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Haptic technologies enable users to physically interact with remote or virtual

environments by applying force, vibration, or motion via haptic interfaces.

However, the delivery of timely haptic feedback remains a challenge due to

the stringent computation and communication requirements associated with

haptic data transfer. Haptic delay disrupts the realism of the user experience

and interferes with the quality of interaction. Research e�orts have been

devoted to studying the neural correlates of delayed sensory stimulation to

better understand and thus mitigate the impact of delay. However, little is

known about the functional neural networks that process haptic delay. This

paper investigates the underlying neural networks associated with processing

haptic delay in passive and active haptic interactions. Nineteen participants

completed a visuo-haptic task using a computer screen and a haptic device

while electroencephalography (EEG) data were being recorded. A combined

approach based on phase locking value (PLV) functional connectivity and graph

theorywas used. To assay the e�ects of haptic delay on functional connectivity,

we evaluate a global connectivity property through the small-worldness index

and a local connectivity property through the nodal strength index. Results

suggest that the brain exhibits significantly di�erent network characteristics

when a haptic delay is introduced. Haptic delay caused an increased

manifestation of the small-worldness index in the delta and theta bands

as well as an increased nodal strength index in the middle central region.

Inter-regional connectivity analysis showed that the middle central region

was significantly connected to the parietal and occipital regions as a result of

haptic delay. These results are expected to indicate the detection of conflicting

visuo-haptic information at the middle central region and their respective

resolution and integration at the parietal and occipital regions.

KEYWORDS

functional connectivity, neurohaptics, haptics, PLV, graph theory, neural signal

processing, EEG

1. Introduction

Haptic technologies are becoming a vital component in human-machine

communication to empower virtual and extended reality applications with multimodal

and bilateral interactions (Holland et al., 2019). Telemedicine, teletraining, teleeducation,

and the metaverse are a few application areas that are driving the rapid integration
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of haptics into human-machine interaction (Tzafestas

et al., 2008). To benefit from a multimodal experience

involving haptics in such applications, users should be able to

experience meaningful perception of the virtual environment

by simultaneously integrating inputs from all modalities (visual,

auditory, and haptics). A delay in the haptic information is

probable due to limited computational resources or disruption

in the transmission over the network (Van Den Berg et al., 2017).

Haptic delay is well-documented to cause disruption in the

task completion time (Ferrell, 1965), degrade the performance

(Tatematsu et al., 2011) and falsely manipulate the haptic

experience (Knorlein et al., 2009).

Designing reliable and robust haptic technologies intended

for use over a computer network is thus dependent on our

understanding of the human experience of haptic delay.

Neurohaptics is an emerging field that employs brain imaging

techniques to analyze the complex neural representations

provoked in response to haptic stimulation (Alsuradi et al.,

2020). Functional magnetic resonance imaging (fMRI)

and electroencephalography (EEG) are the two leading

neuroimaging methods employed in the neurohaptics field

(Alsuradi et al., 2020). However, EEG is more widespread due to

its compatibility with electronic devices, lower cost, and higher

temporal resolution (Alsuradi et al., 2020). The latter advantage

is particularly crucial in investigating time-related perceptual

attributes such as haptic delay.

Meanwhile, a few studies have been conducted to explore the

neural mechanisms and activation associated with haptic delay.

A study on visuo-haptic mismatch in virtual reality showed

that there exists an event-related potential (ERP) based neural

marker of haptic delay, namely a significant modulation of

the early negativity component of the ERP detected at FCz

electrode (Gehrke et al., 2019). Several other studies used time-

frequency analysis to find spectral features of visual-motor

incongruency; they reported that theta synchronization at the

midfrontal cortex is more pronounced under incongruent cross-

modal stimulation, reflecting conflict monitoring and resolution

processes (Cohen and Donner, 2013; Göschl et al., 2015; Arrighi

et al., 2016). We have previously shown that there exists a

clear oscillatory signature of haptic delay when a discrete

force feedback is delayed during passive and active interactions

(Alsuradi et al., 2021). The previous work suggests an increase in

the mid-frontal theta power upon the detection of haptic delay.

P200 peak is also found to be modulated with the presence of

haptic delay at FCz (Alsuradi et al., 2021).

However, to our knowledge, no work has investigated

the functional neural networks involved in processing haptic

delay. Functional connectivity refers to a group of measures

that describe how spatially distant brain areas are functionally

connected (Nentwich et al., 2020). Typically, functional

connectivity is measured in one frequency band at a time;

two brain regions are called functionally connected if either

the phase or amplitude fluctuates in unison (Cohen, 2014).

Neural processes associated with experiencing haptic delay are

thought to be complex, and thus, examining neural activation

at the electrode level could be insufficient (Lee and Hsieh,

2014). On the contrary, functional connectivity-based analysis

considers the intercommunication between different brain

regions, which is helpful in better understanding the underlying

neural mechanisms associated with haptic delay.

The main objective of this work is to investigate the impact

of haptic delay on functional neural networks and their graph

theoretical characteristics. The contributions of this study are

listed below:

• Examining EEG-derived connectivity patterns associated

with haptic delay utilizing a hybrid approach based on

phase locking value (PLV) and graph theory.

• Assessing the impact of haptic delay on global and

local connectivity patterns through examining the small-

worldness index and the strength index, respectively,

during passive and active visuo-haptic interactions.

• Identifying the frequency bands in which significant

modulation of the connectivity pattern is observed due to

the experience of haptic delay.

• Locating the cortical regions(s) that act as the hub of

connectivity and capturing the functional connectivity

between the hub and the other brain regions during the

haptic delay experience.

Toward this end, a visuo-haptic task is designed and

participants are recruited to perform the task under passive and

active haptic interactions. Haptic delay is introduced to evaluate

its impact on the functional neural networks in action.

2. Materials and methods

2.1. Participants

Nineteen healthy subjects (9 males and 10 females; 18–40

years old) were enrolled in the study. All participants were right-

handed with normal or corrected-to-normal vision. None of the

participants reported a history of neurological or psychiatric

disorders. Participants below the age of 18 or left-handed

with reported traumatic brain injuries, neural abnormalities,

or muscle atrophy were excluded from the study. The study

was conducted after obtaining approval of the experimental

protocol from the New York University Abu Dhabi Institutional

Review Board (IRB: #HRPP-2019-120). The study was carried

out in full compliance with the ethical standards outlined in the

Declaration of Helsinki, following its guidelines and regulations.

Before enrolling in the study, each participant signed a written

consent in accordance with the IRB ethics. All participants

received monetary compensation upon completion of the task.
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2.2. Experimental setup and task

Participants were introduced to the haptic-visual task in

which they used a computer screen and a haptic device

(Geomagic Touch, 3D Systems, United States). A tennis ball and

a racket were shown on the screen; the goal of the task was

to bounce the ball using the racket, which is controlled by the

stylus of the haptic device. Participants were asked to stay seated

on a chair in front of the screen and were instructed to hold

the stylus of the haptic device in their right hand. Participants

had to perform two types of tasks, namely passive and active,

under two haptic delay conditions (0 ms delay or synchronous

and 220 ms delay). During the passive task, participants held

the stylus passively and pressed the button on the stylus end

to initiate a free fall of the ball toward the racket. During the

active task, however, participants had to move the stylus actively

and hit the stationary ball. In both scenarios, and upon the

ball’s visual collision with the racket, a discrete force feedback is

delivered through the haptic device. While the haptic feedback

was delivered instantly along with the visual collision in the

no delay condition, it was delayed by 220 ms from the visual

collision in the delay condition. The task was developed using

the Unity game engine version 2018.4.5f1 (Unity Technologies,

United States) and the Openhaptics Unity toolkit (3D Systems,

United States).

Participants were trained to use the haptic device before the

start of the experiment to maintain minimal body movement

and thus avoid excessive motor EEG artifacts. In the active task,

participants were asked to only move their wrists up or down

while keeping both the elbow and the forearm rested on the

table. Figure 1A shows the experimental setup, with one of the

participants correctly holding the stylus of the haptic device. The

timeline of a single trial for the passive and active tasks is shown

in Figure 1B. The trial consists of a rest period of 1.5 or 2.5 s

(randomized) during which a blank screen is displayed, followed

by a single bounce move. The experimental session consisted of

10 runs (5 passive and 5 active), each comprising 20 trials. In

a single run, trials were sequenced randomly and split equally

between the synchronous and delay conditions. In total, each

participant performed 200 trials equally divided between the

four experimental conditions [Passive No Delay (PND), Passive

Delay (PD), Active No Delay (AND), and Active Delay (AD)].

To maintain participants’ attention and to obtain a performance

measure, a question was asked at the end of 30 randomly selected

trials on whether the haptic feedback was delayed. Participants

had to answer using a keypad. They were also asked to fill in a

post-experiment questionnaire.

2.3. EEG data recordings and
pre-processing

EEG data were acquired from 64 active electrodes using

an actiCHamp amplifier (Brainproducts GmbH, Germany) and

the Brain Vision Recorder software (BVR; Version 1.21.0201

Brain Products, Germany). The locations of the electrodes were

selected based on the international 10–20 system where the

online reference electrode was placed at (FCz) and the ground

electrode was placed at the frontal pole (Fpz). The sampling rate

was 1,000 Hz. The impedance at each electrode was maintained

below 10 K�.

EEG data were pre-processed using MATLAB release

2019b (MathWorks, United States) and the EEGLAB

toolbox (v14.1.2) (Delorme and Makeig, 2004). EEG data

were first filtered between 0.5 and 50 Hz using a zero-

phase Hamming windowed sinc FIR filter (order: 3300)

and epoched from –1 to 2 s around the visual collision

event. High-amplitude artifacts, including eye blinks and

FIGURE 1

(A) Experimental setup showing a participant correctly holding the stylus of the haptic device (B) Timeline of the passive and active tasks.
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muscle bursts, were tackled using the artifact subspace

reconstruction (ASR) (Kothe and Jung, 2016) method.

Data was then re-referenced using the Common Average

Referencing (CAR) method (Lakshmi et al., 2014) and the

data of the online reference channel, FCz, was restored back to

the dataset.

Following re-referencing, the infomax algorithmwas applied

to implement independent component analysis (ICA) (Jung

et al., 2000) and to maximize the statistical independence

between the components of the signals. An extracted component

is marked as artifactual if: (1) spurious bursts of activity are

observed over the time-course of the epoch, and (2) an increase

in power with an increase in frequency is observed (not a

natural EEG data behavior (Buzsaki, 2006) but a common

pattern of muscle artifacts’ spectral power (Goncharova et al.,

2003)), or (3) the topography map of the component was

confined to the distant edges of the scalp, as such patterns

are commonly attributed to eye or muscle artifacts. The

clean components were then reflected back into the channel

space. Subsequently, EEG data were spatially filtered using

the current source density (CSD) method (m-constant: 4,

head radius: 10 cm, smoothing constant: 10−4) implemented

as part of the CSD toolbox in Matlab (version 1.1) (Kayser

and Tenke, 2006). It is evident that applying CSD to EEG

data improves the spatio-temporal features and attenuates

distant effects due to volume conduction (Burle et al., 2015;

Vidal et al., 2015). Spatial filtering is particularly important

in studies based on channel-space functional connectivity

analysis.

2.4. EEG data analysis

2.4.1. Phase locking value

Before choosing and computing any functional connectivity

measure, the pre-processed EEG data of all electrodes are band-

pass filtered into five frequency bands: delta (1–4 Hz), theta

(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma

(30–50 Hz). Filtered data are subsequently transformed to the

time-frequency domain using Hilbert transform to obtain the

phase information. The phase value is extracted for all the

time-bins of each trial. Several studies emphasized the role

of phase synchronization mechanisms in binding segregated

brain regions (Varela et al., 2001) to fulfill several cognitive

functions such as attention (Gross et al., 2004), conscious

perception (Pockett et al., 2009) and memory processes

(Kitzbichler et al., 2011). PLV is one of the commonly used

measures in computing functional connectivity using EEG

data which is intrinsically a measure of coordination across

different brain regions. PLV can be used to measure the

synchrony between two channels in a particular frequency

band at a particular time-bin averaged over trials, forming

a single epoch. The below equation shows the formula used

to calculate the PLV index between electrodes i and j at

a particular time-bin t (Lachaux et al., 1999; Bruña et al.,

2018):

PLVi,j(t) =
1
N |

∑N
n=1 e

i(φi(t,n)−φj(t,n))|

where N is the total number of trials per subject, and φi(t, n)

- φj(t, n) is the instantaneous phase difference between channel

i and channel j in trial n at time t. To reduce the computational

cost, trials were divided into windows of 50 ms duration with

50% overlap, where the phase values were averaged for each

window prior to calculating PLVs as described in Niso et al.

(2013). A strong phase synchronization is expressed by a PLV

close to 1 while a weak phase synchronization is expressed by

a PLV close to 0. The choice of the baseline in this relatively

complex setting was selected such that it is close to the onset

(visual collision event) and consistent across conditions. The

rest period is far from the onset, as can be seen from Figure 1B,

while the period preceding the haptic feedback is not consistent

across conditions. Thus, an appropriate choice is to use the

time interval before the visual collision as a baseline. PLVs were

baseline-normalized to the 200 ms data that preceded the visual

collision onset. Scripts fromHERMES toolbox (Niso et al., 2013)

were used and adjusted for the calculation and analysis of the

PLVs.

2.4.2. Graph theoretical analysis

PLVs were calculated for each pair of electrodes under

the five frequency bands for all participants, creating weighted

undirected adjacency (i.e., connectivity) matrices of baseline-

normalized PLVs. PLV matrices were analyzed using indices

from graph theory (Bullmore and Sporns, 2009). In a graph

theoretical analysis, the brain is modeled as a graph network of

nodes and links. Generally, nodes represent brain region while

links represent functional, anatomical or effective connections

(Friston, 1994) depending on the neuroimaging modality as well

as the calculated connectivity measure.

In this work, we consider EEG channels as nodes and PLVs

as links representing functional connectivity, which generally

may occur between anatomically unconnected regions. We

focus on two main indices from graph theory; a global index

describing the general topology of the network which is the

small-worldness index (SW) (Muller et al., 2014) and a nodal

index that describes local properties of the network which is the

strength index (S), also called node strength (Fallani et al., 2010).

The SW index is defined as the ratio between the weighted

average clustering coefficient (C) and the weighted average

characteristic path length (L) individually normalized with

respect to the frequency bands and participants. A SW index

that is larger than 1 indicates that the network possesses small-

world properties (Humphries and Gurney, 2008). A network

with small-world characteristics has a high-degree of local

clustering (segregation) as well as long-distance communication

(integration) (Watts and Strogatz, 1998). In other words, small-

worldness describes the strength of the 1) collective activations

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.961101
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Alsuradi et al. 10.3389/fnins.2022.961101

of neighbor nodes and 2) communication strength between

distant nodes. The index C of a node is defined as the fraction

of triangles around a node, where triangles are defined as simple

graphs consisting of three nodes connected in the form of a

triangle. The higher the number of triangles around a node, the

more clustered it is. The index L, on the other hand, is defined as

the average shortest path length between all pairs of nodes in the

network. The equations below define Cp,f and Lp,f as a function

of the time-bin (t) for a particular participant (p) and frequency

band (f ):

Cp,f (t) =
1
E

∑E
j=1 Cj(t)

Lp,f (t) =
1

(E2)

∑(E2)
i=1 Li(t)

where Cj is the clustering coefficient for channel j, E is the

number of channels, Li is the characteristic path length for

combination i of pairs of channels, and
(E
2

)

is the total number

of channel pair combinations. Normalized Cp,f (t) and Lp,f (t)

indices were obtained by dividing indices of the epoch to the

mean of the epoch as described in Vecchio et al. (2017, 2018).

The normalized Cp,f (t), Lp,f (t), and SWp,f (t) are defined below:

Cnorm(t) =
Cp,f (t)

1
TN

∑tn
t=t0

Cp,f (t)

Lnorm(t) =
Lp,f (t)

1
TN

∑tn
t=t0

Lp,f (t)

SWnorm(t) =
Cnorm(t)

Lnorm(t)

where Cnorm is the normalized clustering coefficient, Lnorm

is the normalized characteristic path length, SWnorm is the

normalized small-worldenss index, t0 is the first time bin in the

epoch, tn is the last time bin in the epoch, and TN is the total

number of time bins in an epoch. Weighted indices of an epoch

are obtained by averaging the indices over the epoch length to

achieve a single index for every participant at each frequency

band and can be realized by the equations below (Vecchio et al.,

2017):

Cavg−norm = 1
TN

∑tn
t=t0

Cnorm(t)

Lavg−norm = 1
TN

∑tn
t=t0

Lnorm(t)

SWavg−norm = 1
TN

∑tn
t=t0

SWnorm(t)

The strength index (S) is defined as the sum of links’ weights

connected to the node. The S index was subsequently calculated

for the frequency bands that showed a statistically significant

difference in the SWavg−norm index between the synchronous

and delayed conditions. The index S is used to identify the highly

connected nodes in a specific frequency band.We used the Brain

Connectivity Toolbox for the graph theoretical analysis on this

work, along with custom written MATLAB routines (Rubinov

and Sporns, 2010).

2.4.3. Inter-regional connectivity analysis

A global graph-theoretical property such as the SW index is

useful to identify the frequency bands at which the connectivity

pattern is modulated under haptic delay, while a nodal graph-

theoretical property such as the S index is useful to locate the

hubs of connectivity over the scalp. Once a hub(s) is identified,

a hub-seeded connectivity analysis can be performed to capture

the functional connectivity between the hub and the other brain

regions. By hub seeded, we mean that we focus on evaluating

the connectivity between a single electrode (the hub) and the

rest of the electrodes (van Driel et al., 2012). Graph theory

analysis is useful to filter out the significantly changed PLVs from

the enormous adjacency matrices calculated in Section 2.4.1.

Figure 2 shows a summary of the main steps taken to analyze

the EEG data from a functional connectivity perspective using

graph theory.

2.4.4. Statistical analysis

Distributions of SWavg−norm index were statistically tested

across conditions (PND vs PD and AND vs AD) over the

five frequency bands. The normality of the SWavg−norm

index distributions was tested using the Shapiro-Wilk test

(Royston, 1995) implemented based on Royston R94 algorithm,

which works well with sample sizes ≤ 50 (Razali and Wah,

2011; Ghasemi and Zahediasl, 2012). The test yielded an

affirmation that the distributions under consideration are all

Gaussian. Consequently, we used the paired t-test to evaluate

the significant differences in SWavg−norm index between the

synchronous and delayed conditions for both the passive and

active tasks across the delta, theta, alpha, beta, and gamma

bands. False discovery rate (FDR) method was used to correct

for multiple comparisons across the five frequency bands by

adjusting the raw p-values; we report the adjusted p-values in

the manuscript.

Frequency bands that showed significant differences (p <

0.05) were further analyzed using the S index. The S index

which was calculated over the time-course of the epoch, was

compared across the synchronous and delayed conditions. The

statistical comparison of the S index was computed for the

hub(s) of connectivity at the peak values of the index. This

is motivated by the temporal difference of the peak values

caused by haptic delay. Lastly, hub-seeded connectivity analysis

is conducted. The time-course of the difference topography
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FIGURE 2

Block diagram of the sequence of steps followed for the functional connectivity analysis.

maps for the hub-seeded PLVs are obtained per condition.

Channels that show significantly different connectivity between

the synchronous and delay conditions are highlighted at every

time bin. To limit type 1 error due to multiple comparisons

of the 64 channels and 10 time bins, p-values were corrected

using the FDR method. For all analyzes in the manuscript, the

statistics are computed at the group level and the reported p-

values are the adjusted values after considering the multiple

comparison factor.

3. Results

3.1. Global connectivity properties

The examination of the SWavg−norm index revealed a

statistically significant difference between the synchronous and

delayed conditions for the passive and active tasks (PD and

AD) only in the delta and theta bands. Figure 3A shows a clear

increase in the SWavg−norm index when the haptic delay is

introduced. On the contrary, the SWavg−norm index showed no

significant change upon the introduction of the haptic delay

in the alpha, beta, or gamma bands. To better understand

whether the change in the SWavg−norm index is motivated

by an increase in the Cavg−norm index or a decrease in the

Lavg−norm index, both indices were examined. The details of

the statistical analysis results on the SWavg−norm, Cavg−norm

and Lavg−norm indices are found in Table 1. The time-course

of the SWnorm index is further examined over the delta-

theta bands and plotted in Figure 4 for both the passive and

active tasks. Analysis shows that the peak value is significantly

greater for the PD compared to the PND condition (Passive:

p-value < 0.05, tPND=[175 ms] and tPD = [350 ms], paired

t-test). However, no significant difference was found over the

peaks for the active task (Active: p-value > 0.05, tAND=[225

ms] and tAD = [350 ms], paired t-test). As per Figure 3A,

it is evident that the SWavg−norm was higher on average

for AD compared to the AND condition, but not over the

peak values.

3.2. Nodal connectivity properties

Consequently, further analysis was focused only on the

bands that showed significant differences in the SWavg−norm

index, namely, delta (1–4 Hz) and theta (4–8 Hz). The S

index was computed for each channel (node) over the time-

course of the epoch; Figure 5 shows the temporal change of

the S index topography for the four conditions (PND, PD,

AND, and AD). In the passive task, a high localized S index is

observed in the middle central region centered around Cz. In

the presence of delay, the high localized S index is temporally

shifted and increased in magnitude. In the active task on the

other hand, a high S index is observed over the frontal and

ipsilateral parietal regions under the synchronous condition.

In the presence of delay, however, a high localized S index

is again observed over the middle central region. In all four

conditions, the described activation fades out 700 ms after the

onset. Since Cz is the center of the activation in the middle

central region, the time-course of the S index at Cz is extracted

and shown in Figure 6. From a temporal perspective, it can be

clearly observed that the S index peaks later and higher in the

presence of delay (PD and AD conditions). The difference is

statistically significant and observed over peak values (Passive:

p-value < 0.05, tPND=[150 ms] and tPD = [350 ms], paired t-

test; Active: p-value < 0.05, tAND=[225 ms] and tAD = [350 ms],

paired t-test).
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FIGURE 3

Normalized average (A) small-worldness (SWavg−norm), (B) clustering coe�cient (Cavg−norm), and (C) characteristic path length (Lavg−norm) indices

over the five frequency bands. PND and PD refer to (passive, no delay) and (passive, delay) while AND and AD refer to (active, no delay) and

(active, delay) conditions, respectively.

TABLE 1 Paired t-test statistics for the normalized average SWavg−norm, Cavg−norm, and Lavg−norm indicies over the five frequency bands.

Delta Theta Alpha Beta Gamma

p-value t-stat. p-value t-stat. p-value t-stat. p-value t-stat. p-value t-stat.

SW index Passive 5.60× 10−6 -7.17 4.40× 10−5 -5.78 0.2423 -1.39 0.2423 1.35 0.836 0.21

active 0.016 -3.08 2.30× 10−3 -4.27 0.309 1.37 0.721 0.362 0.368 -1.08

C index Passive 1.16× 10−6 -6.23 1.76× 10−5 -8.03 0.335 -1.32 0.516 0.839 0.803 -0.252

active 9.25× 10−3 -3.47 9.25× 10−3 -3.34 0.435 0.965 0.721 0.361 0.403 -1.21

L index Passive 8.75× 10−6 6.94 1.343× 10−4 5.25 0.321 1.17 0.17 -1.72 0.526 -0.647

active 0.098 2.22 1.15× 10−3 4.58 0.110 -1.96 0.886 0.146 0.840 0.431

Reported p-values are the adjusted p-values after considering multiple comparisons.

FIGURE 4

Time-course of SWnorm index in the delta-theta band for the (A) passive task and the (B) active task. The onset (0 ms) is the visual collision event.

*Indicates statistically significant di�erence.

3.3. Inter-regional functional connectivity

Both, the frequency bands and the hub of connectivity

were identified through the SW and S indices, respectively.

Connectivity in the delta and theta bands was found to be

impacted by haptic delay, and the mid-central region, centered

around Cz, was found to be the hub of connectivity. Thus,

the Cz-seeded connectivity is plotted in Figures 7, 8 for the
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FIGURE 5

Time-course of the strength index (S) topography over the delta-theta bands (1–8 Hz).

FIGURE 6

Time-course of the strength index S at Cz (1–8 Hz) under the synchronous and delayed conditions for the (A) passive task and the (B) active

task. Arrows point to peaks where statistical tests were performed. *Indicates statistically significant di�erence.

passive and active tasks, respectively. Figure 7 shows that there

is considerable intra-regional connectivity between Cz and the

rest of the middle central channels, particularly connected in

PD condition. The difference between PND and PD shows that

in addition to the intra-regional connectivity in the middle-

central region, there is a significant functional connectivity

between Cz and (P1, P3, P5, and CP3) as well as (POz

and Oz) located at the contralateral parietal and occipital

regions, respectively. Those differences are most pronounced

between 400 and 500 ms post the visual collision event.

Similar analysis for the active task demonstrates a difference

in functional connectivity between Cz and (P3, P5, PO3, PO7

and O1) in the contralateral parieto-occipital region maximally

pronounced between 300–400 ms post the onset. However, this

difference became insignificant after considering the correction

for multiple comparisons.

4. Discussion

This study applied a graph theory-driven approach to

PLV connectivity patterns derived from EEG data with the

objective of identifying distinct global and nodal properties

of the neural networks associated with haptic delay during
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FIGURE 7

Time course of topography plots of Cz-seeded delta-theta connectivity for the passive task under both conditions and their di�erence. The

highlighted channels in the third row show a significant di�erence between the delay and no delay conditions.

FIGURE 8

Time course of scalp topographies plots of Cz-seeded delta-theta connectivity for the active task under both conditions and their di�erence.

visuo-haptic tasks (passive and active). Our results suggest that

the brain exhibits significantly different network characteristics

when a haptic delay is introduced. In particular, a significantly

increased manifestation of the small-world topology in the

theta and delta bands was observed when the haptic delay was

introduced (Table 1). An increase in the SW index could be

attributed to either an increase in the global clustering (neural

segregation) or a decrease in the characteristic path length

(neural integration). The results in Figures 3B,C and Table 1,

show that this increased manifestation in small-worldness is due

to both, the significant increase in the clustering coefficient and

the decrease in the characteristic path length. In other words, an

enhanced small-world topology in the presence of haptic delay

indicates increased segregation within the neural clusters and

increased integration among the clusters, demonstrating high

communication speed between nodes (electrodes) (Bassett and

Sporns, 2017). However, the significance test shows that haptic

delay had a larger impact on the network properties (SW,C,

and L) during the passive task compared to the active task. As

reported in self-reporting research (Vogels, 2004), the sensitivity

to haptic delay is stronger during passive interactions as

compared to active ones. One possible explanation is that during

the passive task, participants are perceptually less distracted,

making them more receptive to and aware of the delayed haptic

feedback.

A delay in an expected haptic stimulus is hypothesized to

elicit higher levels of attention when compared to synchronous

stimulation. This is, in turn, functionally related to the ability

of an individual to detect and respond to rapid and subtle

changes in the environment, such as the presence, absence,

or delay of an expected stimulus; this ability is known as the

psychomotor speed (Bigler, 2012). In light of this hypothesis,

the importance of theta band phase synchrony is evident in the

literature with respect to cognition (Klimesch, 1999; Axmacher

et al., 2006). In particular, theta band clustering and small-

worldness were associated with attention (Gootjes et al., 2006),

psychomotor speed, and working memory (Douw et al., 2011),

which corroborate the current results.

Further analysis of the graph nodal properties in the delta

and theta bands revealed high connectivity localized at the

middle central region for the PD and AD conditions, as well

as the PND condition, see Figure 5. As for the PND condition,

the main neural processes involved while performing the task

could bemore perceptual and less related tomotor coordination.

A study based on visuo-tactile stimulation (Kanayama et al.,

2015) found increased theta phase synchrony at the middle
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central region (originated at the anterior cingulate) following

multisensory (visuo-tactile) stimulation, relative to unisensory

(visual) stimulation. However, the pattern of high S index at

the middle central region in the PND condition is delayed and

amplified significantly upon the introduction of the haptic delay,

as shown in Figure 6A. The delay could simply relate to deferred

multisensory processing upon the late delivery of the haptic

feedback, while the significant increase in the S index is similar

to reported findings indicating a relationship between tasks

that involve conflict processing and a subsequent increase in

the middle central theta-based connectivity (Wang et al., 2005;

Cavanagh et al., 2009, 2010; van Driel et al., 2012).

The AND condition, on the contrary, showed a distinct S

index pattern, mainly eminent at the frontal and contralateral

parietal regions. Previous clinical studies stated that patients

with an impairment in central executive functions (i.e., directing

attention, maintaining task goals) show reduced fronto-parietal

EEG phase synchrony in the theta band (Babiloni et al.,

2004); thus, the observed connectivity could imply active

employment of central executive functions during the AND

condition. However, the connectivity pattern is diverted to the

middle central region when the haptic delay is introduced (AD

condition). At this stage of understanding, it is tempting to think

that the processes related to conflict resolution could be more

prominent compared to executive functions generally present in

the AND condition.

In addition to the strong intra-regional connectivity in the

middle-central regions, significant inter-regional connectivity

was also observed. The contralateral parietal and occipital

regions were significantly more connected to Cz under the

presence of haptic delay for the passive task. Due to the

scarcity of research studies that explore the brain functional

networks associated with the haptic modality, it is hard to

directly relate the current results to previous work. However, a

strong speculation relates the observed theta phase synchrony

at the parietal region to hippocampal theta activity, pointing

to mechanisms of sensorimotor integration (Bland et al., 2007;

Watrous et al., 2011). This hypothesis ties well with previous

studies wherein theta activity at the parietal cortex plays a

major role in supporting body motor movements necessary

for goal pursuit or task completion (Guterstam et al., 2015;

Lin et al., 2022). By extension, we believe that theta phase

synchrony played a significant role in detecting the delay in

the haptic modality (middle central region) and communicating

the conflict to the parietal cortex for integrating the flow of the

incongruent sensory information. Additionally, it is interesting

to observe the connectivity between Cz and the occipital

electrodes (POz andOz) indicating a sort of information transfer

possibly falling under reactive control processes required to

resolve conflict in the involved sensory modalities (motor,

visual) (Cooper et al., 2015). In Figure 8, it can be observed that

there is higher connectivity between Cz and the contralateral

parieto-occipital region (P3, P5, PO3, and PO7) in the AD

compared to the AND condition. Despite the difference, it was

found insignificant after correcting for the number of channels

and the time-bins.

One limitation of this study is that we used the PLVmeasure

to construct the adjacency matrices to evaluate the connectivity

between electrode pairs. It is known that the PLV measure is

sensitive to the problem of volume conduction, which could

result in spurious connectivity (Bruña et al., 2018). However,

PLV is one of the standard methods that is used to study

connectivity at the scalp level. To address this limitation, we used

spatial filtering (CSD method), which is known to attenuate the

volume conduction effect (Srinivasan et al., 2006). An interesting

future direction would be to study the effects of changing the

type of haptic feedback (i.e., vibrotactile or kinesthetic), the

amount of haptic delay, and the variation in delay (i.e., jitter)

on the functional networks involved in processing haptic delay.
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