is 3 x 3 x

3. The pooling layers are implemented by striding with a kernel

size of 2 x 2 x 2.

2.2.3. New T2 lesion detection algorithm
The detection of new T2 lesions in longitudinal images is

performed using the approach of Salem et al. (2020). It consists

of a fully convolutional network (FCNN) that accounts for two

3D architectures: first registration and then segmentation, which

are trained end-to-end. The inputs to the FCNN are the basal

and follow-up images, while the output is a new T2 lesion

segmentation mask (Figure 1B).

The network consists of two architectures: the first one is

a 3D U-Net for registration where for each input modality,

the architecture learns the deformation fields and nonlinearly

register the baseline image to the follow-up image. A second

architecture, a 3D U-net, performs the final detection and

segments the new T2-w lesions. Gradient descent is used as

the optimizer and the network simultaneously learns both

deformation fields and the new T2-w lesion segments. The loss

function of the registration architecture is an unsupervised loss

function (Balakrishnan et al., 2019) which has two components:

one that penalizes differences in appearance and a second

one that penalizes local spatial variation. For the segmentation

architecture, the well known cross-entropy loss function is used.

The network was trained using 3D patches of 32 x 32 x 32 with

a step size of 16 x 16 x 16 extracted from both baseline and

follow-up images. Adam was used as optimizer.

In the original work, Salem et al. (2020), the input modalities

were T1-w, T2-w, PD-w, and T2-FLAIR. In this work, we

modified them to be only T2-FLAIR (referred to FLAIR-only) or

T2-FLAIR and T1-w images (referred to T2-FLAIR + T1). The
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FIGURE 2

Adversarial synthesis model which takes as input the T2-FLAIR image clustering together with a T1-w intensity image as ground truth and
generates a T1-w synthetic image as output. Core element modules in both architectures are composed of residual layers as described in He
et al. (2016) with two convolutional layers (k = 3 x 3 x 3), followed by batch normalization, and finally a pooling layer by striding (k = 2 x 2 x 2).
(A) The generator is a patchwise 3D encoder/decoder architecture where c is the number of clusters. Merged layers are implemented using
summation instead of concatenation, using added element modules. (B) The discriminator is a patchwise 3D decoder architecture.

aim of this work is to evaluate the performance of the approach

when using the synthetic T1 images generated as explained in

the previous subsection.

2.3. Experimental evaluation

Three different experiments were performed in this study.

First, we evaluated the image synthesis and determined which

number of partial volumes improves the performance of the new

T2 lesion detection algorithm.

Subsequently, using the in-house dataset, we compared the

performance of using T1-w synthetic images for the lesion

detection against two different models trained with original

images, as shown in Figure 3, and described as:

• Baseline: model trained using original T2-FLAIR and T1-

w images.

• FLAIR-only: model trained using only original T2-

FLAIR images.

• Synthetic: model trained using original T2-FLAIR original

images and synthetic T1-w images, obtained from the

original T2-FLAIR images.

Finally, we also evaluated our image synthesis and lesion

detection proposal using the data from the international

MSSEG-2 challenge (Commowick et al., 2021), showing the

obtained performance when using FLAIR-only and when adding

the generated T1-w images.

2.3.1. Evaluation metrics for image quality
The quality of the images is evaluated locally

measuring the voxel-wise intensity differences between

a real image, y, and its approximation, y, using the

median absolute error (MAE) expressed as Equation (1).

While the more similar images y and y are, the lower

the MAE.

MAE(y, y) = median
∣

∣y− y
∣

∣ (1)

For a global evaluation, we use the structural similarity

index metric (SSIM) proposed by Wang et al. (2004) and

defined in Equation (2), which accounts for variations

in luminance, contrast, and structure correlation, and has

been found to correlate with the quality of perception of
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FIGURE 3

Three di�erent models are trained according to the input images: (A) original T1-w and T2-FLAIR images, (B) using only original T2-FLAIR
images, and (C) using synthetically obtained T1-w images (from the original T2-FLAIR images) along with the original T2-FLAIR images.

the human visual system (Hore and Ziou, 2010). It is

defined as:

SSIM(y, ỹ) =
2µyµỹ + c1

µ
2
y + µ

2
ỹ
+ c1

·
2σyσỹ + c2

σ
2
y + σ

2
ỹ
+ c2

·
cov(y, ỹ)+ c3

σyσỹ + c3
,

(2)

where µ denote the mean and σ is the standard deviation

values of the luminance of the images, cov(y, ỹ) is the covariance

between y and ỹ, and ci is a constant that is used to avoid a

null denominator (Hore and Ziou, 2010). The SSIM values range

within zero and one, where zero indicates null similarity and one

indicates total similarity.

2.3.2. Evaluation metrics for new T2 lesions
detection performance

To evaluate the performance of the different trained models

in the new T2 lesion detection algorithms, we use sensitivity,

false discovery rate, and precision between the manual lesion

annotation and the output segmentation mask. The sensitivity

is defined as:

Sensitivity =
TP

TP + FN
(3)

where TP and FN denote the number of correctly and missed

lesion region candidates, respectively. In terms of detection, a

lesion is consideredTP if there is one voxel overlapping (Cabezas

et al., 2016; Salem et al., 2018, 2020). The false discovery rate is:

FDR =
FP

FP + TP
(4)

where FP denote the number of incorrectly classified lesion

regions as positive. The precision is defined as:

Precision =
TP

TP + FP
(5)

where TP and FP denote the numbers of correctly and miss

classified lesion region candidates, respectively.

2.3.3. Statistical analysis
For each of the performance metrics of the detection of new

T2 lesions, we applied the pairwise non-parametric Wilcoxon

signed-rank test (two-sided) (Woolson, 2007), to assess the

hypothesis of similar distributions between the different

pairs of approaches. The results were considered significant

for (p < 0.05).

3. Experimental results

To train and test the required models, we used the two

subset configurations already available from the Vall d’Hebron
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TABLE 1 Similarity between images and performance of the lesion detection algorithm when using 3, 5, 7, and 9 clusters in the synthesis of T1-w

images.

Similarity Detection

Modalities SSIM MAE Sensitivity FDR Precision

T2-FLAIR+ T1S (3c) 0.89± 0.07 0.11± 0.05 0.51± 0.38 0.07± 0.17 0.69± 0.42

T2-FLAIR+ T1S (5c) 0.91± 0.07⋆ 0.09± 0.05⋆ 0.73± 0.31⋆ 0.11± 0.20 0.83± 0.29⋆

T2-FLAIR+ T1S (7c) 0.90± 0.07 0.10± 0.05 0.81± 0.23▽ 0.14± 0.19 0.86± 0.19▽

T2-FLAIR+ T1S (9c) 0.90± 0.07 0.09± 0.05 † 0.77± 0.30 † 0.25± 0.27 ⋄ 0.73± 0.29

Significant differences in metrics between 5c and 3c are marked with ⋆, differences between 7c and 3c are marked with ▽, while differences between 9c and 3c are marked with †. Results

of FDR for 9c are significantly lower with respect to the other 3 approaches (marked with ⋄).

FIGURE 4

Examples of original and synthetically obtained images. The first column shows the original T2-FLAIR image, while the second column shows
the original T1-w image. The following columns show the T1-w images obtained from the T2-FLAIR image using a di�erent number of clusters
(3, 5, 7, and 9).

Hospital. Set A included 101 patients, including 38 patients

with new T2 lesions, and set B included 35 patients, all of

whom had new T2 lesions. For the synthesis of T1-w images,

set A was used for training, and set B was used for testing.

Similarly, for the new T2 lesion detection models, the images

from the 38 patients with new T2 lesions of set A were

used for training, while the images from set B were used

for testing (notice that for the model trained with synthetic

images, the synthetic version of the images from set A were

also computed).

We obtained the synthesized T1-w images using four

different number of clusters of the T2-FLAIR image: 3, 5, 7, and

9 clusters. Table 1 shows the results of each case according to

the similarity with the original image. For the inference of the

new T2 lesion detection, voxels with≥ 0.5 probability of being a

lesion are taken as part of a lesion, while a lesion has a minimum

of three neighboring voxels.

According to the similarity measures, the most similar image

was obtained when using 5 clusters. Differences according to

SSIM are small, while using MAE the performance of using 5

and 9 clusters are significantly different (p < 0.05) than when

using 3 clusters. This difference in behavior of the measures

shows the benefit of comparing the similarity between images

both globally and locally. Figure 4 shows a qualitative example

of each case, showing a high global similarity with respect to

the ground truth, although there are discrepancies, mainly in the

borders of the tissues, which are captured by the local similarity.

Although the adversarial network exhibits common artifacts

such as the intensity shift, they were more visible when using the

approach with 3 clusters. On the contrary, when using 5, 7 and 9

clusters, axial slices generated tend to preserve better delineation

of some structures.

Table 1 also shows the detection inferences computed with a

fixed voxel probability threshold ≥ 0.5. Note that when using
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T1S (7c), higher sensitivity and precision were obtained. To

make these values more comparable, we inferred the detection

using a threshold ≥ 0.3 for T1S (3c), T1S (5c) and T1S (9c)

in an attempt to reach a similar operating point to that of

the approach using T1S (7c). Under these conditions, T1S (3c)

reached a sensitivity of 0.67 ± 0.33 with 0.14 ± 0.24 FDR, T1S

(5c) increased the sensitivity to 0.78 ± 0.29 but with an FDR of

0.27±0.3, while T1S (9c) reached a sensitivity of 0.79±0.34 with

0.30 ± 0.26 FDR. Considering all these results, we can see that

although all models were able to detect lesions, the best trade-

off with the different detection measures was obtained when

using 7 clusters in the synthesis of the T1-w sequence. Notice

that images generated with 7c were not showing the best overall

quality measurements but provided better feature information

to improve the MS lesion detection.

Applying the synthesis based on 7 clusters (7c), we also

evaluated the use of the synthetic T1-w images on the

performance of the detection, using the 3 different approaches

seen in Figure 3. Table 2 shows the obtained results. When using

the original images, the sensitivity was 0.75 ± 0.29 at FDR

of 0.09 ± 0.18, while when using only T2-FLAIR images as

input the values were 0.63 ± 0.37 and 0.14 ± 0.24, respectively.

When using the T2-FLAIR images along with the T1-w images

synthesized from the same T2-FLAIR image, as an input, the

sensitivity increased to 0.81 ± 0.23, without increasing the FDR

with respect to the model using only T2-FLAIR images. The

increase in sensitivity was significant with respect to the other

models (p < 0.05). The precision between models showed

that when using only T2-FLAIR images the performance was

significantly lower (p < 0.05) than when using T1-w images,

either real or synthesized. Comparing the use of both kinds of

images, the results were similar.

3.1. Results using the MSSEG-2 dataset

In this experiment, we used our adversarial synthesis model

trained with the in-house dataset to generate T1-w images for

all the cases of the international MSSEG-2 challenge, where

only T2-FLAIR images were available (Commowick et al., 2021).

TABLE 2 New T2 lesion detection performance evaluation using the

models shown in Figure 3.

Modalities Sensitivity FDR Precision

Results with original images

T2-FLAIR+ T1(Baseline) 0.75± 0.29 0.09± 0.18 0.85± 0.27

T2-FLAIR (FLAIR-only) 0.63± 0.37 0.14± 0.24 0.71± 0.38

Results with synthetic T1

T2-FLAIR+ T1S (7c) 0.81± 0.23 ⋆ ▽ 0.14± 0.19 0.86± 0.19▽

Significant differences of the T2-FLAIR + T1S (7c) model w.r.t the Baseline and

FLAIR-only models are marked with ⋆ and▽, respectively.

We compared the performance of the MS lesion detection

approach using only the T2-FLAIR images [original VICOROB

submission to the challenge using Salem et al. (2020) with only

T2-FLAIR images] vs. the model trained using both T2-FLAIR

and T1-w synthetic images. Notice that all theMSSEG-2 training

dataset was used to train both models, while the evaluation was

done directly using the MSSEG-2 testing set, including both the

active and stable cases.

The obtained results are illustrated in Table 3, where the

two approaches are compared with some of the best pipelines

participating in the challenge. Table 3 illustrates also the

agreement of the approaches with the different expert raters.

Interestingly, the performance of the model when using T1-

w synthetic images was higher than the model using only

T2-FLAIR images. For the active patients, we obtained an

improvement in terms of sensitivity and precision of 0.12 and

0.2, respectively, while also reducing the FDR. Notice that the

accuracy of the model was similar to that of some of the

top participants in the challenge (MEDIAREB, EMPENN and

SNAC, see the MSSEG-2 challenge webpage for details of the

participants), yielding also a performance that was comparable

in terms of sensitivity to those of the human raters. Regarding

the stable patients, where no new lesions were present, we

observed a reduction in the total number of FP obtained and

in the number of cases with FPs (11% of the 28 stable cases).

Furthermore, it should be noted that our synthesis model was

trained directly using the in-house dataset and only using

images from a Siemens machine. This shows a capability of the

model to adapt the source knowledge into the target domain

of the challenge where data from different MRI scanners were

available, producing T1-w images which indeed could be used to

improve MS lesion detection.

4. Discussion

In this study, we investigated the usefulness of synthetic T1-

w images in a longitudinal lesion detection pipeline. Starting

from single T2-FLAIR images, we propose obtaining synthesized

T1-w images that are subsequently used as an additional image

modality to look for new abnormalities in the longitudinal

analysis of the brain. Experiments show that although strong

structural differences exist between T2-FLAIR and T1-w images,

given the contrast difference between the two modalities,

realistic T1-w images were able to be produced. In addition,

the results show that adding the synthetic images to T2-FLAIR

images in the detection pipeline provides new and reliable

information that helps obtain better detection.

Our approach for generating T1-w images relies on intensity

clustering of the T2-FLAIR images. The obtained clusters allow

us to guide intensity information during the generation process.

We have shown that images using more than 3 clusters are more

similar to the original T1-w images. Most likely, the use of a few
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TABLE 3 Results of the MSSEG-2 challenge 2021.

MSSEG-2 challenge Active patients Stable patients

Sensitivity FDR Precision N◦ of cases with FP (%)

Expert 1 0.71± 0.38 019± 0.31 0.72± 0.38 1 (4%)

Expert 2 0.61± 0.37 0.13± 0.21 0.68± 0.39 3 (11%)

Expert 3 0.61± 0.37 0.13± 0.23 0.69± 0.40 0 (0%)

Expert 4 0.47± 0.39 0.06± 0.19 0.66± 0.46 1 (4%)

MEDIAREB 0.69± 0.40 0.39± 0.34 0.49± 0.36 10 (36%)

EMPENN 0.59± 0.32 0.33± 0.32 0.51± 0.36 8 (29%)

SNAC 0.66± 0.40 0.39± 0.33 0.49± 0.35 4 (14%)

VICOROB (FLAIR-only) 0.50± 0.39 0.43± 0.34 0.35± 0.32 6 (23%)

VICOROB (FLAIR+ T1S) 0.62± 0.39 0.39± 0.38 0.55± 0.39 3 (11%)

Testing set composed by 60 patients: active patients n = 32, stable patients n = 28. Sensitivity, FPR and precision are shown for active patients, while the number of cases that presented

FPs are provided for stable cases.

FIGURE 5

Example of image generations in a lesion area. First column shows the original T2-FLAIR and T1 image. The rest of the columns show the
clustering result and the corresponding generated image using di�erent numbers of clusters (3, 5, 7, and 9, respectively).

clusters does not account for the inherent partial volumes of MR

images, while using more clusters allows better mapping of the

partial volumes.

Regarding the lesion detection process, the best results were

obtained when using 7 clusters. We observed that using more

than 3 clusters allowed us to obtain additional information

from the lesion areas that turns out to help in the lesion

detection process. Note that the main goal of the synthesis is to

provide images with complementary information to the network

to improve lesion detection rather than produce high-quality

synthetic images. Interestingly, we noticed that in the lesion

areas, the model using 9 clusters tended to resemble too much

the original T2-FLAIR cluster intensities in the generated T1

images, forcing an intensity mapping that deviates from the

intensities present in the original T1. This can be seen in the

example shown in Figure 5, where the generated image using

9 clusters produces more hypointense voxels in the lesion area

than in the original T1 due to the larger number of clusters used

and the intensity mapping learned from the model.

Comparing the detection performance when using only

T2-FLAIR images vs. adding synthetic T1-w images, we

found that there was a statistically significant difference in

sensitivity between the two models. This indicates that the

addition of T1-w synthetic images provides meaningful and

additional information for the detection of the lesions. In

contrast, the performance when using original T1-w images or

synthetic images is similar, although we obtained slightly better

results with the synthetic images. Our hypothesis is that in

image synthesis, what is learned during training are the most

predominant features of a T1-w image that can be extracted

from a T2-FLAIR modality. These features may be related to

the lesions, and therefore, the sensitivity during detection could
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improve. This may also be related to the number of clusters

used. When using 5 clusters, we obtained more similar images

than using 7 clusters, although the best performance for lesion

detection was obtained when using the synthetic images from

7 clusters.

There is one limitation of this work that should be

mentioned. All the images used in the study to train the synthesis

model were taken from the same scanner, which was a Siemens

Tim Trio 3T. Although the experiments done using the MSSEG-

2 Challenge showed the capability of the synthesized images

to improve the MS lesion detection even when using images

from different MRI scanners (Siemens, Philips and GE), further

investigations should be done in this line. As a future work,

we plan to evaluate more exhaustively our synthesis approach

when using images from different MRI scanners, analyzing

not only the impact on the image generation and on the

lesion detection performance, but also its applicability as an

image standardization procedure. Furthermore, it could be very

interesting to extend the study using more advanced synthesis

models such as cycleGAN (Zhu et al., 2017) or Hi-Net (Zhou

et al., 2020), which could in turn improve the generalization and

the performance of the MS lesion detection approaches.

In conclusion, the results shown in this work demonstrate

that the inclusion of synthetic images can support the lack of

data. Specifically, we have seen how the inclusion of synthetic

T1-w images on the lesion detection models helped to improve

the overall performance. Our approach could benefit the clinical

acquisition of MRI sequences, helping to reduce time and

costs. Moreover, synthetic images could also be used instead

of the original images to homogenize the contrast of the

different acquisitions.
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