
TYPE Review

PUBLISHED 30 August 2022

DOI 10.3389/fnins.2022.959557

OPEN ACCESS

EDITED BY

Federico Giove,

Centro Fermi - Museo Storico Della

Fisica e Centro Studi e Ricerche Enrico

Fermi, Italy

REVIEWED BY

Denggui Fan,

University of Science and Technology

Beijing, China

Mukesh Dhamala,

Georgia State University, United States

Aditya Nanda,

Vanderbilt University, United States

*CORRESPONDENCE

Ashish Raj

ashish.raj@ucsf.edu

SPECIALTY SECTION

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

RECEIVED 01 June 2022

ACCEPTED 27 July 2022

PUBLISHED 30 August 2022

CITATION

Raj A, Verma P and Nagarajan S (2022)

Structure-function models of

temporal, spatial, and spectral

characteristics of non-invasive whole

brain functional imaging.

Front. Neurosci. 16:959557.

doi: 10.3389/fnins.2022.959557

COPYRIGHT

© 2022 Raj, Verma and Nagarajan. This

is an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Structure-function models of
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characteristics of non-invasive
whole brain functional imaging
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Department of Radiology and Biomedical Imaging, University of California, San Francisco, San

Francisco, CA, United States

We review recent advances in using mathematical models of the relationship

between the brain structure and function that capture features of brain

dynamics. We argue the need for models that can jointly capture temporal,

spatial, and spectral features of brain functional activity. We present

recent work on spectral graph theory based models that can accurately

capture spectral as well as spatial patterns across multiple frequencies in

MEG reconstructions.
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1. Introduction

One of the outstanding questions in the field of neuroscience is to understand

how dynamic brain functional activity arises despite being constrained by the

static anatomical structure (Bassett and Bullmore, 2009; Cao et al., 2014; Fornito

et al., 2015; Suarez et al., 2020). To explore this relationship, both structure

and functional activity are estimated from non-invasive neuroimaging techniques

such as magnetic resonance imaging (MRI), functional MRI (fMRI), and magneto-

/electroencephalography (M/EEG). Given that such techniques cannot capture the

underlying mechanistic biophysics of the brain activity, computational approaches are

widely used to fill this gap. Many of these approaches are based on interpreting the brain

structure as a graph with nodes as different brain regions and graph edges as the white

matter fibers connecting the brain regions. Subsequently, various graph-based statistical

as well as mathematical modeling techniques have focused on capturing the temporal,

spectral, and spatial patterns of the brain in different brain states as well as diseases.

A key question in computational neuroscience is the elucidation of the exact

relationship between the regional neural signals and their functional connectivity (FC)

organization on one hand, and the underlying structural or anatomic connectivity (SC)

on the other. This is what is referred to as the structure-function relationship in network

neuroscience. Although these relationships may be addressed using purely statistical

tools e.g., by evaluating the correlation between SC and FC (Hagmann et al., 2008), it

is far more elegant to explore these relationships using biophysical mathematical models

to serve as a formal interface between the physiology of the brain and its anatomic and
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connectivity properties (Honey et al., 2010). Moreover,

mathematical models can be used for exploring biophysics

underlying the whole brain imaging activity, and identify

biophysically interpretable markers of disease (Honey and

Sporns, 2008; Alstott et al., 2009; de Haan et al., 2012; Yang et al.,

2016; Zimmermann et al., 2018; Singh et al., 2020). In this brief

review we discuss different types of computational models at

whole-brain and network level. We will explore their ability to

recapitulate important aspects of empirical neural recordings,

and end with new advances aimed at disease contexts and in the

study of dynamic brain activity and behavior.

The contribution of this paper is threefold. First, it

summarizes computational approaches that seek to understand

how rich spatial and temporal structures can arise in brain

activity using a set of underlying biophysical processes and

their parameters. Second, it highlights several ways in which

computational models are able to recapitulate empirical data

across relevant scales ranging from electrophysiological scales

corresponding to M/EEG signals to hemodynamic scales

corresponding to fMRI signals. Our focus here is on whole

brain network models of brain activity, rather than neuron

or local circuit models. For readers interested in fine-scale or

multi-scale modeling, we refer to a recent review (Glomb et al.,

2021). Third, it discusses recent advances that attempt to make

these complex computational models relevant to clinical and

practical applications, often by deliberately simplifying these

models and only keeping the most essential elements. The scope

of the review is more focused on biophysical models rather

than statistical graph theoretic metrics of SC-FC relationships.

The field is greatly expanding and contains promising advances

both from research and clinical standpoints. We believe that

this article will serve to inform a wide readership about recent

modeling work that are important from a practical point of view,

yet are at risk of being inaccessible to a wide audience due to their

mathematical or computational nature.

1.1. Magneto- and
electroencephalography

We begin our report with a quick introduction to

MEG and its older cousin EEG. These are non-invasive

neuroimaging techniques that measure the postsynaptic

potentials of pyramidal neurons in the brain (Biasiucci et al.,

2019) by electrodes placed on the scalp (da Silva, 2013; Tivadar

and Murray, 2019) or sensitive magnetic field detectors

placed on or near the scalp (Hämäläinen et al., 1993; Gross

et al., 2021). Both MEG and EEG possess high temporal

resolution in the millisecond timescale, with spatial resolution

determined by algorithms that solve the electromagnetic inverse

problem (Biasiucci et al., 2019; Tivadar and Murray, 2019).

The propagation of the signal from deep brain tissue to the

scalp takes place due to the conductive properties of brain and

head tissues, a phenomenon known as volume conduction

which is also referred to as the electromagnetic forward

problem (Kajikawa and Schroeder, 2011). To solve the inverse

problem, source reconstruction algorithms (Michel et al., 2004)

have been developed to estimate neural activity originating in

deeper tissue, from the sensor signals and then superposing

estimated functional activity on structural brain MRI, giving

voxel-level signals. These algorithms have turned M/EEG

into brain imaging technologies. However, it should be noted

that source reconstruction is a mathematical ill-posed inverse

problem; the reliability and spatial resolution of reconstructed

signals are often functions of properties of the forward model

as well as the signal and measurement noise. Once brain-wide

neural sources and their activity have been reconstructed,

further analysis might proceed analogously to imaging data like

fMRI. The relationship between the functional activity from

MEG/EEG/fMRI and the SC have been explored using various

mathematical models, which we summarize in the next section.

2. Mathematical models

2.1. Coupled or networked non-linear
neural mass models (NMMs)

At the mesoscopic scale, a lumped version of neural field

was first described by Wilson and Cowan (1973); Cowan

et al. (2016), consisting of an inhibitory and an excitatory

population. Variants of this model were proposed by Da Silva

et al. (1974) and Jansen and Rit (1995). Neural mass and

neural field models are able to reproduce a range of dynamical

behaviors that are observed in M/EEG, like oscillations in

typical frequency bands (David and Friston, 2003), phase-

amplitude-coupling (Onslow et al., 2014; Sotero, 2016), and

evoked responses (Jansen et al., 1993; Jansen and Rit, 1995;

David et al., 2005). Frequency-domain NMMs have also been

proposed in order to model the M/EEG power spectrum (David

and Friston, 2003; Bojak and Liley, 2005; Moran et al., 2007; Razi

and Friston, 2016; Pereira et al., 2021).

By coupling together more than one lumped neural mass,

one can start investigating the effect that inter-regional or

remote connectivity and the resultant delays have on neural

activity (Jirsa and Haken, 1996). Almost three decades ago,

Jansen and Rit (1995) had already coupled together two neural

mass models in order to simulate the effect of interactions

between cortical columns on their activity. The Wilson-Cowan

single oscillator model (Wilson and Cowan, 1972) too has

evolved into a family of macroscopic coupled NMMs, with

extensions to neocortical dynamics (Cowan et al., 2016; Deco

et al., 2019b), controllability of brain networks (Muldoon et al.,

2016), biomarkers in disease (Zimmermann et al., 2018), and

second order statistics of observed brain signals (Deco et al.,

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.959557
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Raj et al. 10.3389/fnins.2022.959557

2009; Abeysuriya et al., 2018;Wang et al., 2019; Byrne et al., 2020;

Singh et al., 2020).

It is also common to use chaotic oscillators with little

biophysical relevance (e.g., Yeung and Strogatz, 1999;

Kuramoto, 2003), as the local neural mass oscillating around

a given natural frequency (e.g., gamma band). Although

there is no direct biological counterpart to these artificial

models, they are sufficient to produce realistic synchrony

and correlation properties (Deco et al., 2009; Cabral et al.,

2014), e.g., the Kuramoto order parameter was linked to how

dispersed firing is within a population (Byrne et al., 2017,

2020). Node-level Kuramoto oscillators were coupled using

realistic brain connectivity and time delays determined by fiber

lengths (Cabral et al., 2014; Finger et al., 2016).

Coupled NMMs are rapidly moving from mathematical

curiosities to real applications in healthy and diseased

brains (Honey and Sporns, 2008; Alstott et al., 2009; de Haan

et al., 2012; Yang et al., 2016; Zimmermann et al., 2018;

Singh et al., 2020) and can potentially be used to investigate

biological processes such as neuromodulation (Shine et al.,

2018, 2021; John et al., 2022). Such NMMs have also been

simulated via the Virtual Brain platform—an open source

neuroinformatics tool that provides access to brain network

simulation tools (Ritter et al., 2013; Sanz-Leon et al., 2015).

This tool has been used to study various diseases such as

tumor (Aerts et al., 2018), Alzheimer’s disease (Zimmermann

et al., 2018), stroke (Falcon et al., 2015), and epilepsy (Jirsa et al.,

2017).

Over the past few years, a vast literature has been developed

on coupled neural models in a framework called dynamic

causal modeling (DCM) (Kiebel et al., 2008; Pinotsis et al.,

2012). DCM is a Bayesian framework for estimating directional

interactions between coupled brain regions, i.e., the effective

connectivity. A key concept underlying DCM is to treat the

brain as a non-linear dynamic system that accepts multiple

inputs and produces multiple outputs (i.e., MIMO model). This

neuronal MIMO model is augmented with a regionally specific

forward model that describes the mapping from neuronal

activity to observations (MEG, EEG, local field potential; LFP, or

fMRI). The neuronal and observation model together comprise

a generative model that is subject to Bayesian inference.

Stochastic DCMs are the most common generative models

that have been used to test competing hypotheses about

networks comprising only a few regions. Stochastic DCMs

have usually proved to be highly successful at inferences of

small networks (<10 nodes) than at large networks spanning

the entire brain. However, increasing the number of regions

or nodes in a stochastic DCM results in models with an

enormous number of free parameters and profound conditional

dependencies among the parameters, with exponential increases

in computational time. Approaches such as spectral domain

DCMs have been proposed to address this prohibitive estimation

problem (Pereira et al., 2021), but there have been few attempts

at whole-brain structural connectome integration with DCMs

for M/EEG data.

2.2. Statistical models and graph metrics
analysis

If the goal of structure-function modeling is merely to

reproduce the second order covariances of neural activity, it is

not necessary to employ a detailed biophysical signal generation

model. Many recent studies have therefore focused on low-

dimensional processes involving diffusion or random walks

on the structural graph instead of mean-field models, under

the assumption that such walks or network-diffusion processes

can roughly simulate functional connectivity. These class of

models were able to match or exceed the predictive power of

complex coupled NMMs in predicting empirical FC (Abdelnour

et al., 2014). Higher-order walks on graphs have also been quite

successful; typically these methods involve a series expansion of

the graph adjacency or Laplacian matrices (Meier et al., 2016;

Becker et al., 2018). The diffusion and series expansion methods

are themselves closely related (Robinson et al., 2016; Deslauriers-

Gauthier et al., 2020; Tewarie et al., 2020), and naturally employ

the so-called eigenmodes, or harmonics, of graph adjacency

or Laplacian matrix. In these models, the eigenvectors of

SC and FC are shared, and the functional eigenvalues are

related by an exponentially-decaying function of the structural

Laplacian eigenvalues. Hence these methods were generalized to

yield spectral graph models whereby e.g., Laplacian harmonics

were sufficient to reproduce empirical FC, using only a few

eigenmodes (Atasoy et al., 2016; Abdelnour et al., 2018; Preti

and Van De Ville, 2019). Although these models were initially

demonstrated on fMRI-based FC, they have been readily

demonstrated on M/EEG (Meier et al., 2016; Tewarie et al.,

2019). Such spectral graphmodels are computationally attractive

due to low-dimensionality and more interpretable analytical

solutions. The SC’s Laplacian eigenmodes may be thought of

as the substrate on which functional patterns of the brain are

established via a process of network transmission (Atasoy et al.,

2016; Robinson et al., 2016; Abdelnour et al., 2018; Preti and Van

De Ville, 2019; Glomb et al., 2020). Another class of models, the

linear time-invariant system models based on the SC, have also

been widely used to estimate brain controllability and energy

required to transition to different states (Gu et al., 2015, 2017;

Tang and Bassett, 2018; Stiso et al., 2019; Srivastava et al., 2022).

3. Challenges in inference of
non-linear simulation models

The impressive richness and dynamic repertoire manifested

by the above coupled neural mass and field models comes at a

very high cost: that of model inference. These models are often
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mathematically complex (non-linearities), computationally

complex (too many parameters) and statistically complex

(ill-posed inference, non-unique solutions, broadly distributed

posteriors). In addition, since they require long-time simulations

involving numerical integration of highly coupled ODEs, they

tend to be computationally costly, taking inordinately long time

and computer power to create simulations that cover the entire

parameter space.

The critical factor underlying these challenges is the

coupling between a large number of non-linear NMMs.

The complexity of coupled non-linear systems accommodates

chaotic behavior which certainly imparts these models with a

rich dynamic repertoire. Typically, coupled non-linear systems

are characterized by exhibit discontinuous and abrupt shifts to

oscillating, unstable, or chaotic behavior when network coupling

or external driving force push the system over a bifurcation

point. This produces a non-convex cost function with many

local minima with discontinuous switching between regimes

and model behavior—all adding up to highly challenging

parameter inference. Recently, these challenges have been

addressed using a two-step optimization procedure. First, all

biophysical parameters of the local NMMs are set manually,

without the use of empirical data, to be near an appropriate Hopf

bifurcation point that gives the correct frequency (e.g., alpha

band) (Sanz-Leon et al., 2015; Breakspear, 2017). In the second

stage, optimization of the remaining few (global) parameters are

performed by fitting to empirical FC metrics such as pairwise

correlation or synchrony (Deco et al., 2009; Honey et al., 2009;

Abeysuriya et al., 2018; Zimmermann et al., 2018; Demirtas

et al., 2019; Wang et al., 2019). Even this optimization problem

is usually no, zimmermann2018differentiationn-convex, hence

grid search is employed instead of more sophisticated sampling

methods. It is noteworthy that this two-step fitting procedure

typically does not attempt to fit directly to actual time series of

individual brain regions, only their second order FC, or in some

cases the switching in time of granular “brain states” (Hansen

et al., 2015; Deco et al., 2019a).

Two recent studies provide a thoughtful analysis of these

inference problems. Hartoyo et al. (2019) highlighted the

problem of unidentifiabiliy in whole brain models, where

different parameter combinations can generate similar model

predictions. Out of the 22 unknown parameters of a linearized

network model they implemented, only one parameter was

found to be identifiable when fitted to EEG data. Xie et al.

(2019) show, using the Wilson-Cowan system as an archetype,

that a large system of coupled NMMs may be pre-specified for

firing rates pertaining to a specified frequency, but extending

such a model to the network scale does not allow accurate,

reliable, or efficient optimization. In particular, the manual/grid

search fitting described above does not then also predict regional

signals’ power spectra. It was rightly noted in a recent review that

coupled NMMs do not necessarily aim at maximizing the fit to

the empirical brain signals but to reproduce specific temporal,

spatial, or spectral features of the empirical data emerging at

the macroscopic scale whose underlying mechanisms remain

unclear (Glomb et al., 2021).

Due to these challenges, to date, coupled NMMs have not

found widespread or routine usage in clinical or translational

settings. One way to make the leap to practice is to carefully

assess which modeling aspects may be considered useful, and

which may be discarded. For instance, if the goal is to reproduce

covariances rather than the signal spectra, then is a full-strength

coupled NMM even necessary?

4. Recent advances in
structure-function models

Below we highlight a few recent attempts that seek to

enhance the practical applicability of complex computational

models. Often these attempts have taken a step back from

the complexity of current models and have instead explored

deliberate simplifications rather than enhancements to the

theoretical models. For example, many of the following coupled

NMMs attempts involve fixing the local neural mass model

parameters and then tuning only a small set of global parameters,

simplify them to consist of fewer parameters, or linearize local

masses to allow better inference.

4.1. Advances in coupled NMMs

In one study, the non-linear dynamics of coupled

NMMs was transformed by applying a Lotka-Volterra

type transform (Galadi et al., 2021). This enabled tracking of the

temporal evolution of the global attractor and the non-stationary

attractor landscape. Using this approach, the authors were able

to compare awake state with different stages of sleep with

BOLD fMRI data (Galadi et al., 2021). A recent study modeled

noisy Stuart-Landau oscillators to simulate BOLD fMRI and

found that low-level states of consciousness were associated

with structural hub regions losing stability and an increase in

homogeneity in the brain regional dynamics (López-González

et al., 2021). Another study on the levels of consciousness

demonstrated that in addition to the descriptive distance

metrics classifying the different levels of consciousness, the

extent of perturbation required to switch between the levels

provide complementary information about the levels. Here,

the extent of perturbation was quantified by introducing a

perturbation term in the coupled NMMs (Sanz Perl et al., 2021).

A DCM approach was used to investigate modulation of gain by

the cognitive control systems in early psychosis (Burgher et al.,

2021).

In addition to exploring brain states, a recent study

demonstrated how NMMs can be enriched by incorporating

brain-wide transcriptional data that captures the regional
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inhibitory and excitatory receptor gene expression. This

approach ensures model parsimony while incorporating

regional heterogeneity to simulate rich BOLD fMRI

dynamics (Deco et al., 2021). While these studies explored

biological and clinical applications of the NMMs, a recent study

also showed how NMMs can be leveraged to infer virtual FC or

SC. The inferred virtual connectomes’s classification of healthy

vs. AD as well as different age classes was comparable to the

classification done by the empirical connectomes (Arbabyazd

et al., 2021). Lastly, a next generation NMM was employed to

investigate the role of structural connectivity in regulating the

emergent functional dynamics (Gerster et al., 2021).

Recent advances were also made using the Virtual

Brain platform. One of the studies demonstrated selectively

stimulating different fiber tracts in a personalized virtual brain

model to simulate network effects in deep brain stimulation

for patients with treatment-resistant depression (An et al.,

2022). Another application of the virtual brain platform was to

demonstrate similarity between neuronal cascades of firing rate

fluctuations and resting state networks dynamics (Rabuffo et al.,

2021).

Coupled NMMs have also been leveraged to fit to

M/EEG. Recently, coupled phase oscillator models was used

to reconstruct coupling between frequency bands (interlayer

connectivity) obtained from MEG (Tewarie et al., 2021).

Another study focused on estimating coupled NMMs from EEG

recordings of epilepsy patients to develop a closed-loop deep

brain stimulator (Chang et al., 2021).

4.2. Advances in statistical models and
graph metrics analysis

To improve the structure-function model fits, a new

proposal relates the eigenvalues of the structural connectivity

and functional networks using the Gamma function

instead of the exponential decay, producing a reliable

prediction of functional connectivity with a single model

parameter (Cummings et al., 2022). They also found that

adding small levels of long range interhemispheric connectivity

greatly improves model performance, since it is well-known

that DTI-based fiber connectivity methods significantly under-

estimate inter-hemispheric connections. Another recent study

extended the notion of graph Laplacian by introducing global

connectome coupling and a conductance speed parameter,

which gave rise to a “tunable” Laplacian (Xie et al., 2021)

(Figure 1A). Since delays becomes phases in Fourier space, this

study proposed a so-called “complex Laplacian”. They showed

that with the right selection of the two model parameters,

it is possible to “steer” the (complex) eigenmodes of this

Laplacian in such a manner that a small number of them can

reproduce any given canonical functional network (like default

mode, salience, etc.) at relevant frequencies. Examples of these

complex eigenmodes were shown in Figure 1B, copied from

the original publication (Xie et al., 2021). This is exciting,

since it can accommodate a large repertoire of microstates and

their concomitant spatial patterns—an essential characteristic

of real brain activity. This rich repertoire could be engaged

using only two steerable model parameters, suggesting the

possibility that complex behavior may be achievable by simple

and parsimonious mechanisms. A latest study compared the

performance of 40 structure-function coupling models in

capturing the variance in FC (Zamani Esfahlani et al., 2022).

They found that having regional heterogeneous coupling is

more accurate than having a global coupling between structure

and function. Moreover, specific models were more accurate in

capturing the coupling between specific brain regions. Lastly,

this coupling decreased with age. Another study showed a

stronger association of structural eigenmodes (in comparison to

structural connections) with phase and amplitude connectivity

of MEG at short time-scales (Tewarie et al., 2022).

Network control models have also been recently extended

and applied to investigate controllability in drug-resistant

focal epilepsy in children (Chari et al., 2022), functional

dynamics mediated by controllability of the structural

connectivity (Gu et al., 2022), prediction of aphasia recovery

using controllability measures (Wilmskoetter et al., 2022),

association of controllability measures with normative negative

affect variability (McGowan et al., 2021), prediction of

positive psychosis spectrum symptoms with controllability

measures (Parkes et al., 2021), role of controllability measures

in language tasks (Medaglia et al., 2021), altered energy

landscape and stability of working memory representations in

schizophrenia (Braun et al., 2021), structural control energy

in psychosis vulnerability (Zoller et al., 2021), and dynamics

of controllability measures during seizure progression (Scheid

et al., 2021).

4.3. Spectral graph model for neural
oscillations

Above-noted spectral graph models were successful in

capturing steady-state, stationary second order covariances

in brain activity, but did not possess oscillatory behavior.

Hence their extension to accommodate a larger repertoire of

dynamically-varying microstates or rich power spectra at higher

frequencies typically observed on EEG or MEG would require

a full accounting of axonal propagation delays as well as local

neural population dynamics within graph models, as previously

advocated (Cabral et al., 2011). Band-specific MEG resting-

state networks were successfully modeled with a combination of

delayed neural mass models and eigenmodes of the structural

network (Tewarie et al., 2019), suggesting delayed interactions
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FIGURE 1

(A) Overview of the complex Laplacian eigenmode decomposition. The complex Laplacian matrix L is computed from the structural

connectivity matrix (C) and distance adjacency matrix (D) which were extracted from di�usion MRI. Then, eigendecomposition of the Laplacian

L provided the complex structural eigenmodes. The spatial similarities between these eigenmodes and the canonical functional networks in

fMRI was done for model parameter tuning. (B) Complex Laplacian eigenmodes for di�erent coupling strength and wave number. Top row:

eigenmodes from the real Laplacian matrix with coupling strength = 1. Bottom three rows: Complex Laplacian eigenmodes for small wave

number (top), high wave number (middle), and high wave number and coupling strength (bottom). Figure is extracted from Xie et al. (2021).

in a brain’s network give rise to functional patterns constrained

by structural eigenmodes.

Recently another effort was undertaken to characterize wide-

band brain activity using graph harmonics in closed form (i.e.,

requiring no time-domain simulations), a rarity in the field

of computational neuroscience (Raj et al., 2020). This spectral

graph model (SGM) of wideband brain activity produced

realistic power spectra that could successfully predict both

the spatial as well as temporal properties of MEG empirical

recordings (Raj et al., 2020). Remarkably, the model has very few

(seven) parameters, all of which are global and not dependent

on local oscillations. This method therefore exemplifies the

power of graph methods in reproducing more complex and rich

repertoire of brain activity, while keeping to a parsimonious

approach that skirts the need for high-dimensional and non-

linear oscillatory NMMs. SGM can be interpreted as a linearized

coupled NMM.

The SGM consists of two levels. At the mesoscopic (local or

node) level the excitatory and inhibitory neuronal populations

are characterized by time constants τe, τi and gains gee, gei, and

gii. At the macroscopic level long-range pyramidal excitatory

neuronal populations are characterized by time constant τG, and

a coupling constant α. A pictorial depiction of this model is

shown in Figure 2A. Remarkably, the SGM is available in closed-

form in Fourier space as a summation over the eigenmodes of

the complex Laplacian L(ω) :

X(ω) =
N∑

k=1

uk(ω)uk(ω)
H

jω + τ
−1
G λk(ω)FG(ω)

Hlocal(ω)P(ω) , (1)

where ω is the angular frequency, uk(ω) are the eigenmodes

and λk(ω) are the eigenvalues. The term Hlocal(ω) refer

to the mesoscopic model’s transfer function, P(ω) to the

input noise spectrum, and FG(ω) is the neural impulse

response transfer function (Gamma shaped). Details

and derivation of this equation from first principles are

contained in Raj et al. (2020) and Verma et al. (2022a).

The structure of SGM is similar to that of Jansen-Rit
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FIGURE 2

(A) Flow chart showing the structure of SGM and inference of SGM parameters by comparing modeled frequency spectra with the empirical

frequency spectra captured by MEG. Input p(t) is white Gaussian noise and is the same for both excitatory as well as inhibitory signals. (B)

Spectral and spatial correlations obtained after optimization for all the subjects with three di�erent cost functions: (1) spectral + spatial

correlation, 2) spatial correlation, 3) spectral correlation. (C) Comparison of the empirical and modeled spatial distribution of the alpha frequency

band, averaged over all the subjects. (D) Comparison of empirical and modeled frequency spectra, averaged over all brain regions and subjects.

model (Jansen and Rit, 1995; Sanz-Leon et al., 2015). Further

methodological comparisons can be found elsewhere (Verma

et al., 2022b).

Since the development of the SGM, there have been various

extensions as well. We recently improved SGM by enhancing

the biophysical interpretability of the mesoscopic model (Verma

et al., 2022a), and subsequently demonstrated various stability

properties of this improved model (Verma et al., 2022b). In

the latter, we also outlined a strategy to capture temporal

fluctuations in MEG by fitting the SGM parameters to MEG

frequency spectra at various time points. The mesoscopic

SGM model parameters were also estimated to differentiate

Alzheimer’s disease with healthy controls (Ranasinghe et al.,

2022), as well as different stages of sleep (Fan et al., 2022).

4.4. Parameter inference of SGM from
empirical MEG Data

The key benefit of linear graph models like the SGM over

coupled NMMs is that parameter inference is far simpler and

easily accomplished in a data-driven fashion without the need

for manual selection. While prior works showed that simple

simulated annealing-type optimization can accomplish this task,

there is still an open question regarding the exact form of the

cost function and which data features to use for inference. Here

we highlight very recent developments in this area. Broadly,

prior NMM methods have focused on FC as the target of

optimization, whereas prior SGM studies used wideband MEG

spectra directly. Here we show that SGM is capable of fitting

simultaneously to both spectra and spatial distributions of the

alpha frequency band.

We used the same MEG dataset reported previously (Xie

et al., 2020; Verma et al., 2022a), comprising of 36 healthy

adult subjects (23 males, 13 females; 26 left-handed, 10 right-

handed; mean age 21.75 years, age range 7–51 years), having

1 min MEG recordings at rest and eyes closed. SGM was

computed on the structural connectomes of these subjects,

and both modeled and empirical MEG were converted into

power spectral densities (PSD) in dB scale. Pearson’s r

between modeled and MEG PSD was computed for all 68

brain regions. Its average r across all regions is referred

to as the spectral correlation. Next we calculated the spatial

correlation by obtaining the regional distribution of alpha
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band (8-12 Hz) raw power of both model x and MEG y.

Then, the spatial correlation was defined as xT ‖(C + wI)‖ y,

where C is the row degree normalized structural connectivity

matrix, I is the identity matrix, w is an empirical weight,

and ‖(C + wI)‖ is the row normalized version of C +

wI. The objective function for optimization and estimation

of model parameters was the sum of spectral and spatial

correlations. The details of the optimization procedure are in the

Supplementary material.

4.4.1. Model parameter estimation results

We firstly tested different values of w in the spatial

correlation weight of C + w ∗ I. The values being tested

were 0.01, 0.1, 0, 1, and 10. For each of the values of w,

no statistically different spectral correlations were observed

based on a Tuckey’s HSD test on Fisher’s r-to-z transformed

correlations. However, the spatial correlations were highest for

w = 10. Therefore, we finally chose a value of w = 10

out of 0.01, 0.1, 0, 1, and 10 for subsequent analysis. After

performing model parameter optimization for all the subjects

with w fixed at 10, we see that the spectral as well as spatial

correlations are high for all of them, as shown in the left-

most subplot in Figure 2B. In addition, the spectral correlation

reduces significantly when spatial correlation alone is used as

a cost function for optimization (middle subplot in Figure 2B),

and the spatial correlation reduces significantly when spectral

correlation alone is used as a cost function (right-most subplot

in Figure 2B). Therefore, we used an unweighted sum of spectral

and spatial correlations for final analysis. Visually, we see an

accurate match for the spatial distribution of the alpha band

(Figure 2C) as well as the spectral shape (Figure 2D).

This represents a noteworthy advance over prior

publications, since the inferred model is informed equally

by spectral as well as spatial features of empirical MEG—unlike

most comparable methods described in this paper. We believe

future computational approaches may similarly benefit from the

use of multiple feature classes of empirical functional data.

In addition to the approach above, NMMs have also been

linearized previously. Such linearized NMMs, both at a regional

level and for the entire brain network (Moran et al., 2007;

Deco et al., 2014; Abeysuriya and Robinson, 2016; Gabay

et al., 2018; Raj et al., 2020; Verma et al., 2022a) provide for

tractable parameter inference in comparison to their non-linear

counterparts. However, this simplification limits the repertoire

of dynamical solutions that these models can exhibit, similar

to SGM.

5. Conclusions

We briefly surveyed the burgeoning field of computational

neural mass models on the whole brain connectivity network.

Such models have been widely used to infer the underlying

biophysics of the whole brain activity from non-invasive

neuroimaging data. They have been used to study various

neurological disease as well as brain states.

We noted that most current methods were designed to

achieve resemblance to functional connectivity—a second-order

feature based on measuring co-activity between brain regions—

rather than to the data itself. Although this is justified in specific

use-cases, we argued that it would be necessary to develop

more complete models that can achieve both goals. We noted

potential scientific and clinical impact of current approaches, but

enumerated several challenges associated with model inference.

In summary, the challenges are: (i) parameter identifiability

issues when model parameters are heterogeneous across brain

regions, (ii) parameter inference difficulty due to abrupt shift in

model behavior with small shifts in parameters, and (iii) fitting

directly to actual time series instead of second order FC.

We identified many recent and exciting advances, in both

non-linear coupled NMM approaches, as well as the recent

emergence of linearized spectral graph models. The latter

in particular present an attractive trade-off between model

complexity, accuracy and practicality. We conclude that while

the field has seen various advancements with applications,

further advances are needed to overcome identified issues.

Therefore in this review, we suggest the following directions for

further advancement of this field:

1. Develop computational models that can capture temporal,

spatial, as well as spectral features of whole brain imaging.

2. Develop parsimonious biophysical computational models

that can be used in clinical or translational settings.

We are excited by the recent highlighted advances, that have

together taken meaningful steps in this direction.
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