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A sign language translation system can break the communication barrier between

hearing-impaired people and others. In this paper, a novel American sign language

(ASL) translation method based on wearable sensors was proposed. We leveraged

inertial sensors to capture signs and surface electromyography (EMG) sensors to detect

facial expressions. We applied a convolutional neural network (CNN) to extract features

from input signals. Then, long short-term memory (LSTM) and transformer models were

exploited to achieve end-to-end translation from input signals to text sentences. We

evaluated two models on 40 ASL sentences strictly following the rules of grammar. Word

error rate (WER) and sentence error rate (SER) are utilized as the evaluation standard.

The LSTM model can translate sentences in the testing dataset with a 7.74% WER

and 9.17% SER. The transformer model performs much better by achieving a 4.22%

WER and 4.72% SER. The encouraging results indicate that both models are suitable

for sign language translation with high accuracy. With complete motion capture sensors

and facial expression recognition methods, the sign language translation system has the

potential to recognize more sentences.

Keywords: American sign language, inertial measurement units, electromyography, long short-term memory,

transformer

INTRODUCTION

Sign language is the main communication method among hearing-impaired people. According
to the World Federation of the Deaf, there are 70 million deaf people around the world using
sign language in their daily life. As a kind of natural language, sign language has not become
a mainstream Research Topic in natural language processing (NLP), although the machine
translation of spoken or written language is highly accurate today. However, the research on
machine translation with deep learning models provides development direction and innovative
methods for sign language translation tasks. To further research on end-to-end translation, it is
necessary to consider the application of deep learning models (Bing et al., 2021a,b,c, 2022).

Previous works about sign language translation mainly fall into two categories: vision-based
and wearable sensor-based methods. Vision-based methods exploit cameras to capture features
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of the hands (Koller et al., 2015; Sun et al., 2015; Fang
et al., 2017). One most commonly used dataset is RWTH-
PHOENIX-Weather (Koller et al., 2015), which contains 3
years’ sign language interpretation of daily news and weather
forecast from a German public TV-station. With this dataset, a
machine translation model with an encoder-decoder structure
was built that included both long short-term memory (LSTM)
and connectionist temporal classification (CTC) as the decoder
(Pu et al., 2019). The transformer-based architecture was applied
to make the model trainable in an end-to-end manner (Camgoz
et al., 2020). A continuous sign recognition framework named
Hierarchical Attention Network with Latent Space (LS-HAN)
was proposed (Huang et al., 2018). Another well-known dataset
is Chinese Sign Language (CSL) (Zhou et al., 2019). This dataset
containing 100 continuous Chinese sign language sentences
was collected by the Kinect device. A novel architecture with
cross-modality augmentation reached state-of-the-art translation
accuracy (Pu et al., 2020).

In wearable sensor-based research, devices, such as data
gloves, wristwatches, or armbands, are the mainstream for data
collection (Cheng et al., 2015; Wei et al., 2016). Inertial data
and surface electromyography (EMG) data were collected from
forearms to detect hand/arm gestures (Wu et al., 2016). In
total, 80 commonly used American sign language (ASL) signs
were classified by a support vector machine classifier. An ASL
translation system named MyoSign was presented using the
MYO armband as a data collection device (Zhang et al., 2019).
The end-to-end translation model consisted of convolutional
neural network (CNN), LSTM, and CTC layers. In total, 100
sentences that comprised of 70 commonly used ASL words
without considering sign language grammar were translated
with more than 92% accuracy. Another work using the MYO
armband collected data from 20 ASL sentences and treated it
as a classification task (Tateno et al., 2020). The LSTM classifier
could recognize these twenty motions with high accuracy among
twenty participants. With one sample entropy-based feature
set for both accelerometer and EMG, 60 isolated Greek Sign
Language signs were recognized with an accuracy of 93%
(Kosmidou and Hadjileontiadis, 2009). The combination of the
MYO armband and Leap Motion camera was used to estimate
continuous hand position (Quivira et al., 2018). Combining deep
learning with principal component analysis (PCA), the grasp of a
prosthetic hand was controlled (Li et al., 2018).

Sign languages are not exactly expressed with hands. It is
also critical to catch facial expressions. For example, raising
eyebrows means an open-ended question in ASL (Bragg et al.,
2019). In video-based translation, it is easy to catch the
movements of hands and face with a camera simultaneously.
However, a few studies have considered facial expressions as
important information. For wearable sensors, facial EMG data
are widely used in emotional classification. Five different facial
emotions were classified with 2-channel EMG sensors and a CNN
classifier (Kehri and Awale, 2020). Emotion recognition with
EMG measurements of the zygomaticus major and corrugator
supercilii muscles was studied to identify happy, angry, and
neutral faces (Kulke et al., 2020). In naturalistic studies, facial
EMG signals can also be used to assess subjective emotional
valence. Wearable devices with EMG electrodes were developed

to record participants’ facial changes while viewing emotional
films (Sato et al., 2021). With the evaluation of facial EMG,
emotional facial expressions in real-life social interactions were
more evocative of reactions than experimental conditions (Hsu
et al., 2020).

In summary, with deep learning models, both vision-
based and wearable sensor-based methods can translate
human movements into text sentences during sign language
performance. The vision-based works tend to build and train
the model on benchmarks with advanced algorithms and data
augmentation. Wearable sensor-based topics always collect
data by themselves due to different kinds of devices applied in
experiments. With only EMG signals from forearms, limited sign
language words or sentences can be recognized accurately. After
adding the data from inertial measurement units (IMU), results
are significantly improved (Zhang et al., 2019).

In our work, we have applied IMU signals from forearms
and hands to translate 40 ASL sentences into texts following
the grammar rules. To realize end-to-end translation, two kinds
of encoder-decoder structured models in NLP are included: the
LSTM-based model and transformer-based model. To acquire
more information, facial expression data collected by EMG
sensors are also regarded as a part of the input to translation
models. The rest of the paper is organized as follows. We first
collected IMU and EMG signals and did signal preprocessing.
Then we presented LSTM and transformer models and trained
the models with the dataset. The models were evaluated by
the testing dataset, and the significance of the EMG signal was
discussed. Finally, the discussion and conclusion of the paper
were drawn.

MATERIALS AND METHODS

ASL Specifics
American sign language is a kind of visual language expressed
via a sequence of sign gestures. A sign consists of four main
components, i.e., hand shape, movement, palm orientation, and
location. In addition, facial expression can also be critical to
express the signer’s current mood. For example, raised eyebrow
always indicates asking a question and a neutral face conveys
a statement of fact. In addition to neutrality and questioning,
positive and negative emotions are also considered in this
research. In total, 40 commonly used sentences (listed in Table 1)
with emotions positive, negative, questioning, and neutral were
selected for recognition. These 40 sentences come from popular
sign language videos on the Internet. The signers perform these
sentences with obvious facial expressions.

Dataset Collection
The movements of forearms and hands were obtained by
the Perception Neuron Motion Capture System. As shown
in Figure 1A, this system is based on wearable IMU sensors
named “Neuron.” Each Neuron is composed of an accelerometer,
gyroscope, and magnetometer. There are 25 Neurons for
capturing upper body movements. The motion capture system
needs to communicate with the Axis Neuron software. Axis
Neuron can receive and process the data from all IMU sensors
and export it into a .bvh format file. In this file, skeleton
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TABLE 1 | Forty commonly used American sign language sentences.

Positive Negative Questioning Neutral

1. I’m happy! 11. Today I feel sad. 21. Are you deaf? 31. I’m fine.

2. Wow the steak is delicious! 12. I don’t like cat. 22. Are you finish? 32. I’m busy.

3. Happy new year! 13. Why you are sad. 23. Are you alright? 33. I need help.

4. Merry Christmas! 14. I’m afraid of spider. 24. Do you want milk and cookies? 34. You like him.

5. Wow the dessert is delicious! 15. Running, growing up, I hate it. 25. Do you like ice-cream? 35. I go to church on Sunday.

6. Haha the commercial is funny! 16. I don’t know where, sad. 26. Are you happy with studying history? 36. I’m a broke college student.

7. With you I’m happy! 17 My friend dislikes wrestling. 27. Do you come to church on Sunday? 37. I go to beach this summer.

8. Happy thanksgiving! 18. His wife dislikes cooking. 28. Do you also want fries? 38. We are hungry.

9. Happy mother’s day! 19. I’m worried. they are angry. 29. Did you finish eating vegetable? 39. I go back home.

10. This year we are happy! 20. I feel annoyed. 30. Does this food have strawberry? 40. They enjoy eating hamburgers.

information and movement information of the whole process are
recorded. We have only used the motion data, which record the
rotation information of all joints of the human body. We have
only focused on the data from hands and forearms’ joints. The
sampling rate was 60 Hz.

Electromyography (EMG) measures the electrical activity
generated by the muscle. Figure 1B shows a 2-channel EMG
signal acquisition system. The system mainly includes an NI data
collector and differential electrodes. The NI USB-6008 provides
eight single-ended analog inputs. Four single-ended analog
inputs were used to form two differential channels. Another
grounded channel was used as a reference. The electrode applied
in this system was wet silver/silver chloride (Ag/AgCl) surface
electrode. The useful information of EMG signals was mainly
distributed in the frequency range of 0–500Hz (De Luca et al.,
2010). To meet the Nyquist sampling theorem, the sampling rate
was chosen as 1 kHz.

In the experiment, EMG signals from zygomaticus major
and corrugator supercilii areas and IMU signals from forearms
and hands were collected. Three participants with the right
hand as the dominant hand participated in data collection. The
signers performed each sign language sentence with both hand
movements and facial expressions. Participant 1 contributed the
largest amount of data (1,600 samples). Participants 2 and 3 each
contributed 400 samples. Finally, there were 60 samples for each
sentence and 2,400 samples in total in the dataset.

Data Pre-Processing
The .bvh data from the IMU motion capture system includes
all the motion data of 59 bones. We had only focused on the
data from hands and forearms. Finger spacing was fixed in Axis
Neuron software; as a result, some channels maintained the same
values throughout the experiment. We manually removed these
channels that contained no useful information. Finally, only 38
channels were remained for the inertial data of forearms and
hands. Since the IMU signals were sampled with a much lower
sampling rate, we only used a median filter with a kernel size of 5
to make data smooth. The signal preprocessing flow is shown in
Figure 2.

When compared to IMU, the EMG signal was much noisier
and unstable. To maintain the performance of EMG features,

the signal was band-passed and notch filtered to remove power-
line interference and motion artifacts (Phinyomark et al., 2009).
Then, a median filter was used to smooth the data. Rectification
is a commonly applied approach to magnify the EMG features
(Yang et al., 2016). The Root-Mean-Square rectification of signal
x(t) is defined as

EMGrect(t) =

√

1

T

∫ T

t−T
x2(τ )dτ

Where T is the window size that controls the trade-off between
smooth envelopes against transient variations of EMG signal.
We set this value to be 0.02 s to avoid signal distortion and to
keep approximately consistent in length with the IMU signal
according to the sampling rates of the two devices. The lengths
between EMG and the corresponding IMU signal may be
different, so we resampled the EMG to the same length as IMU
in the final step of preprocessing. An example of the EMG data
from sentence no. 21 before and after preprocessing is shown in
Figure 3.

Facial Expressions Classifier
Convolutional neural network is an effective technique to solve
signal and image classification problems. Based on shared-
weights architecture, CNN eliminates effects from motion
differences in amplitude and trajectory (LeCun et al., 1998).
An emotional classifier using CNN as a feature extractor was
proposed in this research.

The CNN classifier mainly consists of four layers as shown in
Figure 4. The first two layers are convolutional layers with 9 ×

1 and 5 × 1 kernels, respectively. Since the input EMG signal
contains two independent channels, to avoid any confusion, the
convolutional kernels are both 1-D kernels. Batch normalization
(Ioffe and Szegedy, 2015) was used for reducing internal
covariate shift, and rectified linear unit (ReLU) was selected
as the activation function. Max pooling was set to reduce the
computational burden. The following layer is a fully connected
layer with a dropout strategy to prevent overfitting (Srivastava
et al., 2014). Finally, there is a fully connected layer with G-way
softmax. G is the number of facial expressions to be recognized.
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FIGURE 1 | Devices for data collection: (A) perception Neuron motion capture system; (B) electromyography (EMG) signal acquisition system.

FIGURE 2 | Signal preprocessing flowchart.

Sign Language Translation Models
In the sign language dataset, the continuous signal stream for
each sentence lasts for around 3–10 s. With the sliding window
method, the long signal stream is segmented into a sequence of
frames. Since the sampling rate of the motion capture system was
60Hz, the window size we set was 600ms (36 sample points) and
the sliding size was 300ms (18 sample points).

The label for collected EMG and IMU data was the
corresponding text sentence. There were 40 sentences in the
dataset that consisted of words and punctuation. We built a
vocabulary at the word level and used the index of the word as the
label. The vocabulary is shown in Table 2. Three kinds of special
words were added to vocabulary:<BOS>,<EOS>, and<PAD>

(indicated “begin of sentence,” “end of sentence,” and “padding”).
We added<BOS> and<EOS> to the beginning and end of each
sentence in the dataset and then padded the sentence to the same
length with <PAD>. Finally, text sentences were changed into
sequences of words’ indices.

LSTM Translation Model

The first model is based on LSTM. As illustrated in Figure 5, the
first layer of the encoder is CNN. The CNN layer extracts superior
representations of features from input data frames as introduced

in Section Facial Expressions Classifier. The input signal of
stacked IMU and EMG had 40 channels, so the convolutional
kernels we used here were 2-D kernels with the shape of 3× 3.

The second layer of the encoder is LSTM. LSTM is
widely used in speech recognition, language modeling, and
translation to model temporal dependence. As an extended
model of Recurrent Neural Network (RNN), LSTM can preserve
the long-term dependencies by controlling the percentage of
previous information dropping, current information inputting,
and current information outputting (Shi et al., 2015). Figure 6
shows the LSTM expanded by time step and the detailed structure
of the LSTM unit.

The cell state Ct−1 and hidden state ht−1 from the previous
time step along with the current input xt are the inputs to the
current LSTM unit. The forget gate ft , input gate it , update gate
C̃t , and output ot are calculated as follows:

ft = σ (Wf · [ht−1, xt]+ bf )

it = σ (Wi · [ht−1, xt]+ bi)

C̃t = tanh(WC · [ht−1, xt]+ bc)

ot = σ (Wo · [ht−1, xt]+ bo)
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FIGURE 3 | An example of electromyography (EMG) data preprocessing: (A) raw EMG data from sentence no. 21; (B) corresponding preprocessed EMG data.

Where σ is the sigmoid function, and W are b are weights and
bias, respectively. With these results, Ct and ht are updated:

Ct = ft
∗Ct−1 + it

∗C̃t

ht = ot
∗ tanh(Ct )

The hidden vectors Ct and ht passed to the decoder were
used as the initial hidden state of decoder LSTM. Given
the special word <BOS>, the decoder started to output
predicting results step by step. If the output of a time step
was turned to <EOS>, the whole predicting procedure should
be finished.
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FIGURE 4 | Facial expressions’ classification model.

TABLE 2 | The vocabulary for 40 American sign language (ASL) sentences.

! , . ? Christmas I I’m Sunday

A Afraid Alright Also And Angry Annoyed Are

Back Beach Broke Busy Cat Church College Come

Commercial Cooking Cookies Day Deaf Delicious Dessert Did

Dislikes Do Does Don’t Eating Enjoy Feel Fine

Finish Food Friend Fries Funny Go Growing Haha

Hamburgers Happy Hate Have Help Him His History

Home Hungry Ice-cream Is It Know Like Merry

Milk Mother’s My Need New Of On Running

Sad Spider Steak Strawberry Student Studying Summer Thanksgiving

The They This To Today Up Vegetable Want

We Where Why Wife With Worried Wow Wrestling

Year You <BOS> <EOS> <PAD>

FIGURE 5 | Architecture of long short-term memory (LSTM)-based translation model.

Transformer Translation Model

The transformer model has been used successfully in a variety
of tasks, such as reading comprehension, textual entailment,
and learning task-independent sentence representations
(Vaswani et al., 2017). With the self-attention mechanism,
the model can draw global dependencies between input and
output without considering the distance. The architecture

of the transformer-based translation model is shown in
Figure 7A.

In the encoder section, the input to the self-attention layer
consists of two parts: features’ sequence extracted from the CNN
layer and positional encoding recording the sequence order.
The detailed structure of the self-attention layer is shown in
Figure 7B. Query, key, and value all come from the same input
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FIGURE 6 | Detailed structure of long short-term memory (LSTM) unit.

FIGURE 7 | Transformer-based translation model: (A) architecture of the model; (B) detailed structure of the self-attention layer.
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by performing different linear transformations:

Q = WQ · x

K = WK · x

V = WV · x

The attention score is calculated as:

scores = softmax(
Q · KT

√

dk
)

Where dk is the dimension of K. The output of the self-attention
layer is matrix multiplication between score and value matrix V :

Attention(Q, K, V) = scores · V

After going through layer normalization and feed-forward
module, the input was finally encoded into a hidden vector.

In the model’s training step, the input of the decoder was a
text sentence. In the masked self-attention layer, the model could
only attend to the output words that had been predicted before.
The encoder-decoder cross-attention layer includes K and V
from encoder output and Q from decoder input. The calculation
method is the same as self-attention. The output of the decoder is
the probabilities of all possible words in the vocabulary. With the
greedy search decoding method (Edmonds, 1971), we chose the
word with the largest probability as the model prediction.

RESULTS

Facial Expressions Classification
We validated the CNN classifier with 5-fold cross-validation.
The dataset of EMG signals that contained 2,400 samples was
randomly divided into five subsets. We left each subset as the
validation set and trained the model with the remaining four
subsets. This process was repeated five times. The loss function
of the model was cross-entropy loss and the optimizer was Adam
with a learning rate of 0.001. According to the recognition results
of validation sets, the classification accuracy is calculated as
given below:

Accuracy =
Number of correct classifications

Total number of validation samples

After training the model, the classification results of all cross-
validation sets are shown in Figure 8A. The accuracy of
more than 99% illustrates that EMG features are significantly
different in four kinds of facial expressions. The confusion
matrix accumulated from all cross-validation steps is shown in
Figure 8B.

Sign Language Translation
We randomly divided 2,400 samples in the dataset into a training
set (70%, 1,680 samples), validation set (15%, 360 samples), and
testing set (15%, 360 samples). We used data in the training set to
train the model and then adjusted parameters with the validation
set to select the model with the best performance. The training

loss is cross-entropy between model prediction and real labeled
sentences. The optimizer is Adam with a learning rate of 0.0003.

On the testing set, we employed word error rate (WER)
and sentence error rate (SER) as the evaluation of the model.
WER measures the least operations of substitution, deletion, and
insertion to transform the predicted sentence into the ground
truth sentence:

WER =
Nsub + Ndel + Nins

Nground truth words

WhereNsub,Ndel, andNins are numbers of required substitutions,
deletions, and insertions, respectively. SER measures the
percentage of not completely correct sentences of the model’s
testing prediction results:

SER =
Nerror sentences

Nground truth sentences

In the training step of the LSTM translation model, the losses of
training and validation set were both dropped dramatically in the
first few epochs. After 15 epochs of training, the model tended to
converge with a loss of nearly 0.We stopped training themodel at
epoch 20 and evaluated it with the testing set. Figure 9 shows the
evaluation result of the LSTM translation model on the testing
dataset. The blue bars are the sentence amount distribution of
40 sign language sentences in the testing set and the orange bars
show the error sentences amount. Most sentences were predicted
correctly by the model. The SER we calculated was 9.17% (33
error sentences of 360 samples) and the WER was 7.74% (43 del
errors, 17 ins errors, and 87 sub errors of 1,898 words).

The transformer translation model converges much faster, so
we trained the model for only 15 epochs. The evaluation result
is shown in Figure 10. This model performs much better than
the LSTM model in the testing dataset. There were only 17 error
sentences from 360 sentences in the dataset and thus the SER was
4.72%. TheWER was calculated to be 4.21% (33 del errors and 47
sub errors of 1,898 words).

DISCUSSION

Significance of EMG
In this work, EMG signals from facial areas provided four kinds
of emotional information during sign language performance.
Combining EMG and IMU data as input provides the model
with more information to achieve better prediction results. To
evaluate the significance of EMG, we removed the EMG data
from the input and then trained the translationmodels again with
only IMU data.

The comparisons between input with or without EMG are
shown in Tables 3, 4. WERs of the two models increase by 4.12
and 4.21% without EMG data as input, and SERs also increase
by 5.55 and 4.17%, respectively. Both models gave more wrong
predictions, but the transformer model still performed much
better than the LSTM model at a 3.43% lower error rate at the
word level and 5.83% lower error rate at the sentence level.
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FIGURE 8 | Facial expressions classification results: (A) accuracy of five cross-validation sets; (B) total confusion matrix of cross-validation steps.

FIGURE 9 | Long short-term memory (LSTM) model evaluation result.

User-Independent Validation
We evaluated the performance of models in user-independent
conditions. Three participants participated in this experiment.
Participant 1 who contributed the largest amount of data
(1,600 samples) was always used as a part of the training set.
Participants 2 (400 samples) and 3 (400 samples) were regarded
as testing sets, respectively. The results are shown in Table 5.
In the sign language translation task, both WER and SER
increased dramatically to more than 40%. Due to different habits
and amplitudes of each person’s sign language performances,
there were great differences between the movement data in
user-independent validation. The method we proposed could
still translate more than half of the sentences in the testing
set accurately. In the user-independent validation of facial
expression classification with EMG, the accuracy remained at a
high level of more than 93%. The result illustrated that the EMG
signals of four different expressions had distinguishable features.

Limitations
The dataset contains limited sentences and participants. Only
four kinds of facial expressions were considered, as a result,
the CNN classifier gave high-accurate results on this four-
category classification task. LSTM and transformer are two
commonly used models in NLP research. Instead of text or
speech, the input of sign language is signals from the human
body. The transformer model outperforms the LSTMmodel. The
transformer is originally proposed to solve the sequential order
problem of RNN (Vaswani et al., 2017). The LSTM model can
only read input from left to right or from right to left, but the
transformer considers the overall input content at the same time.
With EMG as a part of the input, the accuracy of the model
prediction improves. EMG can enhance the model’s translation
ability. In user-independent validation, the translation accuracy
dropped dramatically due to the significant inter-individual
differences in movement. More participants should be involved
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FIGURE 10 | Transformer model evaluation result.

TABLE 3 | Word error rate comparison.

LSTM Transformer

Input with EMG 7.74% 4.22%

Input without EMG 11.86% 8.43%

TABLE 4 | Sentence error rate comparison.

LSTM Transformer

Input with EMG 9.17% 4.72%

Input without EMG 14.72% 8.89%

TABLE 5 | User-independent validation results.

WER SER Facial expression

classification

accuracy

Participant 2 41.95% 44.50% 93.25%

Participant 3 41.12% 46.00% 95.00%

in the experiment and the model should learn knowledge from
more data.

Compared with visual methods of sign language translation,
a camera is more portable but will encounter background and
perspective problems. Even the most popular Kinect camera with
skeleton tracking function cannot extract the detailed skeleton
structure of hands. To some extent, wearable IMU sensors are
more reliable. The IMU-based motion capture device for the
upper body contains 25 sensors. It is a unitary device and cannot
be disassembled. This motion capture system is bulky for a
translation system with only 40 sentences, but it has the potential
to recognize more sentences. A larger dataset using this device

is in preparation and machine-learning algorithms more suitable
for wearables are being developed.

CONCLUSION

In this paper, we presented a wearable sensor-based sign language
translation method considering both hands’ movements and
facial expressions. IMU and EMG signals were preprocessed and
segmented into a sequence of frames as the input of translation
models. We classified facial expressions with EMG data only.
Then we built encoder-decoder models to realize end-to-end sign
language translation from signals to text sentences. Two kinds
of end-to-end models based on LSTM and transformer were
trained and evaluated by the collected dataset. WER and SER
were used to compare the translation ability of models. Both
models could translate 40 ASL sentences with high accuracy and
the transformer-based model performed better than LSTM. The
special role of EMG was verified with both facial expressions’
classification and models’ performance after removing EMG
from the input. The translation accuracy in user-independent
conditions was evaluated.
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