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Simulations are a powerful tool to explore the design space of hardware

systems, o�ering the flexibility to analyze di�erent designs by simply changing

parameters within the simulator setup. A precondition for the e�ectiveness of

this methodology is that the simulation results accurately represent the real

system. In a previous study, we introduced a simulator specifically designed

to estimate the network load and latency to be observed on the connections

in neuromorphic computing (NC) systems. The simulator was shown to be

especially valuable in the case of large scale heterogeneous neural networks

(NNs). In this work, we compare the network load measured on a SpiNNaker

board running a NN in di�erent configurations reported in the literature to

the results obtained with our simulator running the same configurations. The

simulated network loads show minor di�erences from the values reported in

the ascribed publication but fall within the margin of error, considering the

generation of the test case NN based on statistics that introduced variations.

Having shown that the network simulator provides representative results for

this type of —biological plausible—heterogeneous NNs, it also paves the way

to further use of the simulator for more complex network analyses.

KEYWORDS

neuromorphic computing, neuromorphic platform, network simulator,

communication network, simulator verification, SpiNNaker, neuron mapping

1. Introduction

The introduction of novel neuromorphic computing (NC) platforms in recent

years, offers great potential either in the field of cognitive computing applications

or in computational neuroscience. In cognitive computing, the novel systems, like

TrueNorth (Akopyan et al., 2015), are used for the application of so called artificial

intelligence concepts to solve computation demanding tasks more efficiently than

traditional von Neumann systems. In computational neuroscience, the focus is on the

efficient simulation of large scale spiking neural networks (SNN) using novel systems like

BrainScaleS (Schemmel et al., 2010), Neurogrid (Benjamin et al., 2014), or SpiNNaker

(Furber et al., 2014). All of these systems are built on the concept of high parallelism, just

as can be found in SNNs. Another principle relates to biological communication where
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the information is coded in the precise spike time. In the

NC systems, this information is collected in the form of

spike packets. Here, information is coded in the time that a

spike happens and not in the actual bits themselves. Hence,

the communication network responsible for the transfer

of the spike packets is a critical component, especially in

biological representative SNN with a high level of connectivity.

While current systems are an improvement over traditional

von-Neumann computers for the simulation of SNN,

further improvements can still be made in regards to scale

and acceleration.

In order to better understand the performance of

communication networks and communication protocols

in these systems in an early design phase, we developed a

Python-based network simulator introduced in a previous

work (Kleijnen et al., 2022). With the help of the simulator,

the communication network load can be estimated at a high

level of abstraction during the conception phase of the design.

This way, different concepts can be evaluated with little effort

without the need to create specialized hardware, offering great

flexibility to the designer. It should be mentioned that other

network simulators do exist, such as the one introduced in

Ghasempour et al. (2015). This particular simulator offers a

higher level of detail simulating the SpiNNaker interconnect

network, but offers less flexibility for other concepts in

general. However, in this paper, we focus on the comparison

of our simulator with experimental results presented in

the literature.

An important precondition for the effectiveness of this

methodology is that the simulator is able to accurately

represent the performance of a physical hardware system.

This paper focuses on the comparison between the network

simulator introduced in one of our previous works and the

network traffic measured on an actual NC system, namely

the SpiNNaker system. This comparison is performed for

three different types of neuron mappings in order to cover

a range of scenarios. This way, it can be confirmed that

the simulator represents the network load on a real system

correctly and can be used as a first stage design tool

reliably. First, in Section 2.1, a brief overview of the Python-

based network simulator is given. Then, in Section 2.2,

SpiNNaker—the NC hardware system used for comparison—

is described, with emphasis on the communication network.

Section 2.3 discusses the experiments used as benchmark

in this work and in Section 2.4, the corresponding settings

for the simulator to mimic these experiments are outlined.

In Section 3, the results of the simulations are presented,

discussed, and compared to the experimental data. Finally,

in Section 4, the summary and conclusion are given, along

with a discussion regarding potential improvements and

future work.

2. Materials and methods

2.1. NC communication network
simulator

In a previous study, we introduced an in-house implemented

network simulator specifically designed to evaluate network

load and latency on an NC communication network. In this

subsection, we will briefly describe this simulator, a more

detailed description can be found in Kleijnen et al. (2022)

and its supplementary material. The simulator operates in four

steps: generation of a neural network (NN), generation of the

hardware graph, assignment of neurons to computational nodes,

i.e., neuron mapping, and the simulation of the spike packet

movement created by each neuron. The first step creates a NN,

based on biological connectivity information, which is used as

a test case during the simulation. The connectivity and size of

the NN can greatly impact the network load on the system.

As such, it is important to generate a NN that represents the

eventual use case accurately to get accurate simulation data. The

second step creates a directional graph that is used to model

the communication network. Vertices in the graph represent the

computational nodes of the NC systemwhile the edges represent

the communication links. The graph can take any arbitrary

shape, but in most hardware systems, the communication

network can be represented with a regular mesh structure. The

next step in the simulation combines the two objects created

before and assigns the neurons to a location in the hardware

graph. How the location of each neuron is determined can vary

greatly and depends on multiple factors, such as hardware node

constrains, e.g., the maximum number of neurons per node,

as well as mapping algorithms. More sophisticated mapping

algorithms can reduce the network load significantly, as is shown

in Section 3, but might require a longer start up time for the

system. The final step in the simulation is the determination of

the communication traffic. Neurons are assumed to spike, and

the route and distance that the resulting spike packet takes to

reach the post-synaptic neurons are calculated. The resulting

route is a list of nodes and links passed by the spike packet,

while the distance is given in the number of nodes and links

passed to reach its farthest destination. In reality, a neuron only

fires a spike event if its membrane potential surpasses a certain

threshold. However, the simulator does not model the neuron

behavior, instead, it assumes that each neuron in the SNN fires

once. In order to consider the effect of differences in neural

activity of different neuron populations on the network load,

different neurons are assigned different fire rates (FRs). These

FRs are then used to weigh the contribution of each neuron

to the network load. The overall network load is determined

by adding the contributions of individual neurons together,

weighted by their respective FR. The network load is then
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reported as the number of spikes going over each link, and the

number of internal and external packets crossing through each

node. External packets are defined as packets originating from

neurons not located in the local node, while internal packets

originate from local neurons. In addition, network latency is

reported as the maximum distance a generated spike packet has

to travel for each individual source neuron. If timing values to

pass a node or link are available, these values can be used as a

multiplier in order to estimate the system’s latency in seconds.

However, in the early design phases, when these variables are still

unknown, a useful alternative is to set tnode = 1 and tlink = 0.

This results in a latency estimation in the number of “hops” that

a spike has to travel.

2.2. The SpiNNaker system

Multiple different NC simulation platforms have been

developed in recent years (Schemmel et al., 2010; Benjamin et al.,

2014; Furber et al., 2014; Akopyan et al., 2015; Furber, 2016;

Thakur et al., 2018; Young et al., 2019). These systems do share

some similarities with each other, as they are all inspired by

the same fundamental principles found in the biological brain.

Nonetheless, large differences between their design philosophies

are also apparent. Especially their field of application has a

major influence on the design requirements and consequently

the design concept. In favor of detailed communication traffic

results reported in Urgese et al. (2015, 2018) that allow for a

comparison with results obtained by our simulator, we limit

our analysis to the comparison between our simulator and

experimental data found using the SpiNNaker system. Because

of this, we will only describe the SpiNNaker design in more

detail. A general overview of the other different systems and

more detailed descriptions of some of the individual systems

can be found in Schemmel et al. (2010), Benjamin et al. (2014),

Furber et al. (2014), Akopyan et al. (2015), Furber (2016), Young

et al. (2019), and Thakur et al. (2018), respectively.

The SpiNNaker system is designed to model large-scale

SNNs in biological real time. The system is fully digital and uses a

large number of chips to achieve the level of parallelism desired.

The individual chips operate synchronously but communicate

with each other in an asynchronous manner to reduce energy

consumption, resulting in a globally asynchronous—locally

synchronous system. The foundation of the system is the

SpiNNaker chip. Each SpiNNaker chip contains 18 ARM968-

cores, a custom router, system ROM, system controller, system

RAM, external SDRAM, and an Ethernet interface. Each of the

18 ARM-cores has its own DMA controller and two tightly

coupled memories for instructions and data. The cores are

connected to the other elements by a system Network-on-Chip.

During the start-up phase of the system, each chip tests

the cores functionality and picks one core to operate as a

monitoring core which coordinates chip-level functions, such as

non-spike communications, control, and management. Sixteen

of the remaining cores will be responsible for the modeling

of neurons. The eighteenth core is kept in reserve to increase

production fault tolerance and extend its lifetime. The neural

modeling in the cores is performed on a software level, resulting

in a great level of flexibility regarding neuron models and

parameters, and simulation parameters such as time step size.

Depending on the complexity of the neuron model used for

the neurons modeled by a specific core—a specific core can

only model neurons with the same neuron model—and the

time resolution chosen, the maximum number of neurons per

core (NpC) can vary between 80 and 1,000. Once a spike event

happens, the core creates a spike packet which is communicated

within the chip and/or system via the on chips router.

The router is the basic building block of the communication

network on the SpiNNaker system. Each router is connected to

the chips’ internal resources, the local cores, and the routers of

the six neighboring chips. These six neighbors are identified as

north (N) and south (S) (vertical neighbors), east (E) and west

(W) (horizontal neighbors), and north-east (NE) and south-

west (SW) (diagonal neighbors) and form a triangular mesh

network. The local cores communicate to the router via two

merging trees. These two merging trees (De and Do) are then

merged together with the other six input ports (N, NE, E, S,

SW, and W) and passed to the router as shown in Figure 1.

Four different types of packets are used in the system: nearest-

neighbor (NN), point-to-point, multicast (MC), and fixed-route.

Each of these packet types has its own application, with the

MC type being the most relevant during the simulation of the

SNN. MC packets are used to distribute the spike information

through the system to the targeted chips and cores. This is

done by use of an address event representation (AER) protocol.

The payload of the MC packet only contains a unique source

neuron identifier, the rest of the spike information is encoded

in its timing. Once a router receives an MC packet, it looks

up the source neurons ID in a ternary content addressable

memory (TCAM). Each entry key in this TCAM returns a 24-

bit word which consists of a 6-bit mask as an external link

indicator and an 18-bit mask as an internal core address. Every

“1” entry in this bit word marks an output port of the router to

which the packet needs to be transmitted. For example, “010011

0001100101100010” translates to the router sending the packet

further through external ports NE, SW, and W (counts counter-

clockwise starting from the east port) and to local cores 3, 4, 7,

9, 10, and 14. This way, packets are duplicated along the way

in an effort to reduce traffic as only a single packet is sent over

the initial part of the route. To reduce the size of the TCAM,

the number of entries is reduced through the use of a default

route. In case the router cannot find a match for the source

neuron ID, the packet is forwarded to the output port opposite

of the port it came from. This way, TCAM entries are only

needed in the nodes where the spike packet needs to take a

turn or has to be delivered to one or more of the local cores.
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Efficient mapping and routing algorithms will use the number

of TCAM entries required as an additional constraint during

the mapping and routing phase. This and a number of other

techniques (Mundy et al., 2016) are used by the SpiNNaker

toolchain in order to minimize the number of TCAM entries

required, i.e., keep the number of TCAM entries required below

the available TCAM size.

2.3. Experimental setup

In Kleijnen et al. (2022), the performance of our simulator

was validated against a numerical model (Vainbrand and

Ginosar, 2011) and put into relation to an analytical model

presented in Kauth et al. (2020). However, both these

models are limited to the use of homogeneous connectivity

models. To validate the simulators performance for—biological

representative—heterogeneous connectivity models, a different

approach has to be used. The best way to validate the correctness

of the simulator is to run a network load analysis for a certain

NN using the simulator and compare the results to empirical

data measured, running the same NN on actual NC hardware.

Since convenient results obtained from a hardware system were

already reported in Urgese et al. (2015, 2018), we compare

our simulation results against experimental data found in these

literature sources. They cover an investigation of a bottleneck

of the SpiNNaker communication infrastructure and different

neuron mapping procedures. The first aspect was investigated

by passing a large number of spike packets through a single

node and measuring the number of spikes dropped, i.e., not

reaching their destination, for different test configurations. The

conclusion from this analysis was that more packets are dropped

when a port of the SpiNNaker chip has to communicate in both

directions. Unfortunately, we cannot recreate this aspect using

our simulator, as the simulator is not time based and does not

take timing delays and input-/output- buffers into consideration.

On the other hand, one unique feature of our simulator

is its ability to evaluate the network load for different neuron

mapping algorithms. As such, we can attempt to recreate the

results obtained from the respective experiments.

Such experiments were performed using a scaled down

version of the cortical microcircuit model (Potjans and

Diesmann, 2014; van Albada et al., 2018) as the test case. This

model consists of four layers each with two populations, an

excitatory and an inhibitory population. Additionally, in Potjans

and Diesmann (2014), the model also contains a “thalamic”

population, which is omitted in van Albada et al. (2018) and

Urgese et al. (2015, 2018). Each population has its own specific

size, i.e., number of neurons, as well as a defined connection

probability to neurons from other populations. To scale down

the network, the number of neurons in each population was

reduced to 5% (N05) and the number of synapses per neuron

was reduced to 20% (K20) while conventionally the number of

neurons and the number of synapses per neuron are scaled by

the same fraction. On the SpiNNaker system, each neuron was

modeled as an integrate and fire (IF) neuron and was set up with

specific parameters corresponding to the neuron model of the

specific population.

In addition to the scaling, some alterations were made to

the NN in order to run it on the hardware and match the

temporal behavior of the model. The connectivity of the model

remained the same, but due to hardware restrictions, some

elements needed to be added. The first additional element type

are spike source (SRC) neurons. They simulate background

activity originating from areas of the brain not included in the

model as spike trains generated with a Poisson probabilistic

process. These spike trains form the majority of all spikes in the

system, a characteristic that is important for themapping as well.

More details will be provided later in this section. Because of

the large number of spikes, it is infeasible to send them to the

corresponding SpiNNaker chips from an external host. Instead,

the spike trains are generated by the SRC neurons, where SRC

neuron is associated with one IF neuron and mapped to cores

within the SpiNNaker chips themselves. This way, only the

parameters of the desired Poisson distribution have to be loaded

and the spike trains can be generated on the fly, in the system

itself. The second addition was the use of delay extension (DE)

neurons. The cores assigned to model the IF neurons are able

to handle synaptic delays up to 16 time steps. However, with a

simulation time step of 0.1 ms and normally distributed delays

with a 1.5 ms mean value for excitatory neurons, some delays

will be larger than the available 1.6 ms. To create delays greater

than 16 time steps, the DE neurons were used as described in

van Albada et al. (2018). Due to their simple neuron model—

these neurons fire 1-to-1 in response to incoming spikes with

a specified delay—these neurons are not limited to the same

maximum number of NpC as the IF and SRC neurons are.

The reference papers (Urgese et al., 2015, 2018) investigate

three different mapping procedures, PACMAN, MANUAL, and

GHOST. A number of alternative mapping approaches are

described in Heathcote (2016) and Pettersson (2021) but will

not be discussed in this work. PArtition and Configuration

MANager (PACMAN), as presented in Rhodes et al. (2018),

Rowley et al. (2019) for example, is the native python package

used to configure the SpiNNaker boards to run a given SNN

according to a PyNN SNN description. This procedure divides

each population into part-populations. Each part-population

contains the maximum number of neurons possible to place

per core with exception of the last part-population which

contains the remaining neurons. Then, the part-populations

are assigned to cores of a SpiNNaker chip sequentially. For

every IF part-population assigned to a chip, spaces are reserved

for the corresponding DE populations. Once all cores of a

chip have been filled, including the cores reserved for DE

neurons, PACMAN progresses to the next chip. The order

of the chips is determined by the radial distance around a
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FIGURE 1

Role of merging trees in the SpiNNaker router.

chip of choice (Barchi et al., 2018) in this case chip (0, 0).

The resulting mapping solution is shown in Figure 2A. Due

to the simplicity of the algorithm, it requires only a minimal

amount of computational power and can be used for large

SNN as well, as is shown for the full scale cortical microcircuit

model in Rhodes et al. (2020). However, this comes with its

own limitations. The maximum number of NpC is the only

constraint while splitting the populations, and it does not

consider any network connectivity while placing the individual

part-populations. This potentially leads to very small part-

populations and large distances in the hardware between highly

connected part-populations.

The second mapping procedure is a MANUAL approach,

with the corresponding mapping solution shown in Figure 2B.

This mapping solution was hand-picked in an attempt to

achieve mono-directionality in the communication between

SRC populations and IF populations. While this procedure did

reduce the number of external packets by 33% and the number

of dropped packets—the aspect not considered in this work—to

zero, it is still far from optimized. For this mapping procedure,

the number of spikes generated per population can be read out

as the number of internal spikes in the corresponding node, as

each node only simulates a single population. If we compare

the number of spikes generated by the SRC populations and

the IF populations, we can see a significant difference between

the two. The source neurons will create the majority of spikes

in the system—98%—even though they only have to travel

a relatively short distance, to a single destination. With this

mapping procedure, all the DE neurons are assigned to the nodes

(0, 0) and (1, 0).

To reduce the traffic through the network further, it would

be beneficial to prevent inter-chip communication from SRC

neurons to IF neurons. This can be achieved by assigning

SRC neurons to the same chips as the corresponding IF

neurons. This way, the spikes generated by the SRC populations,

only have to be transported within the node and do not

contribute to the number of external packets per node. The

same idea can be applied to the DE neurons as well, while

also considering the connectivity between part-populations to

determine the location of the IF neurons. The third mapping
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FIGURE 2

The resulting neuron maps for the three di�erent mapping approaches used in this work, (A) PArtition and Configuration MANager (PACMAN),

(B) MANUAL, and (C) GHOST.

procedure introduced in Urgese et al. (2018), GHOST mapping,

does exactly this. By iteratively sub-clustering the groups of

neurons from the same population and cluster, the neurons are

divided into part-populations that comply with the maximum

number of NpC. Then, the Sammon mapping algorithm is

used to map the part-populations to the individual chips.
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To ensure that the SRC- and DE-neurons are mapped onto

the same chips as their corresponding IF neurons, cores on

each chip are reserved for the SRC- and DE- part-populations

and assigned to correct SRC populations at the end of the

placement procedure. The resulting neuron mapping is shown

in Figure 2C. It should be noted that in Knight and Furber

(2016) and Peres and Rhodes (2022) a technique is presented

which removes the traffic created by the SRC neurons entirely

from the interconnect network, allowing the simulation of full-

scale models in real time. However, as this technique is not used

in the experimental setup, it will not be discussed in detail in

this paper.

2.4. Simulation setup

To validate the correctness of our simulator, we recreate

the network load measured with the previously described

SpiNNaker test setup, by running the simulator with a

comparable set up.We represent the SpiNNaker communication

network as a triangular mesh and set the casting type to MC.

As a test case, we use the scaled down cortical microcircuit

model, or its connectivity information, respectively, including

the additional SRC and DE neurons. This SNN will not be

exactly the same as the SNN used in the experiment, but it

will be statistically representative. In the NC hardware, traffic

is only counted as external traffic (router-to-router—R2R) if it

originates from outside the SpiNNaker chip, communication

generated locally, between cores and the router is counted as

internal traffic (core-to-router—C2R). The same classification

is applied by the simulator while representing the SpiNNaker

chips as the nodes of the network. As the simulator does not

distinguish between the different cores on a chip and combines

them into one node, the variable NpN is set to 16×NpC, but

exceptions are made when assigning DE neurons, due to their

simpler neuron models.

As the simulator does not try to simulate neuron dynamics,

the neural activity has to be defined by setting the FRs of

the neurons. Urgese et al. (2015) offers us the possibility to

calculate the average firing rates of each population by dividing

the number of internal spikes in each node, by the number of

neurons of the population assigned to that node. Unfortunately,

we cannot do this for the DE populations as there are multiple

populations combined within the nodes. Because we know that

these populations simply delay the spikes of the original IF

neurons, we assume the same FR for these populations as for

their corresponding IF populations. In Urgese et al. (2015), these

values do not exactly match the number of internal spikes of the

IF neurons, which will most likely be caused by spikes falling

outside the measurement time-window due to the delays. Yet,

the experimental data are approximated relatively well as will be

seen below. The average firing rates for the populations are given

in Table 1.

TABLE 1 Average firing rates of the di�erent populations of the

spiking neural network (SNN) test case.

Populations SRC neurons IF and DE neurons

L2/3E 2560.78 0.8491

L2/3I 2422.62 3.5979

L4E 3362.28 3.8904

L4I 3041.53 7.0293

L5E 3195.97 8.4298

L5I 3048.68 9.2453

L6E 4635.81 1.1516

L6I 3353.83 8.5986

Finally, the experiments were performed using the neighbor

exploring routing (NER) algorithm. This algorithm calculates

the shortest route to the destination, from the closest, previously

visited node—including the source node. This routing algorithm

was also implemented in the simulator and thus will be

used for the comparison. However, the routes calculated by

this algorithm vary depending on the implementation of

the algorithm. Additionally, a couple of factors, such as the

routing order, the maximum search range, routing table entry

constraints, and branch node constraints affect the resulting

routes. A more detailed explanation of the algorithm, including

the effects of the different factors listed above is given in

Navaridas et al. (2015). In this study, the maximum number of

routing table entries and limitations regarding the maximum

search range and which nodes can be branch nodes were

neglected and the destinations were sorted in order from closest

to furthest from the source node. Nonetheless, differences might

still occur as it’s not clear how these constraints were handled in

the experimental setup. The resulting variations may be reflected

in both the distribution of traffic and the total number of external

packets. In a regular mesh, there are multiple different “shortest”

paths to a destination. The route actually chosen determines

which nodes will count the external packet. However, even if

the route returned by the algorithm has the shortest possible

length from the source to the destinations, the total number

of links occupied by a combined MC packet can still vary as

shown in Figure 3.

3. Results

In this section, we present and evaluate the results obtained

with the simulator setup described in Section 2.4. With respect

to these results, it is important tomention the difference between

the numerical data returned by the simulator and measured

on the hardware platform. In the SpiNNaker system—or any

physical NC system for that matter—the number of packets

going through the routers will always be positive integers. The
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FIGURE 3

The di�erence in network load between two possible shortest routes to reach all destinations with an MC packet, (A) 4 di�erent links used and

(B) 3 di�erent links used.

simulator on the other hand, accepts any arbitrary (positive) real

numbers as FRs of the neurons, which are used as multipliers

for the neurons’ generated network load. Thus, the resulting

number of spikes per link and router can also be any arbitrary

real number. The results of the different simulations are shown

in Tables 2–4. They are rounded to a single decimal place. The

total values, however, are calculated using the non-rounded

values, so that there may be a small discrepancy between the

total values stated and a simple column sum. Tables 2, 3 also

include the results presented in Urgese et al. (2015) identified

as “Experimental.”

We start off by discussing the results obtained using the

MANUAL approach, deviating from the original order of

mapping procedures given before. This is done, as this approach

isolates all populations to individual nodes which gives a clearer

overview of what is happening in the system. For this algorithm,

we can see that the number of internal packets per node, matches

almost perfectly with the experimental data. This was to be

expected, as this data was used to set up the average firing rates.

However, we can also see the difference in nodes (0, 0) and

(1, 0) due to the DEs as discussed before. Overall, the neural

activity is well represented by the used FR values and as a result,

the data for the total number of external packets in the system

matches with experimental data as well. The number of external

packets for the individual nodes, on the other hand, shows some

differences. This can be attributed to the dependence on the

actual implementation of the NER algorithm and the resulting

routes as explained in Section 2.4.

‘For the PACMAN algorithm, the difference between the

simulated total number of internal packets and the experimental

data is slightly larger. As we used the same FR values for

both simulation runs, the number of generated spikes should

be identical, which we can observe from the simulation

results. However, in the experimental data, the total number

of generated spikes is larger. Unfortunately, we are unable to

extract more accurate FR values from the experimental data

of this run as multiple populations are placed on individual

nodes. This difference might also be enlarged by the reinjection

mechanisms of the SpiNNaker system which retransmit packets

that are lost. The difference is relatively small for the total

values of packets but is especially apparent from the nodes

containing the IF and DE neurons. Because the spike packets

originating from these neurons generally have to go to multiple

nodes at a larger distance, the reduction of internal packets

will reflect in the number of external packets in an amplified

way, as can also be seen in Table 3. The distribution of

these external packets over the different nodes again depends

on the actual implementation of the routing algorithm,

and as such differs significantly. However, the difference

in the total number of external packets is still acceptable

considering the different sources of variation which were

discussed in Section 2.4.

The simulation results for the GHOST mapping algorithm

are shown in Table 4. Unfortunately, for this algorithm, only a

total of 250,000 external packets is reported for the experimental

data. The difference with the simulated total number of

189,422.8 external packets is substantially larger for this setup.

Nonetheless, the simulated traffic is of the same order of

magnitude as the experimental data, which is largely reduced in

comparison with the other two experiments. Thus, the simulator

did manage to capture this reduction of the network load due to

the improved mapping procedure.
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TABLE 2 Simulated communication tra�c results for the test case mapped with the MANUAL procedure.

External packets Internal packets Neurons

Node Simulated Experimental Simulated Experimental (SRC and IF) Description

(0, 0) 3 456.0 3 456 3 456.0 4 351 0 DE Populations

(0, 1) 0 3 146 0 0 0 Not Used

(1, 0) 11 679.0 8 232 9 270.0 9 129 0 DE Populations

(1, 1) 4 503.0 17 740 704 983.0 704 983 291 SRC_L2/3I

(1, 2) 0 18 001 161 580.0 161 580 53 SRC_L5I

(2, 0) 1 264.0 2 092 0 0 0 Not Used

(2, 1) 19 685.0 15 040 2 647 850.0 2 647 850 1034 SRC_L2/3E

(2, 2) 3 527 800.0 3 532 713 0 0 0 Not Used

(2, 3) 2 669 406.0 2 675 945 878.0 878 1034 L2/3E

(3, 0) 0 1 264 0 0 0 Not Used

(3, 1) 1 264.0 828 0 0 0 Not Used

(3, 2) 185 278.0 191 753 490.0 490 53 L5I

(3, 3) 726 860.0 727 444 1 047.0 1 047 291 L2/3I

(3, 4) 3 700 361.0 3 706 900 4 260.0 4 260 1095 L4E

(3, 5) 0 0 3 681 697.0 3 681 697 1095 SRC_L4E

(4, 1) 0 1 264 3 333 150.0 3 333 150 719 SRC_L6E

(4, 2) 3 357 774.0 3 364 249 828.0 828 719 L6E

(4, 3) 850 363.0 856 929 1 919.0 1 919 273 L4I

(4, 4) 794 308.0 800 847 2 040.0 2 040 242 L5E

(5, 1) 0 0 493 013.0 493 013 147 SRC_L6I

(5, 2) 517 201.0 520 765 1 264.0 1 264 147 L6I

(5, 3) 0 10 144 0 0 0 Not Used

(5, 4) 0 6 300 830 338.0 830 338 273 SRC_L4I

(5, 5) 0 0 773 424.0 773 424 242 SRC_L5E

Total 16 371 202.0 16 465 052 12 651 487.0 12 652 241 7708

4. Discussion

4.1. Summary

In this paper, we presented simulation results obtained with

an in-house developed network simulator. These simulations

were performed in an attempt to reproduce experimental

data measured on the SpiNNaker system. This was done for

three different types of neuron mapping procedures: PACMAN,

MANUAL, and GHOST. The total number of external spikes

and internal spikes, where applicable, measured for these three

procedures is shown in Figure 4. For both the PACMAN and

the MANUAL mapping procedure, the simulated number of

external packets in the system corresponds very well to the

experimental data. The small differences observed for these

two scenarios, 0.25 and 0.5%, respectively, are well within

the margin of error considering the different potential causes

for variations. For the last mapping procedure, a substantially

larger difference of 24.2% was observed between the simulator

and the experimental data. Unfortunately, we cannot identify

the exact causes of this larger variation due to the lack

of a detailed overview of the experimental network load.

Nonetheless, the simulator did capture the same level of

reduction of external packets caused by the GHOST mapping

approach. As the simulator is meant as a first stage design

tool, it will most likely be used for qualitative comparisons and

this will be sufficient. This especially applies, because the exact

parameters of the test case, such as the FR of the different

populations, are still unknown at this point. Other factors like

the connectivity or even the entire test case, and with it the

mapping, might also change for different analyses performed

using the NC hardware.

4.2. Discussion

There are a couple of potential reasons which can explain

the larger variation for the GHOST mapping experiment. As

discussed before, the FR values of the IF and DE neurons

extracted from the MANUAL experiment do not necessarily

represent the FR values of the other experiments correctly.
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TABLE 3 Simulated communication tra�c results for the test case mapped with the PACMAN procedure.

External packets Internal packets Neurons

Node Simulated Experimental Simulated Experimental (SRC and IF) Description

(0, 0) 3 759 394.3 3 773 911 4 140.2 4 882 847 2 Populations

(0, 1) 2 625 117.9 2 630 277 10 252.2 12 729 815 3 Populations

(1, 0) 4 512 765.8 5 587 441 2 817.1 3 334 710 3 Populations

(1, 1) 8 217 079.4 4 424 623 2 056.7 2 412 687 2 Populations

(1, 2) 2 612 446.1 0 2 673 012.9 2 672 252 795 SRC_L4E

(2, 0) 2 689 547.7 2 692 613 6 185.8 9 471 795 L4E

(2, 1) 221.9 2 696 375 5 555 459.3 5 559 023 1,557 4 Populations

(2, 2) 0 2 672 252 4 397 562.8 4 397 319 1,502 5 Populations

Total 24 416 573.1 24 477 492 12 651 487.0 12 661 422 7708

TABLE 4 Simulated communication tra�c results for the test case mapped with the GHOST procedure.

Node External packets Internal packets Neurons Description

Simulated Experimental Experimental (SRC and IF)

(0, 1) 19 707.6 1 409 414.8 934 6 Populations

(0, 2) 22 924.0 495 541.0 294 2 Populations

(1, 0) 16 710.0 1 305 560.7 934 4 Populations

(1, 1) 18 564.8 1 330 679.5 904 8 Populations

(1, 2) 21 561.6 1 685 030.6 1,000 2 Populations

(1, 3) 20 694.8 1 218 815.9 868 6 Populations

(2, 1) 23 291.8 1 914 925.5 934 4 Populations

(2, 2) 24 415.6 2 087 152.6 900 2 Populations

(2, 3) 21 552.6 1 204 366.4 940 2 Populations

Total 189 422.8 250 000 12 651 487.0 11,562

For the other experiments, i.e., in case of the PACMAN or

the MANUAL algorithm, the total number of external packets

was dominated by packets originating from the SRC neurons,

which are represented well by the FR values. Because of this,

the relative difference was neglectable previously. In case of

the GHOST algorithm, however, the SRC neurons are located

on the same nodes as the corresponding IF neurons and have

no impact on the number of external packets. Thus, while the

absolute difference is almost comparable for all experiments,

approximately 60,000 external packets, the relative difference is

significantly higher. A second potential cause for the observed

difference are variations between the neuron activities within

a single population. The simulator assumes an average firing

rate for all neurons in a population. In an actual SNN,

on the other hand, different neurons within a population

can and will have different rates of activities. With all the

neurons of one population placed onto a single or maximum

2 nodes, which was the case for the first two experiments,

these variations will average out. In the case of the GHOST

algorithm, however, the populations are spread out more and

the variations can have an impact. This may be especially

the case when highly interconnected neurons that potentially

reveal a shared lower or higher activity due to their high

connectivity are concentrated into the same subgroup. A final

potential cause is an obscurity in the mapping solution used in

Urgese et al. (2018). The paper gives a detailed explanation of

algorithm’s operating principle, however, the resulting mapping

solution is only visualized in an abstract manner. This is

sufficient to derive a comparable neuron mapping, but not the

exact same neuron placement, especially in combination with

an SNN which is only statistically equal. As most of these

potential causes are a result of not having detailed enough

input data, there are possibilities to improve the comparison

between experiments and simulations by having access to more

detailed experimental parameters. Ideally we would perform

both the experiment and the simulations ourselves, so the exact

same NN can be used for both. This way, the exact FR of

each individual neuron can also be determined, just as the

exact neuron mapping and the routing algorithm. Another

way to improve confidence is to compare a larger number
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FIGURE 4

The total number of spike packets measured in the experimental setup compared with the simulated values for the di�erent mapping

procedures.

of different scenarios. The results between simulation and

experiment might not match perfectly for every scenario, but

the same relative behavior might be observed between the

two.

Another point of discussion is the metric used by the

simulator. To estimate the network’s performance, the simulator

returns a latency value and the number of spike packets

passing through each link and node. However, in the SpiNNaker

system, the interconnect performance is generally measured

by the number of packets being dropped. Due to the high

level of abstraction of the simulator, it is not possible to

simulate this. The probability of packets dropping can be

estimated by comparing the maximum throughput simulated

and the maximum number of packets the routers can handle.

If the former is larger than the latter, packets will be

dropped, but even if the throughput is slightly below the

maximum capacity, the probability of packets being dropped

is relatively high. Often, even the probability of dropping

a packet can be seen as bad. However, as described in

Urgese et al. (2015, 2018), the maximum number of packets

a router can handle is not constant and depends on the

directions of the different incoming and outgoing traffic streams,

making it difficult to accurately predict the occurrence of

dropped packets.

4.3. Outlook

With the behavior of the simulator being verified against

the performance of actual hardware, the simulation results can

be used during the design phases with confidence. A first step

will be a design-space exploration in order to find the strengths

and weaknesses of certain general designs. As a next step, we

will come up with new communication concepts and evaluate

their performance. If a concept proves to be advantageous,

a more in depth analysis will be performed and potentially

implemented in hardware.

Data availability statement

The simulation scripts and source codes used in this work

to demonstrate correctness are available online at: https://

github.com/Rkleijnen/NeuCoNS (https://www.doi.org/10.5281/

zenodo.6862974).

Author contributions

RK contributed to the conception and design of the study

and wrote the first draft of the manuscript. MR, MS, and SW

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.958343
https://github.com/Rkleijnen/NeuCoNS
https://github.com/Rkleijnen/NeuCoNS
https://www.doi.org/10.5281/zenodo.6862974
https://www.doi.org/10.5281/zenodo.6862974
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kleijnen et al. 10.3389/fnins.2022.958343

wrote sections of the manuscript. All authors contributed to

manuscript revision, read, and approved the submitted version.

Funding

This project was funded by the Helmholtz Association

Initiative and Networking Fund under project number SO-092

(Advanced Computing Architectures, ACA).

Acknowledgments

The authors wish to thank Gianvito Urgese for his assistance

in elaborating the experimental data used as comparison in this

work and providing more details regarding such works.

Conflict of interest

Authors RK, MR, MS, and SW were employed by the

Forschungszentrum Jülich GmbH.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made

by its manufacturer, is not guaranteed or endorsed by

the publisher.

References

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J.,
Merolla, P., et al. (2015). TrueNorth: design and tool flow of a 65 mw
1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput.
Aided Design Integr. Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.24
74396

Barchi, F., Urgese, G., Acquaviva, A., and Macii, E. (2018). “Directed Graph
Placement for SNN Simulation into a multi-core GALS Architecture,” in 2018
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)
(Verona: IEEE), 19–24.

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,
A. R., Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital
multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.
doi: 10.1109/JPROC.2014.2313565

Furber, S. (2016). Large-scale neuromorphic computing systems. J. Neural Eng.
13, 051001. doi: 10.1088/1741-2560/13/5/051001

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The
SpiNNaker project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.23
04638

Ghasempour, M., Heathcote, J., Navaridas, J., Plana, L. A., Garside, J., and Lujan,
M. (2015). “Analysis of FPGA and software approaches to simulate unconventional
computer architectures,” in 2015 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). (Riviera Maya: IEEE), 1-8.

Heathcote, J. (2016). Building and Operating Large-Scale SpiNNaker Machines
(Ph.D. thesis), Manchester: The University of Manchester.

Kauth, K., Stadtmann, T., Brandhofer, R., Sobhani, V., and Gemmeke, T. (2020).
“Communication architecture enabling 100x accelerated simulation of biological
neural networks,” in Proceedings of the Workshop on System-Level Interconnect:
Problems and Pathfinding Workshop (San Diego, CA: ACM), 1–8.

Kleijnen, R., Robens, M., Schiek, M., and van Waasen, S.
(2022). A Network simulator for the estimation of bandwidth
load and latency created by heterogeneous spiking neural
networks on neuromorphic computing communication networks.
J. Low Power Electron. Appl. 12, 23. doi: 10.3390/jlpea120
20023

Knight, J. C., and Furber, S. B. (2016). Synapse-centric mapping of cortical
models to the spinnaker neuromorphic architecture. Front. Neurosci. 10, 420.
doi: 10.3389/fnins.2016.00420

Mundy, A., Heathcote, J., and Garside, J. D. (2016). “On-chip order-exploiting
routing table minimization for a multicast supercomputer network,” in 2016 IEEE
17th International Conference on High Performance Switching and Routing (HPSR)
(Yokohama: IEEE), 148–154.

Navaridas, J., Luján, M., Plana, L. A., Temple, S., and Furber, S. B.
(2015). SpiNNaker: Enhanced multicast routing. Parallel Comput. 45, 49–66.
doi: 10.1016/j.parco.2015.01.002

Peres, L., and Rhodes, O. (2022). Parallelization of neural
processing on neuromorphic hardware. Front. Neurosci. 16, 867027.
doi: 10.3389/fnins.2022.867027

Pettersson, F. (2021). Place and Route Algorithms for a Neuromorphic
Communication Network Simulator (Master’s thesis), Linköping:
Linköping University.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking network model.
Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Rhodes, O., Bogdan, P. A., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait,
A., et al. (2018). sPyNNaker: a software package for running PyNN simulations on
SpiNNaker. Front. Neurosci. 12, 816. doi: 10.3389/fnins.2018.00816

Rhodes, O., Peres, L., Rowley, A. G. D., Gait, A., Plana, L. A., Brenninkmeijer,
C., et al. (2020). Real-time cortical simulation on neuromorphic hardware. Philos.
Trans. R. Soc. Math. Phys. Eng. Sci. 378, 20190160. doi: 10.1098/rsta.2019.0160

Rowley, A. G. D., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait, A., Lester,
D. R., et al. (2019). SpiNNTools: the execution engine for the SpiNNaker platform.
Front. Neurosci. 13, 231. doi: 10.3389/fnins.2019.00231

Schemmel, J., Briiderle, D., Griibl, A., Hock,M.,Meier, K., andMillner, S. (2010).
“A wafer-scale neuromorphic hardware system for large-scale neural modeling,” in
Proceedings of 2010 IEEE International Symposium on Circuits and Systems (Paris:
IEEE), 1947–1950.

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N.,
et al. (2018). Large-scale neuromorphic spiking array processors: a quest to mimic
the brain. Front. Neurosci. 12, 891. doi: 10.3389/fnins.2018.00891

Urgese, G., Barchi, F., and Macii, E. (2015). “Top-down profiling of application
specific many-core neuromorphic platforms,” in 2015 IEEE 9th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (Turin: IEEE),
127–134.

Urgese, G., Barchi, F., Macii, E., and Acquaviva, A. (2018). Optimizing network
traffic for spiking neural network simulations on densely interconnected many-
core neuromorphic platforms. IEEE Trans. Emerg. Top. Comput. 6, 317–329.
doi: 10.1109/TETC.2016.2579605

Vainbrand, D., and Ginosar, R. (2011). Scalable network-on-chip architecture
for configurable neural networks. Microprocess Microsyst. 35, 152–166.
doi: 10.1016/j.micpro.2010.08.005

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes, A.
B., et al. (2018). Performance comparison of the digital neuromorphic hardware
SpiNNaker and the neural network simulation software nest for a full-scale cortical
microcircuit model. Front. Neurosci. 12, 291. doi: 10.3389/fnins.2018.00291

Young, A. R., Dean, M. E., Plank, J. S., and Rose, G. S. (2019). A review of spiking
neuromorphic hardware communication systems. IEEE Access 7, 135606–135620.
doi: 10.1109/ACCESS.2019.2941772

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.958343
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.3390/jlpea12020023
https://doi.org/10.3389/fnins.2016.00420
https://doi.org/10.1016/j.parco.2015.01.002
https://doi.org/10.3389/fnins.2022.867027
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.3389/fnins.2019.00231
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1109/TETC.2016.2579605
https://doi.org/10.1016/j.micpro.2010.08.005
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1109/ACCESS.2019.2941772
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Verification of a neuromorphic computing network simulator using experimental traffic data
	1. Introduction
	2. Materials and methods
	2.1. NC communication network simulator
	2.2. The SpiNNaker system
	2.3. Experimental setup
	2.4. Simulation setup

	3. Results
	4. Discussion
	4.1. Summary
	4.2. Discussion
	4.3. Outlook

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


