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Editorial on the Research Topic

Modern Statistical Learning Strategies in Imaging Genetics

With the rapid growth of modern technology, many biomedical studies, such as the Alzheimer’s
disease neuroimaging initiative (ADNI) study (Mueller et al., 2005), Human Connectome Project
(HCP) (Van Essen et al., 2013), and UK BioBank (UKBB) study (Sudlow et al., 2015), are
being conducted to collect massive datasets with volumes of multi-modality imaging, genetic,
neurocognitive, and clinical information from increasingly large cohorts. Integrating these rich
and diverse heterogeneous information can help our understandings of how genetic variants
impact brain structure, brain function, cognition, and brain-related disease risk across the
lifespan. However, the development of statistical learning methods in imaging genetics presents
significant computational and theoretical challenges caused by the high-dimensional nature of both
imaging phenotypes and genetic data. Meanwhile, existing analytical methods also face challenges
in characterizing the spatial dependence in various neuroimaging measures and dependence
structures in genetic markers from linkage disequilibrium. In addition, a long-term challenge in
the imaging genetics field is the limited sample size of traditional imaging studies, which may have
low power in detecting the polygenic genetic architecture of brain diseases and cause overfitting
of statistical learning models. This special issue includes a group of papers specifically leveraging
these massive biomedical datasets to developing new learning approaches in imaging genetics and
uncover novel clinical findings.

Matrix decomposition and low-rank representation techniques have been seen as powerful tools
in handling the high-dimensionality issue in brain image data and detecting imaging biomarkers for
the diagnosis of mental disorders. Tu et al. developed a low-rank plus sparse matrix decomposition
technique to construct the connectivity matrix for the functional magnetic resonance imaging
(fMRI) data. They applied the proposed pipeline to resting-state fMRI data in ADNI study and
showed that the new method increased the detectability of group differences for Alzheimer’s
disease (AD). Wu et al. introduced a co-sparse non-negative matrix factorization method to
high-dimensional brain image data by simultaneously imposing sparsity in both two decomposed
matrices. They found that the proposed method successfully detected difference between AD
patients and normal person in several brain regions when applying to two datasets, i.e., structure
MRI and fMRI, in ADNI study. In addition, the high-dimensionality issue is also ubiquitous
in genetic data. Ridge-penalized tests for high-dimensional hypothesis testing problems were
investigated in Gauran et al., and a class of methods for choosing the optimal ridge penalty
were developed as well. They proposed strategies to improve the statistical power of ridge-
penalized tests and applied them to an imaging genetics study where the associations between a
set of candidate single nucleotide polymorphisms (SNPs) and the electroencephalogram (EEG)
coherence were tested.
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As an alternative to association analysis, causal inference
has attracted more and more attention for the discovery of
mechanical relationships among imaging phenotypes, genetic
exposures, and clinical outcomes. Chen et al. focused on the
problem how genetic architecture and brain connectome causally
affect human behaviors in the HCP study. They carried out the
causal pathway analysis from single nucleotide polymorphism
(SNP) data to four common human cognitive traits, mediated
by the brain connectome. They found that a majority of the
selected SNPs have significant direct effects on human traits
and indirect effects through trait-specific brain connectomes.
Ye et al. hypothesized that the vertical pleiotropic pathways,
where genetic variants influence a trait that in turn influences
another trait, link genetic factors, integrity of cerebral white
matter (WM), and nicotine addiction. They tested this hypothesis
using individual genetic factors, WM integrity measured by
fractional anisotropy, and nicotine dependence-related smoking
phenotypes, in the UKBB study. Their causal pathway analysis
revealed the role of cerebral WM in the maintenance of the
complex addiction and provided potential genetic targets for
future research in examining how changes in WM integrity
contribute to the nicotine effects on the brain. Ghosh et al.
developed an inferential framework for estimating causal effects
with radiomics data. They leveraged a multivariate version of
partial least squares for causal effect estimation, which addressed

the challenge that the exposure of interest is latent. The proposed
methodology was demonstrated through two applications on
the radiomics datasets, one in osteosarcoma and the other one
in glioblastoma.

Finally, integration of imaging and genetic data through
deep learning techniques recently gained considerable attention
in AD prediction. Wang et al. developed a deep learning
approach, named IGnet, for automated AD classification using
both MRI and genetic data. They applied the proposed
approach to the baseline MRI scans and selected SNPs
on chromosome 19 in ADNI study, which achieved a
classification accuracy of 83.78% and an area under the receiver
operating characteristic curve (AUC-ROC) of 92.4% in the
test set.

Taken together, the studies in this special issue include several
advanced statistical learning approaches in imaging genetics, and
exemplify the potential impact of applying these methods to
better understand the roles of brain imaging data and genetic
information in mental health and disease.
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