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In resting tremor, the body part is in complete repose and often dampens or

subsides entirely with action. The most frequent cause of resting tremors is

known as idiopathic Parkinson’s disease (PD). For examination, neurologists

of patients with PD include tests such as finger-to-nose tests, walking back

and forth in the corridor, and the pull test. This evaluation is focused on

Unified Parkinson’s disease rating scale (UPDRS), which is subjective as well as

based on some daily life motor activities for a limited time frame. In this study,

severity analysis is performed on an imbalanced dataset of patients with PD.

This is the reason why the classification of various data containing imbalanced

class distribution has endured a notable drawback of the performance

achievable by various standard classification learning algorithms. In this work,

we used resampling techniques including under-sampling, over-sampling,

and a hybrid combination. Resampling techniques are incorporated with

renowned classifiers, such as XGBoost, decision tree, and K-nearest neighbors.

From the results, it is concluded that the Over-sampling method performed

much better than under-sampling and hybrid sampling techniques. Among

the over-sampling techniques, random sampling has obtained 99% accuracy

using XGBoost classifier and 98% accuracy using the decision tree. Besides,

it is observed that di�erent resampling methods performed di�erently with

various classifiers.

KEYWORDS

Parkinson’s disease, resting tremor, imbalance data, resampling techniques,

accelerometer data, machine learning, severity analysis

1. Introduction

Parkinson’s disease (PD) is the second fastest-expanding neurological chronic

condition worldwide. It is a disorder of the brain that leads to stiffness, difficulty in

walking, shaking, and loss of balance as mentioned in Program (2021). According to

the National Institute of Aging, the prevalence rate of PD is 10 million of the population
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around the globe affecting 50% more men than women (Ou

et al., 2021). Every 5 h, 10 patients are diagnosed with PD. In

the United Kingdom, 60,000 people yearly are diagnosed with

PD cases before the age of 50 (Parkinson’s Change attitudes.Find

a cure. Join us, 2020). The estimated PD rate is to double by 2030

(Okunoye et al., 2020).

According to the National Institutes of Health (NIH), rest

tremor is the most frequent and quickly recognized symptom.

It represents rhythmic, unilateral involuntary, and alternating

movements in supported and relaxed upper and lower limbs

majorly in the hands, chin, legs, lips, and jaw (Shahed and

Jankovic, 2007). Additionally, postural tremor happens when an

individual tries to balance their position against the floor gravity,

for example expanding and stretching arms and legs. The

kinetic tremor occurs during voluntary handmovements such as

writing or touching any body part. The frequency of kinetic and

postural tremors is between 9–12 Hz and 6–9 Hz, respectively

(Pierleoni et al., 2014). The severity of tremor often specifies

PD severity and progress which further helps to evaluate

treatment efficiency. The ground truth and empirical evidence

are collected from UPDRS which is a clinical measurement

scale assigned by clinicians with numerical values indicating

qualitative observations in various sitting and standing postures

(Palmer et al., 2010). Presently, UPDRSmeasures the PD severity

score in a range from 0 to 4 which indicates mild, normal,

moderate, slight, and severe levels, respectively (Post et al.,

2005). However, UPDRS indicates high variability because the

assessment of each clinician may vary depending on his skills

and expertise such as one scrutineer assigned a low score on 1

day and another scrutineer assigned a high score on another day

(Siderowf et al., 2002; Fisher et al., 2016). In this condition, it

is tough to interpret two different values. Moreover, the UPDRS

assessment process is tedious.

Therefore, many studies have classified tremor severity

values using different signal processing and machine learning

(ML) techniques (Ramyachitra and Manikandan, 2014; Belić

et al., 2019). The subject of the imbalanced distribution of

data or the lack of class density in data training is quite

challenging because misclassification can result in a wrong

assessment (López et al., 2013; Kaur et al., 2019). On the

contrary, various techniques have been implemented to resolve

the misclassification problem which is further divided into

three sections including resampling of data, modification of

algorithm, and cost-effective learning approach. Resampling

the data involves under and over sampling including a hybrid

approach which resolves the issue of misclassification (Sun et al.,

2009; Haixiang et al., 2017).

The survey of literature review implies that this is the initial

study to implement various resampling techniques governing

the implementation of three classifiers XGBoost, KNN, and

Decision tree on five severity levels ranging from 0 to 4 which

diminishes the misclassification issue.

The paper is arranged as follows: In the section “Literature

Review,” a survey study of related work is conferred. Section

“Methodology” discusses the proposed techniques including

data collection, signal filtering, and its analysis, and extraction

of various important features using different resampling

techniques and various ML classifiers. It is followed by

“Evaluation of Results and Discussion.” In the end, the

“Conclusion” sums up the overall paper.

2. Related study

In the past few decades, there has been a rapid rise of

interest in the area of early diagnosis of PD and quantification

of PD symptoms. For instance, the Bazgir et al. (2015) estimated

tremor severity for 52 PD cases using a smartphone feature of a

triaxial accelerometer. Various features were extracted including

median frequency, dispersion frequency, fundamental tremor

frequency, and power spectral density. Additionally, significant

results were obtained using an artificial neural network classifier

and achieved 91% accuracy. Specifically, no other performance

metrics were discussed, the fact that are important for medical

classification. Subsequently, Bazgir et al. (2018) improved the

performance accuracy using the Sequential Forward Selection

approach for feature extraction and achieved 100% using Naive

Bayesian classifier.

In Niazmand et al. (2011), the authors experimented on

10 PD cases and two normal control subjects to evaluate

tremor severity using integrated pullover triaxial accelerometers.

The tremor assessment and peak detection technique were

used to calculate the movement frequency. The accelerometers

and UPDRS scores were calculated presenting 71 and 89%

sensitivity in detecting the correlation of rest tremor and posture

tremor, respectively. On the contrary, the pullover i.e., smart

clothes that fit completely on the patients attained good results

but indicated a fence (obstacle) in routine and continuous

PD assessment. Moreover, fit pullover usage can increase the

posture tremor muscle tension which shifts the position of

the accelerometer depending on the executed movements.

Thus, this study provides limited information about patients

having UPDRS severities which can impact the performance

measurements. Rigas et al. (2012) used wearable accelerometer

sets on arms to estimate tremor severity on a range from 0

to 3 involving 10 PD cases, 8 PD cases without tremors, and

5 cases of healthy subjects while performing activities of daily

living. Furthermore, low and band pass filters of 3–12 Hz cut

off were used for processing. Various sets of features were

extricated from filtered signals i.e., low and high frequencies

energy, dominant frequency, mechanical energy, and spectrum

entropy. Hidden Markov Models were performed for severity

classification with Leave-One-Out Cross-Validation (LOOCV)

and achieved overall 87% accuracy. As a result, for tremor
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0, the achieved specificity and sensitivity were 94 and 91%,

respectively. For tremor 1, the achieved specificity and sensitivity

were 82 and 87%, respectively, for tremor 2, there were obtained

79 and 69%, respectively, and tremor 3 got percentages of 83 and

91%, respectively. Concurrently, the study is not generalized and

applicable to all the patients because tremor severity 4 is missing

from the collected data.

Wagner et al. (2017) gathered triaxial accelerometer data

using a smartwatch while performing five motor activities

including hand rotation, sitting quietly, drawing, folding towels,

and walking from 19 patients with PD. Each of the triaxial

accelerometer axes including mean relative energy, extracted

relative energy, and the acquired signal was processed using

the wavelet features extraction technique. Tremor severity was

predicted using a support vector machine classifier with three

extracted features into 0, 1, and 2 tremor levels representing

tremor in one axis only. Therefore, LOOCV was used for model

evaluation which achieved 78.91% accuracy, an average recall of

79%, and average precision of 67%. However, a major problem

in this study is the combination of 2, 3, and 4 levels of severity

into one single score severity which will be a problem to identify

tremor level by neurologists later on as it does not represent the

actual severity level.

Furthermore, patients with PD were identified from healthy

patients using over sampling techniques on speech signals

(Polat, 2019). Researchers combined over sampling technique

with RF classifier and achieved 94.89% accuracy but the

study has not identified the tremor severity. AlMahadin et al.

(2022) improved the classification of Parkinson’s disease tremor

severity by investigating a set of resampling techniques and

signal processing techniques. Various resampling techniques

were combined with various classifiers including multi-layer

perceptron using random forest and ANN. Thus, the results

depict that the oversampling performance was better than

other techniques of resampling and achieved 93.81% accuracy.

However, the sample is very small and does not reflect the whole

population. Also, data were collected from one environment

source only. Therefore, if the environment is altered then the

outcome will definitely vary. On the other hand, the proposed

techniques must be experimented with on many other various

datasets to measure performance.

In conclusion, a frequent limitation in most of the

aforementioned studies is the imbalanced class distribution and

the fact that the researchers did not utilize all tremor levels. Only

a few studies used data while the subject is performing different

tasks, which were specific, and did not include ADLs (activities

FIGURE 1

The proposed framework for tremor severity classification.
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of daily living) and performance measurements such as AUC

(area under the curve), specificity, sensitivity, and F1 score to

evaluate the classification models.

3. Methodology

The proposed strategy to classify the imbalanced RT severity

dataset by adapting resampling techniques is depicted in

Figure 1. Initially, the raw inertial signals are preprocessed to

remove sensor orientation dependency, non-tremor data, and

artifacts. In the next step, the time and frequency domain

features are extracted from the labeled and prepossessed signals.

In the third step, data is segregated into training and test

subsets. Additionally, to avoid classifier bias training, the data

is resampled. The data distribution is based on 10-fold cross-

validation. Finally, tremor severity levels (0–4) are estimated by

passing training and test data into a classifier. Furthermore, the

results are estimated for adoption in the last step. Each step is

explained further in subsequent sections.

3.1. Dataset description

The data analyzed in this study is MJFF Levodopa

Wearable Sensors Dataset supported by the Michael J.

Fox Foundation (https://www.michaeljfox.org/data-sets) (Sage

Bionetworks, 2019). The demographic details of the subjects

recruited from the Boston study site are given in Table 1.

The data is collected from participants in-clinic and home

settings using various wearable devices i.e., a Pebble Smartwatch,

Shimmer3, GENEActiv accelerometer, and a Samsung Galaxy

Mini smartphone accelerometer. These sensors are carried by

the patients for the duration of the study i.e., 4 days. In this

study, only Shimmer3 accelerometer tremor data collected from

subjects in the ON state is analyzed.

On the first day of data assortment, patients came to the

laboratory at their normal recommended routine in ON state

(taking medication) and carried out some ADLs, wearing some

items formotor assessment in case of movement disorder (Goetz

et al., 2008). The rundown of accomplished activities regards

standing, strolling straight, strolling while counting, strolling

higher up, strolling ground floor, strolling through a narrow

entry, finger to nose test, repeated arm development, sit-to-

stand, drawing on a paper, composing on paper, assembling nuts

and bolts, taking a glass of water, drinking, arranging sheets in

an envelope, folding a towel, and sitting. For each instance of

each task performed, clinical labels of symptom severity scores

(0–4) and/or symptom presence were determined by a medical

practitioner. On the second and third days, accelerometer data

were gathered while subjects are at home and regulating their

usual home activities. Once more, on the fourth day, the same

strategy done on the first day was performed, but the patients

were in an OFF state (without medication).

TABLE 1 Demographic details of patients with PD.

Patient ID Gender Age Dominant

hand

Most effected

side

3BOS Female 86 Right Right

4BOS Female 52 Right Right

5BOS Male 74 Right Right

6BOS Male 62 Right Left

7BOS Male 74 Right Right

8BOS Male 64 Right Right

9BOS Female 69 Right Left

10BOS Male 83 Right Right

11BOS Male 61 Right Right

12BOS Female 82 Right Right

13BOS Male 68 Right Right

14BOS Male 65 Right Right

15BOS Female 70 Right Right

16BOS Male 70 Right Bilateral

17BOS Female 60 Left Bilateral

18BOS Male 65 Right Right

19BOS Male 77 Right Right

3.2. Signal preprocessing and features
extraction

There are three types of tremors with the following

frequency ranges: 3–6 Hz for Resting Tremor (RT), 6–9 Hz for

Postural tremor, and 9–12 Hz for Kinetic tremor. Among these,

RT presents in 70–90% of patients with PD, and it occurs at a

frequency between 4 and 6 Hz. Preprocessing was undertaken to

discard non-informative and noisy data. Additionally, the study

is based on severity analysis of RT, and eliminates low and high-

frequency components from data, holding the RT bands from

the signal. As recommended by the previous study, a bandpass

Butterworth filter has been used having cut-off frequencies of 3–

6 Hz for resting tremor. We employed a 3 s window length for

the tremor classifier in view of earlier studies (Patel et al., 2009;

Banos et al., 2014). as expressed in Equation (1).

{xt}
Wl
t=0 (1)

where xt is the acceleration at a particular time t, and wl

represents the length of the window. The filtered signals are then

divided into 3-s windows that can be annotated and applied

as inputs. We employed a 3 s window length for the tremor

classifier in view of earlier studies (Patel et al., 2009; Banos et al.,

2014). In the area of analyzing PD motor symptoms and human

action recognition, this window length has shown that it gives

a sufficient resolution for separating significant temporal and

spectral domain features. As RT lies in between 3 and 6 Hz, a

3 s window length ought to be sufficient for catching important

features that distinguish RT. A feature vector comprised of

frequency-domain features as well as time-domain features that
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are computed on each data window. Then, the raw data signal

was transformed using the Fast Fourier Transform from the

time domain to the frequency domain according to Equation (2)

provided below.

F(y) =
Wl−1
∑

t=0

xte
−j2λyt

Wl
(2)

for y = 0....Wl-1. F(y) is a complex series that has identical

dimensions to the input sequence (xt)
Wl
t=0 and e

−j2λyt
Wl

is

a primitive Nth root of unity. The extracted features were

acquired by processing the acceleration values of the X-, Y-

, and Z-axis. The first principal component was calculated

from the filtered signals. The first principal component was

incorporated as a processed signal for feature extraction

to reduce dependence on device orientation. The features

were carefully extracted to give detailed and discriminatory

information on data characteristics that are highly correlated

with tremor severity, such as root mean square (RMS), spectral

flatness, entropy, dominant frequency, entropy, autocorrelation,

skewness, kurtosis, central tendency, degree of dispersion, and

shape of the data. After feature extraction, feature selection is

performed. Feature selection has the potential to allow the entire

strategy to be executed computationally more productively.

Second, it usually achieves an increase in the accuracy or the

right rate of the technique. In previous years, several feature

selection approaches were proposed. In this study, principal

component analysis (PCA) is employed for feature selection.

PCA is an efficientmethod that selects several important features

from all the extracted feature components. While assessing the

significance of the feature components, the proposed approach

considers various eigenvectors. Then it uses a reasonable scheme

to perform feature selection.

3.3. K-fold cross-validation

In dataset training and testing, the performance of a classifier

is evaluated using k-fold cross-validation. Initially, the training

set is divided into k-folds of the equal size employing random

sampling excluding repetition. Therefore, K times the models

are trained, each of them practicing as the training set K as a

validation set. The mean average of K individual errors is the

prediction error. Moreover, the stability of a model is measured

using error variance. The benefit of this technique is that it does

not focus more on how the dataset is divided, the model is

slighter prone to adapt to the selection bias.

3.4. Classifiers

In this study, three classifiers are considered for

classification: XGBoost Classifier (Chen and Guestrin, 2016),

K-nearest neighbor (KNN) (Peterson, 2009), and Decision Tree

(Brijain et al., 2014). The following classifiers were chosen based

on the previous study (Parziale et al., 2019; Abdurrahman and

Sintawati, 2020; Channa et al., 2021) that attained good accuracy

in PD classification and its severity diagnosis with balanced

and imbalanced datasets. XGBoost is known as ‘Extreme

Gradient Boosting’ since it is an ideal blend of hardware

and software methods of optimization to yield predominant

outcomes incorporating few computing resources in a small

time period. XGBoost is a decision-tree-based ensemble

Machine Learning (ML) algorithm that utilizes a gradient

boosting approach.

However, a Decision Tree is a kind of supervised ML

classification algorithm that helps in deciding what the input

is in correspondence with a certain output in the training

data, where the data is continuously split according to a

certain parameter. The tree can be explained by two entities,

namely decision nodes and leaves (James et al., 2013). Decision

nodes are utilized to build any decision and have various

branches, while the leaf nodes represent the outputs of the

decisions and do not consist of any branches further. The

KNN is a non-parametric supervised learning method that

is used for both classification and regression problems.

KNN has instance-based learning meaning that it does not

learn weights from training data to predict output (as in

the model-based algorithms) but uses the entire training

instances to predict output for unseen data. The results

were estimated using various traditional metrics involving

specificity, accuracy, F1-score, precision, and sensitivity

(He and Garcia, 2009).

The primary advantage of XGBoost includes various hyper

parameters which can be tuned and it has a built-in feature

to adjust the missing values. Also, it provides distributed

computing, parallelism, and cache optimization.

3.5. Adopted resampling methods

The resampling methodology is adopted when there is an

unbalanced dataset to improve the accuracy and quantify the

uncertainty. Resampling techniques alter the formation of a

dataset training for an imbalanced classification quest. This

section confers a brief overview of the resampling strategies

utilized in this study. Resampling techniques can be divided

into three groups: under-sampling, over-sampling, and hybrid

(merging over and under-sampling).

3.5.1. Under-sampling techniques

In Under-sampling methods, the samples taken from the

majority of classes are reduced. In this proposed framework,

seven under-sampling techniques are investigated as explained

below and Figure 2 depicts the difference between all of them.
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FIGURE 2

This figure illustrates the di�erence before and after applying the under-sampling technique, (A) is data without resampling, (B) is data after

applying the Random undersampling method, (C) is data after applying the CNN technique, (D) is data after applying the Tomek Links method,

(E) is data after applying NearMiss method, (F) is data after applying the ENN resampling method, (G) is data after applying the OSS resampling

method, (H) is the data after applying the NCR resampling method.
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3.5.1.1. Random undersampling

Random undersampling (Hoens and Chawla, 2013; Liu

and Tsoumakas, 2020) includes randomly selecting examples

from the majority class and eliminating them from the

training dataset. In this methodology, the greater part of class

occurrences is disposed of arbitrarily until a more adjusted

dispersion is reached.

3.5.1.2. Condensed nearest neighbor

This technique was proposed by Hart (1968) to decrease

the memory prerequisites for the K-Nearest Neighbors (KNN)

approach. It looks for a subset of an assortment of samples that

results in no loss in model execution, alluded to as a minimal

consistent set. This is accomplished by multiple iterations upon

the majority of classes and choosing samples of subsets that

are accurately classified by the algorithm known as 1-nearest

neighbor. Therefore, it considers only the relevant number

of samples and excludes the insignificant samples from the

majority of classes.

3.5.1.3. Tomek links

As the CNN technique initially selects random samples,

this produces retention of irrelevant samples and occasional

retention of internal instead of boundary samples. Hence,

the modification of the CNN procedure proposed by Two

Modifications of CNN (1976) and called Tomek Links finds the

pairs of various examples, one taken from each of the classes that

have the Euclidean distance of smallest value to each other, in

features space. Then it removes the samples belonging to the

majority of classes or vice versa. In this study, the majority of

Tomek Links classes are discarded only to retain the minority

classes and to increase the distances between the classes by

discarding the majority classes near the decision boundary.

3.5.1.4. NearMiss

Near Miss refers to an assortment of undersampling

strategies that selects the models in light of the distance of the

larger part class to the minority class models. This approach

was proposed by Mani and Zhang (2003). There are three sorts

of methods, named NearMiss-1, NearMiss-2, and NearMiss-3.

NearMiss-1 picks the larger part class models with the average

distance which is the smallest to the three nearest minority

of class models, NearMiss-2 chooses the larger part class tests

with the average distance which is smallest to the three farthest

minority of samples, NearMiss-3 chooses greater part class tests

with the distance which is smaller to each minority class sample.

Therefore, in this research NearMiss-1 is employed.

3.5.1.5. Edited nearest neighbor

Edited Nearest Neighbor (ENN) (Wilson, 1972) is a

technique for tracking uncertain and noisy samples in a dataset.

This technique uses the k = 3 closest neighbors to find those

models in a dataset that are misclassified, and those are then

eliminated before a k = 1 order rule is implemented. In the

undersampling system, the standard is employed for each model

in the majority of the class, permitting those models which are

misclassified as existing to the minority class to be taken out and

accurately classified to remain.

3.5.1.6. One sided selection

One-Sided Selection or OSS (Kubat andMatwin, 1997) joins

Tomek Links and the Condensed Nearest Neighbor (CNN) rule.

This aims to eliminate the models from the larger part class that

are distant from the decision border. In particular, the Tomek

Links technique provides an uncertain number of points on the

boundary of a class and these points are recognized and taken

out in the larger part class. Therefore, the CNN step takes place

in one stage and consists initially of adding the entire minority

class examples to the store and a few majority class examples

(e.g., 1) later on, classifying the left over majority class examples

with KNN (k = 1) and summing those which are misclassified

to store.

3.5.1.7. Neighborhood cleaning rule

This methodology of resampling and classification i.e.,

Neighborhood Cleaning Rule, or NCR (Laurikkala, 2001)

focuses barely on improving the equilibrium of a class dispersion

and erring in the quality (unambiguity) of the models that are

held in the greater part class. The strategy includes first choosing

all models from the minority of class. Later, the entire uncertain

examples in the majority class are recognized by applying the

ENN rule and are eliminated. At last, a version of one-step CNN

is involved where those left over examples in the other majority

class that appears to be misclassified as opposed to the store are

discarded and the number of examples in the majority class is

larger than half of the size of the minority class.

3.5.2. Over-sampling techniques

In Over-sampling techniques, the samples of the minority of

classes are increased. In this research study, three over-sampling

techniques are explored as discussed below. Figure 3 depicts the

difference between all of them. Since oversampling proved to be

right approach for our problem, hence, to avoid overfitting or

performing resampling in the wrong way, the oversampling is

done during cross-validation, i.e., for each fold, oversampling

is performed before training, and this process is repeated for

each fold.

3.5.2.1. Random oversampling

Random oversampling (Hoens and Chawla, 2013) involves

randomly selecting examples from the minority class, with

replacement, and adding them to the training dataset.

3.5.2.2. Synthetic minority over-sampling technique

The SMOTE approach (Chawla et al., 2002) synthetically

generates several samples in the minority class rather than

replacing the original number of samples, which returns to

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.955464
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Channa et al. 10.3389/fnins.2022.955464

FIGURE 3

This figure illustrates the di�erence between before and after cases using over-sampling techniques, (A) is data without any resampling method,

(B) is data after applying Random-oversampling resampling method, (C) is data after applying SMOTE resampling, (D) is data after applying

Borderline SMOTE method.

an over-fitting problem. Moreover, SMOTE generates samples

that are based on similarities in the feature space with the line

segments combining the minority instances and feature space

containing ‘k’ minority class nearest neighbors.

3.5.2.3. Borderline SMOTE

The SMOTE borderline (Han et al., 2005) recognizes

decision boundary (borderline) minority samples and then

SMOTE algorithm is implemented to create synthetic

samples along with decision the boundary of majority and

minority classes.

3.5.3. Combine resampling techniques or
hybrid resampling methods

There are various combinations of under and over sampling

techniques which have proven to be more effective and together

may be expressed as the resampling method.

Therefore, two examples are given as mixtures of SMOTE

with EditedNearest Neighbors undersampling and SMOTEwith

Tomek Links undersampling. Figure 4 depicts the difference

between them.

3.5.3.1. SMOTE with tomek link

Synthetic Minority Over-sampling Technique is known as

an oversampling technique that incorporates advanced plausible

examples in theminority class. Tomek Links denotes a technique

for recognizing pairs of nearest neighbors in a dataset that has

various classes. Discarding both or one of the examples in these

pairs (such as the examples in the majority class) has the effect of

forming the decision boundary in the dataset, training uncertain

and slighter the noise. The combination (Batista et al., 2003)

provides a reduction in false negatives at the cost of an increase

in false positives for a binary classification task.

3.5.3.2. SMOTE combined with ENN

Synthetic Minority Over-sampling Technique may be

considered the most prominent oversampling method and can

be merged with various undersampling methods. ENN is more

intrusive at downsampling the majority class than the Tomek
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FIGURE 4

This figure illustrates the di�erence between before and after hybrid resampling, (A) is data without resampling, (B) is data after applying the

SMOTETOMEK resampling method, and (C) is data after applying the SMOTEENN resampling method.

Links method, giving more in-depth cleaning. The method

was implemented by discarding different examples from both

minority and majority classes. Hence, this combination (Batista

et al., 2004) yielded amazing results in practice.

4. Results and discussions

First, the raw signal was labeled to individual procession

events through a Python script with the 3-s window preceding

motion onset. Table 2 represents the class (severity levels)

distribution of 7,740 instances (windows) divided from the

collected data using the Shimmer3 device. Therefore, it is clearly

observed how the distribution of data is skewed in the case of

less severe tremors. This bias can result in significant changes

in classification output. In these circumstances, the classifier

is extra sensitive in identifying the majority of classes but it

TABLE 2 Imbalanced data distribution.

Class (RT

severity)

Instances After under-

sampling

After

oversampling

0 3,170 18 2,205

1 2,894 18 2,205

2 1,391 18 2,205

3 291 18 2,205

4 4 18 2,205

becomes less sensitive to recognize the minority of classes if they

are excluded.

Thus, different resampling techniques are utilized

to eliminate the imbalanced class distribution effect.

Table 2 depicts the number of imbalanced instances
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TABLE 3 Performance metrics with/without Under-sampling techniques for resting tremor severity classification with XGBoost, decision tree, and

KNN.

Under-sampling technique

Classifier Matrics W/o sampling Random ENN NearMiss CNN Tomeklinks OSS NER

XGBoost Accuracy (%) 70 30 59 28 38 68 53 66

Precision Score 0 0.76 0.45 0.63 0.48 0.50 0.72 0.65 0.69

Precision Score 1 0.67 0.45 0.53 0.41 0.45 0.65 0.54 0.63

Precision Score 2 0.63 0.22 0.70 0.16 0.28 0.66 0.40 0.70

Precision Score 3 0.59 0.11 0.50 0.09 0.10 0.63 0.26 0.64

Precision Score 4 1.0 0.09 0.71 0.02 0.12 1.0 0.27 1.0

F1-score 0 0.79 0.31 0.65 0.31 0.43 0.77 0.62 0.75

F1-score 1 0.68 0.35 0.60 0.40 0.41 0.67 0.53 0.65

F1-score 2 0.52 0.27 0.41 0.14 0.33 0.51 0.39 0.46

F1-score 3 0.50 0.20 0.33 0.15 0.14 0.52 0.38 0.41

F1-score 4 0.25 0.17 0.71 0.03 0.20 0.44 0.33 0.73

Decision Tree Accuracy (%) 55 29 50 30 28 54 40 54

Precision Score 0 0.65 0.44 0.56 0.43 0.44 0.62 0.53 0.57

Precision Score 1 0.56 0.44 0.47 0.55 0.40 0.55 0.49 0.54

Precision Score 2 0.37 0.26 0.42 0.18 0.25 0.41 0.28 0.45

Precision Score 3 0.39 0.07 0.38 0.07 0.08 0.20 0.13 0.35

Precision Score 4 0.50 0.06 0.07 0.02 0.02 0.0 0.09 0.67

F1-score 0 0.65 0.34 0.56 0.48 0.28 0.63 0.48 0.61

F1-score 1 0.55 0.35 0.52 0.19 0.37 0.55 0.43 0.55

F1-score 2 0.37 0.27 0.32 0.12 0.29 0.39 0.31 0.36

F1-score 3 0.39 0.12 0.28 0.12 0.13 0.22 0.21 0.28

F1-score 4 0.36 0.11 0.10 0.03 0.03 0.0 0.14 0.49

KNN Accuracy (%) 51 39 51 28 41 51 46 51

Precision Score 0 0.52 0.47 0.52 0.39 0.45 0.52 0.52 0.51

Precision Score 1 0.51 0.40 0.50 0.44 0.40 0.51 0.48 0.51

Precision Score 2 0.50 0.30 0.52 0.16 0.21 0.51 0.37 0.52

Precision Score 3 0.45 0.15 0.48 0.12 0.16 0.44 0.20 0.46

Precision Score 4 1.0 0.24 0.43 0.01 1.0 1.0 1.0 0.50

F1-score 0 0.61 0.47 0.60 0.32 0.52 0.61 0.55 0.62

F1-score 1 0.47 0.36 0.46 0.35 0.37 0.46 0.44 0.44

F1-score 2 0.33 0.29 0.32 0.29 0.15 0.32 0.31 0.31

F1-score 3 0.26 0.22 0.25 0.16 0.07 0.25 0.28 0.21

F1-score 4 0.25 0.39 0.43 0.02 0.44 0.25 0.25 0.22

and the number of balanced instances after resampling

techniques. The results of different resampling techniques are

described below:

4.1. Under-sampling evaluation

Table 3 explains the performance of three classifiers

i.e., XGBoost, decision tree, and KNN on the PD RT

severity dataset. Seven resampling techniques: Random, ENN,

NearMiss, CNN, Tomeklinks, OSS, and NER are utilized.

From the results, it is clearly observed that all classifiers

show the worst performance using undersampling methods

as compared to the case without following any resampling

method. However, some under-sampling techniques improved

the performance of the classifiers. All three classifiers achieved

the best performance with only the TomekLink under-sampling

technique. The best results have been got with the XGBoost

classifier with TomekLink obtaining 68% accuracy, while the

random resampling method along with NearMiss and CNN is

significantly worst.
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TABLE 4 Performance metrics with/without Over-sampling techniques for resting tremor severity classification with XGBoost, decision tree, and

KNN.

Over-sampling technique

Classifier Matrics Without sampling Random SMOTE Borderline SMOTE

XGBoost Accuracy (%) 70 99 69 69

Precision Score 0 0.76 0.99 0.76 0.75

Precision Score 1 0.67 0.99 0.66 0.67

Precision Score 2 0.63 1.0 0.60 0.59

Precision Score 3 0.59 1.0 0.52 0.51

Precision Score 4 1.00 1.0 0.60 1.00

F1-Score 0 0.79 0.99 0.78 0.78

F1-Score 1 0.68 0.99 0.67 0.66

F1-Score 2 0.52 0.99 0.55 0.53

F1-Score 3 0.50 1.00 0.57 0.57

F1-Score 4 0.25 1.00 0.50 0.44

Decision Tree Accuracy (%) 55 98 51 55

Precision Score 0 0.65 0.98 0.62 0.67

Precision Score 1 0.56 0.99 0.52 0.55

Precision Score 2 0.37 0.99 0.36 0.36

Precision Score 3 0.39 1.0 0.22 0.33

Precision Score 4 0.50 1.0 0.75 33

F1-Score 0 0.65 0.98 0.61 0.64

F1-Score 1 0.55 0.98 0.50 0.54

F1-Score 2 0.37 0.99 0.37 0.40

F1-Score 3 0.39 1.0 0.29 0.38

F1-Score 4 0.36 1.0 0.55 0.20

KNN Accuracy (%) 51 87 51 51

Precision Score 0 0.52 0.79 0.55 0.54

Precision Score 1 0.51 0.96 0.52 0.52

Precision Score 2 0.50 1.0 0.43 0.42

Precision Score 3 0.45 1.0 0.37 0.40

Precision Score 4 1.00 1.0 0.50 0.50

F1-Score 0 0.61 0.88 0.60 0.60

F1-Score 1 0.47 0.83 0.46 0.40

F1-Score 2 0.33 0.92 0.38 0.38

F1-Score 3 0.26 1.0 0.44 0.45

F1-Score 4 0.25 1.0 0.59 0.53

4.2. Over-sampling evaluation

Table 4 explains the performance of three classifiers

i.e., XGBoost, decision tree, and KNN on the PD RT

severity dataset. Three resampling techniques: Random, ENN,

SMOTE, and Borderline SMOTE are employed. In general,

all the implemented techniques of over-sampling improved

the performance of the classifiers significantly. Also, it can

be noted that the performance of the XGBoost classifier

is better than the decision classifier using over-sampling

technique whereas the decision tree classifier achieved better

results than KNN without using the over-sampling. On the

contrary, the best results were achieved using the resampling

method undertaken by random sampling. Using the random

sampling technique decision tree gives maximum accuracy i.e.,

100%, XGBoost gives 98% and KNN gives 87%. However,

SMOTE and Borderline SMOTE performance results are

almost the same. These results highlight that the over

sampling techniques performance is much better than under

sampling techniques.

4.3. Hybrid sampling evaluation

Table 5 exhibits the performance of three classifiers i.e.,

XGBoost, decision tree, and KNN on the PD dataset of
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TABLE 5 Performance metrics with/without Hybrid resampling techniques for resting tremor severity classification with XGBoost, decision tree,

and KNN.

Hybrid sampling technique

Classifier Matrics Without sampling SMOTETomek SMOTEENN

XGBoost Accuracy (%) 70 68 49

Precision Score 0 0.76 0.78 0.75

Precision Score 1 0.67 0.64 0.56

Precision Score 2 0.63 0.59 0.32

Precision Score 3 0.59 0.51 0.25

Precision Score 4 1.0 0.75 0.75

F1-Score 0 0.79 0.77 0.55

F1-Score 1 0.68 0.67 0.51

F1-Score 2 0.52 0.53 0.43

F1-Score 3 0.50 0.56 0.36

F1-Score 4 0.25 0.55 0.55

Decision Tree Accuracy (%) 55 52 39

Precision Score 0 0.65 0.65 0.65

Precision Score 1 0.56 0.52 0.49

Precision Score 2 0.37 0.34 0.26

Precision Score 3 0.39 0.25 0.17

Precision Score 4 0.50 1.00 1.00

F1-Score 0 0.65 0.61 0.44

F1-Score 1 0.55 0.53 0.42

F1-Score 2 0.37 0.36 0.35

F1-Score 3 0.39 0.33 0.27

F1-Score 4 0.36 0.60 0.73

KNN Accuracy (%) 51 51 44

Precision Score 0 0.52 0.56 0.63

Precision Score 1 0.51 0.52 0.53

Precision Score 2 0.50 0.40 0.30

Precision Score 3 0.45 0.36 0.19

Precision Score 4 1.0 0.45 0.33

F1-Score 0 0.61 0.59 0.50

F1-Score 1 0.47 0.49 0.43

F1-Score 2 0.33 0.36 0.39

F1-Score 3 0.26 0.42 0.30

F1-Score 4 0.25 0.56 0.48

resting tremor severity. Two hybrid resampling techniques:

SMOTEENN and SMOTETomek are employed. In contrast

to over-sampling techniques, both hybrid techniques and

under-sampling techniques did not improve classifiers’

performance significantly. But the SMOTETOMEK

performance with both classifiers worked better than

SMOTEENN. SOMTEENN got the best results with the

XGBoost classifier with 68% overall accuracy which is even

lesser than the accuracy of XGBoost without following any

resampling method.

5. Performance metrics

The confusion matrix of the best results obtained so

far with and without resampling techniques is shown in

Figure 5.Without the resamplingmethod, the XGBoost classifier

performed better than KNN and the decision tree. The accuracy

obtained using XGBoost without resampling is 70% with KNN

51% and with decision tree 55%. However, with the combination

of the resampling techniques, XGBoost performed well getting

99% accuracy, decision tree with 98%, and KNN with 87%. This
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FIGURE 5

The confusion matrix (CM) of the classifiers with maximum accuracy, (A) CM of the XGBoost classifier without resampling, (B) CM of the

XGBoost classifier with a random over-sampling method., (C) CM of Decision tree classifier with a random over-sampling method., (D) CM of

KNN classifier with a random over-sampling method.

clearly shows that the classifiers performed well with balanced

data in each class as compared to the imbalanced number of

samples in classes.

From the confusion matrix, it is observed the accuracies

achieved using XGBoost and decision tree using random

oversampling: 99 and 98%. There is a slight difference between

both classifiers’ results. The measurements for assessing the

performance of classifiers are precision, accuracy, sensitivity,

and specificity. But in many applications specially in the case

of analyzing imbalanced data, these metrics are insufficient,

since they are related to the data distribution in each

class. For the majority classes, sample classifier prediction is

based on high accuracy, but for minority classes it is low.

Sensitivity and precision do not consider true negatives (TN)

in the area of medical diagnosis field where misclassified

TN can lead to unnecessary treatment. Similarly, precision

can be seen as a measure of quality. Higher precision and

sensitivity means that an algorithm returns more relevant
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TABLE 6 Performance metrics of XGBoost classifier with imbalance data classification.

Accuracy Precision Sensitivity Specificity F1-Score Gmean IBAα

Class 0 0.82 0.75 0.83 0.808 0.79 0.81 1.0

Class 1 0.76 0.66 0.70 0.79 0.68 0.74 1.0

Class 2 0.85 0.63 0.44 0.94 0.52 0.64 0.80

Class 3 0.96 0.59 0.42 0.98 0.49 0.64 0.78

Class 4 0.99 1 0.14 1 0.25 0.37 0.89

TABLE 7 Performance metrics of XGBoost classifier with random over-sampling technique.

Accuracy Precision Sensitivity Specificity F1-Score Gmean IBAα

Class 0 0.99 0.98 0.99 0.99 0.98 0.99 1.0

Class 1 0.98 0.99 0.99 0.95 0.99 0.96 1.0

Class 2 0.99 1 0.97 1 0.98 0.98 0.98

Class 3 1 1 1 1 1 1 1.0

Class 4 1 1 1 1 1 1 1.0

TABLE 8 Performance metrics of decision tree classifier with random over-sampling technique.

Accuracy Precision Sensitivity Specificity F1-Score Gmean IBAα

Class 0 0.98 0.97 0.99 0.98 0.97 0.98 0.99

Class 1 0.98 0.98 0.96 0.99 0.96 0.97 0.97

Class 2 0.99 0.99 0.98 0.99 0.98 0.98 0.99

Class 3 1 1 1 1 1 1 1.0

Class 4 1 1 1 1 1 1 1.0

TABLE 9 Performance metrics of KNN classifier with random over-sampling technique.

Accuracy Precision Sensitivity Specificity F1-Score Gmean IBAα

Class 0 0.88 0.78 1 0.80 0.87 0.89 1.1

Class 1 0.88 0.95 0.72 0.98 0.81 0.84 0.82

Class 2 0.97 1 0.85 1 0.91 0.92 0.88

Class 3 1 1 1 1 1 1 1.0

Class 4 1 1 1 1 1 1 1.0

results that an irrelevant one. Hence, to balance this fact, F1-

score and Gmean (geometric mean) are the ultimate choices

to minimize the effect of imbalanced distribution. However,

Gmean and F1-score do not take into account the TN and

the classes’ contribution to overall performance. Therefore,

advanced metric i.e., IBA (index of balanced accuracy) is

calculated. IBA evaluates the contribution of each class as the

overall performance so that high IBA is obtained when the

accuracy of all classes is high and balanced (García et al.,

2009). The IBA evaluates the relationship between TPR and

TNR, representing the class distribution. IBA can take any

value between 0 and 1, and the best performance achieved

is got when TPR = TNR = 1 with α = 1. Hence,

in this study, advanced metrics are calculated i.e., accuracy,

precision, sensitivity, specificity, F1-score, Gmean, and IBA as

expressed in Equations below, for the classifiers which show the

best performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Sensitivity = TPR =
TP

TP + FN
(5)
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Specificity = TNR =
TN

TN + FP
(6)

F1 =
2× Precision× Sensitivity

Precision+ Sensitivity
(7)

Gmean =
√

Sensitivity× Specificity (8)

IBAα = 1+ α × (TPR− TNR)

× GMean2,where 0 ≤ α ≤ 1 (9)

Table 6 explains the performance metrics of the XGBoost

classifier with imbalanced data classification. Only class

4 of the data points are predicted well. Some metrics

are declined and some metrics are improved; there is

no synchronization between the parameters. However,

Tables 7–9, regarding the classifiers with a combination

of random oversampling techniques, it is clearly shown

the prediction of all classes without any bias toward the

majority classes. The most striking part about the results is the

important metrics i.e., IBAα and Gmean are also improved

in parallel with the accuracy. The IBAα and Gmean of the

XGBoost classifier with random over-sampling of all classes

are significantly better than the rest of the classifiers and

their performance.

6. Conclusion and future directions

In this study, PD resting tremor severity is estimated using

different ML classifiers in combination with signal processing

and resampling techniques. From the results, it is observed

that oversampling techniques performed better than under-

sampling and hybrid resampling approaches. Among classifiers,

the XGBoost classifier stands better than KNN and decision

tree classifiers. However, it is also observed that resampling

techniques do not perform similarly with different classifiers.

Some important metrics such as accuracy and precision are

very low and declined dramatically with some under-sampling

techniques, despite that other metrics are improved. Above all,

our study investigated individual classes’ classification instead

of overall performance. This study has some limitations that

need to be considered as the sample size can be better chosen.

The proposed approach needs more validation on different

datasets on PwPD (patients with PD). In the future, large sample

size data can be considered. The data analyzed in this study

was collected from the most affected limb of PwPD; if the

data from both upper-limbs of PwPD is gathered, the results

may vary.
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