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The e�ects of data quantity on
performance of temporal
response function analyses of
natural speech processing

Juraj Mesik* and Magdalena Wojtczak

Department of Psychology, University of Minnesota, Minneapolis, MN, United States

In recent years, temporal response function (TRF) analyses of neural activity

recordings evoked by continuous naturalistic stimuli have become increasingly

popular for characterizing response properties within the auditory hierarchy.

However, despite this rise in TRF usage, relatively few educational resources

for these tools exist. Here we use a dual-talker continuous speech paradigm

to demonstrate how a key parameter of experimental design, the quantity

of acquired data, influences TRF analyses fit to either individual data

(subject-specific analyses), or group data (generic analyses). We show that

although model prediction accuracy increases monotonically with data

quantity, the amount of data required to achieve significant prediction

accuracies can vary substantially based on whether the fitted model contains

densely (e.g., acoustic envelope) or sparsely (e.g., lexical surprisal) spaced

features, especially when the goal of the analyses is to capture the aspect

of neural responses uniquely explained by specific features. Moreover, we

demonstrate that generic models can exhibit high performance on small

amounts of test data (2–8min), if they are trained on a su�ciently large data

set. As such, they may be particularly useful for clinical and multi-task study

designs with limited recording time. Finally, we show that the regularization

procedure used in fitting TRF models can interact with the quantity of data

used to fit the models, with larger training quantities resulting in systematically

larger TRF amplitudes. Together, demonstrations in this work should aid new

users of TRF analyses, and in combination with other tools, such as piloting

and power analyses, may serve as a detailed reference for choosing acquisition

duration in future studies.

KEYWORDS

electroencephalography, temporal response function (TRF), forward modeling,

genericmodel, cortical trackingof continuous speech, envelopeprocessing, semantic

processing, regularized linear regression

1. Introduction

A key goal of auditory cognitive neurosciences and neurolinguistics is to characterize

how acoustic and linguistic features are encoded in human cortex. In recent years,

substantial progress has been made in utilizing non-invasive electroencephalographic

(EEG) and magnetoencephalographic (MEG) responses to continuous speech in order
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to uncover a diverse set of neural signatures associated with

different aspects of language processing. These range from

responses to relatively low-level features associated with the

speech envelope (e.g., Ding and Simon, 2012; Power et al., 2012;

Kong et al., 2014), mid-level features implicated in phonemic

processing (e.g., Di Liberto et al., 2015, 2019; Brodbeck et al.,

2018), and higher-order linguistic features associated with

semantic and syntactic processing (e.g., Broderick et al., 2018;

Weissbart et al., 2019; Donhauser and Baillet, 2020; Mesik et al.,

2021; Heilbron et al., 2022).

An important catalyst for this work has been the

popularization of regularized linear regression methods for

mapping the relationship between features in the stimulus space

and the brain response (Lalor and Foxe, 2010; Crosse et al.,

2016). This relationship can be characterized in both the forward

direction, mapping from the stimulus to the brain response, and

the backward direction, specifying how to reconstruct stimulus

features from patterns of brain activity. The forward modeling

approach models the continuous M/EEG data as a convolution

between a set of to-be-estimated feature-specific impulse

responses, known as the temporal response functions (TRFs),

with the known time courses of the corresponding features

(e.g., acoustic envelope, lexical surprisal, etc.). These analyses

contrast with the more traditional event-related potential (ERP)

method, which relies on averaging of hundreds of identical trials

in order to estimate the stereotypical neural response for a

given stimulus (e.g., Luck, 2005; Woodman, 2010). Unlike ERP

methods, which rely on repetition, the TRF approach allows for

analyzing brain responses to naturalistic time-varying stimuli,

including continuous speech and music.

While the popularity of TRF methods has increased

substantially, there remains a relative lack of literature exploring

how these methods perform in the context of EEG and

MEG analyses under various constraints, such as the type

of features utilized (e.g., temporally sparse vs. dense) or

the quantity of the data to which the models are applied.

This information resource gap has more recently received

some attention (Sassenhagen, 2019; Crosse et al., 2021), but

published work has provided a broader overview of issues

in TRF research (e.g., effects of correlated variables, missing

features, preprocessing choices, etc.) without a more thorough

examination of any one issue. As such, there is a continued

need for further methodological resources aiding researchers

interested in adopting TRF techniques to learn using these

methods, and to optimize their experimental design for their

efficient use.

One of the most fundamental decisions in study design

is the choice of how much data to collect (i.e., number of

subjects and acquisition duration per subject). This decision has

broad consequences affecting the cost of the study, complexity

of applicable models, data quality (due to fatigue/comfort level

changes over the course of long experimental sessions), and

others. With respect to TRF modeling, understanding how

analysis outcomes are influenced by data quantity is important

for making decisions about duration of data acquisition.

Specifically, at the low end of the spectrum (small amounts of

data), TRF models may be unable to isolate neural responses

of interest due to poor data signal-to-noise ratio (SNR) and/or

limited sampling of the stimulus feature space used in the

analysis. At the upper end of the spectrum (large amounts

of data), model performance may saturate, making additional

data wasteful both in research costs and subject discomfort.

Understanding these tradeoffs is particularly important for

studies of special populations, such as the elderly or clinical

patients, who may not tolerate longer experimental sessions.

To date, the majority of work exploring effects of data

quantity on analyses of speech-evoked EEG data have focused

on attention decoding, especially with backward models (e.g.,

Mirkovic et al., 2015; O’Sullivan et al., 2015; Fuglsang et al., 2017;

Wong et al., 2018). However, because the driving force behind

the interest in attention decoding is innovation in hearing aid

technologies, much of this work has focused on the performance

of trainedmodels on decoding attention using limited amount of

data. In other words, most of this work has explored the effects

of data quantity at the level of model evaluation/testing, rather

than on the model training itself (but see Mirkovic et al., 2015).

In the context of forward modeling, the effect of training

data quantity on model performance has only received a

limited amount of attention. Performance of these models is

commonly quantified in terms of the model prediction accuracy,

representing the correlation between a model’s predicted time

course of neural activity and the actual measured activity.

Additionally, unique contributions of individual features to

model prediction accuracy are often quantified as the difference

in prediction accuracies between models that either include or

exclude a given feature. Di Liberto and Lalor (2017) explored

the impact of data acquisition duration on the performance of

TRF models of phonemic processing, to assess whether small

amounts of data can reliably support detection of phonemic

responses in individuals. They showed that although models

trained on data from individual participants required 30+ min

to detect these signals, generic models derived from data from

multiple participants could detect signals related to phonemic

processing with as little as 10min of data per participant. More

recently, in their overview of TRF methods, Crosse et al. (2021)

used simulations to demonstrate the impact of noise and data

quantity on a single-feature TRF prediction accuracies and the

fidelity of the derived TRFs. However, beyond these works, a

more thorough exploration of TRF forward model performance

in the context of more realistic listening scenarios, with a more

diverse set of modeled speech features has not been performed.

The goal of the present work is to provide a detailed,

practical demonstration of how data quantity and model feature

sparsity affect the outcome of TRF analyses in the context of

real non-invasive EEG responses to a dual-talker continuous

speech paradigm (Mesik et al., 2021). In a series of analyses, we
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repeatedly fit TRF models to progressively larger segments of

the data, estimating both individual subject models, as well as

generic models based on data pooled across multiple subjects.

For each analysis, we demonstrate how data quantity influences

the stability of TRF estimates, overall model prediction accuracy,

and prediction accuracy attributable to individual features.

Additionally, we show the effect of the interplay between data

quantity and regularization on the amplitudes of resulting

TRF estimates. Given the unique nature of each auditory

study (design, analyses, etc.) and the rapid innovation in the

TRF methods, we caution readers against taking our work as

a sole prescription for how much data should be collected

in future TRF studies, or how the resulting data should be

analyzed. Instead, we believe our work should serve as a detailed

demonstration of general patterns of TRF model performance

as a function of data quantity, and a reference that should be

carefully used in conjunction with other tools and sources of

information (e.g., piloting and power analyses) for informing

study design and the subsequent analyses.

2. Materials and methods

EEG data used in the present manuscript was acquired

and previously analyzed to investigate age effects on cortical

tracking of word-level features in competing speech (Mesik

et al., 2021). Extensive description of the details associated

with the experiment and the data are openly accessible in the

original manuscript. For brevity, we highlight key aspects of this

data below.

2.1. Participants

Data from 41 adult participants (18–70 years old, mean ±

SD age: 41.7 ± 14.3 years; 15 male, 26 female) was used in

the present study. The broad age range was utilized to assess

age effects on speech-driven EEG responses in the original

study. Consequently, a subset of participants (n = 18) had

mild-to-moderate hearing loss (HL), largely concentrated in

the high-frequency region (≥4 kHz), which was compensated

for via amplification. All participants provided a written

informed consent and received either course credit or monetary

compensation for their participation. The procedures were

approved by the Institutional Review Board of the University

of Minnesota.

2.2. Stimuli

Stimuli were four public-domain short-story audiobooks

(Summer Snow Storm by Adam Chase; Mr. Tilly’s Seance by

Edward F. Benson; A Pail of Air by Fritz Leiber; Home Is

Where You Left It by Adam Chase; source: LibriVox.org) read

by two male speakers (2 stories per speaker). Each story had

a duration of ∼25min. Stories were pre-processed to truncate

silent gaps exceeding 500ms to 500ms, and the levels in each

1-min segment were root-mean-square normalized and scaled

to 65 dB SPL. In participants with HL, the audio was then

amplified to improve audibility at frequencies affected by HL

(see Mesik et al., 2021 for details of amplification). Stimuli were

presented using ER1 Insert Earphones (Etymotic Research, Elk

Grove Village, IL).

2.3. Experimental procedure

Participants completed two experimental runs in which

they listened to pairs of simultaneously presented audiobooks

narrated by different male talkers. The stories were presented

at equal levels (i.e., 0 dB SNR) and were spatially co-located

(i.e., diotic presentation of same stimuli to the two ears). One

story was designated as the target story and participants were

instructed to attend to the target talker for the duration of the

experimental run, while ignoring the other talker. Runs were

divided into 1-min blocks, each of which was followed by a

series of four multiple-choice comprehension questions about

the target story, along with several questions about the subjects’

state of attentiveness and story intelligibility. This behavioral

data was not analyzed in the context of the present manuscript.

In the second experimental run, participants listened to a new

pair of stories spoken by the same two talkers, with the to-

be-attended and to-be-ignored talker designations switched, to

eliminate talker-specific effects in the analysis results. The order

of the story pairs as well as the to-be-attended talker designations

were counter-balanced across participants. All experimental

procedures were implemented via the Psychophysics Toolbox

(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) in MATLAB

(Mathworks, Natick, MA, United States; version R2019a).

2.4. Modeled speech features

To explore how the choice of modeled stimulus features

affects TRF model performance (see section “TRF analyses”),

we modeled neural responses to two distinct stimulus

representations of attended speech, emphasizing features

with different levels of sparseness. The denser “envelope”

representation contained two speech features: (1) a continuously

varying log-transformed acoustic envelope and (2) sparser

word-onset regressor intended to capture responses to acoustic

onsets and lexical segmentation. The sparser “surprisal and

SNRword” representation had three features: (1) lexical surprisal

of each word, (2) SNR of each attended word’s acoustic

waveform against the to-be-ignored speaker’s waveform, and

(3) word-onset regressors. In the following sections, we describe

the motivation and derivation of these features, respectively.
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The inclusion of these stimulus representations was

motivated as follows. The low-frequency log-envelope was

included due to extensive evidence that this representation (and

related spectrogram-based envelope representations) can be

accurately used to model cortical processing of speech acoustics

(e.g., Aiken and Picton, 2008; Lalor and Foxe, 2010; Power

et al., 2012). Similarly, lexical surprisal has been shown to be

robustly tracked by higher-order cortical language processing

mechanisms (e.g., Weissbart et al., 2019; Heilbron et al., 2022).

While SNRword is a relatively unexplored feature in the context

of TRF literature, we chose to include it to reflect the fact

that the attended talker’s intelligibility fluctuated on a moment-

to-moment basis due to the independent variations in the

relative attended and ignored talkers’ speech intensities. The

“glimpsing” models of speech understanding have proposed

that in speech-on-speech masking scenarios, time periods with

relatively high SNR (i.e. “glimpses”) serve a privileged role in

speech perception, with information from glimpsed periods

being used to fill-in information frommasked portions of speech

(e.g., Cooke, 2006). Finally, word-onset regressors were included

in both representations primarily to help account for onset-

driven neural activity, which is known to have particularly large

amplitudes. While speech signals generally contain numerous

onsets beyond those found at word onsets, these occur largely

at faster rates (up to 50Hz; e.g., Stone et al., 2010) than

the 1–8Hz range analyzed in present work. As such, we

abstained from utilizing envelope onset regressors (e.g., half-

wave rectified envelope derivative), as they would fall outside

the passband of low-rate envelope representations, and thus

would not contribute to model prediction accuracies. This was

confirmed in a supplemental analysis, where envelope onset

representations did not provide additional predictive power in

the 1–8Hz frequency band (results not shown).

Regressors for the modeled features were sampled at

the same rate as the pre-processed EEG data (see section

“EEG preprocessing”) and constructed as follows. Word-onset

regressors contained unit-amplitude impulses time-aligned to

the onset of each word. Low frequency acoustic envelopes were

extracted by half-wave rectifying the speech stimuli and lowpass

filtering this representation below 8Hz. This representation was

then log-transformed to more closely approximate encoding of

sound level in the human auditory system. Lexical surprisal

regressors were the negative logarithm of each word’s probability

given the multi-sentence preceding context, as estimated using

the GPT-2 artificial neural network (Radford et al., 2019).

SNRword regressors were obtained by computing the ratio of

each word’s root-mean-square (RMS) of its acoustic waveform

and the RMS of background speaker’s acoustic waveform

during the same time. This was motivated by the increased

importance of momentary glimpses of high broadband SNR for

speech understanding at low target-to-masker ratios (Best et al.,

2019). As with envelopes, these ratios were log-transformed

to more closely mimic sound level encoding in the human

auditory system. Features in both surprisal and SNRword
regressors utilized the same timing as word-onset regressors, as

prior work has shown that onset timing results in reasonable

characterization of responses to higher-order speech features

(e.g., Broderick et al., 2018; Weissbart et al., 2019; Mesik et al.,

2021). Finally, non-zero regressor values for all features were

scaled to have an RMS value of 1. This was done to make TRFs

for different features more similar in amplitudes, to optimize

regularization performance. Except for the acoustic envelope, a

more detailed description of the derivation of these features can

be found in Mesik et al. (2021).

Besides their level of sparseness, the two feature sets

also differed in their modeled response latencies, as envelope

responses have been shown to occur largely at relatively low

latencies < ∼300ms (e.g., Power et al., 2012; Kong et al., 2014;

Fiedler et al., 2019), while responses to sparser, higher-order

features occur at longer latencies (e.g., Weissbart et al., 2019;

Mesik et al., 2021). Responses to features in the denser and

sparser models were therefore modeled using time intervals

between −100 to 350 and −100 to 800ms relative to feature

onsets, respectively.

Note that different features were separated into the denser

and sparser models for the practical purpose of exploring how

performances of models with distinct levels of sparseness vary

as a function of data quantity used in model fitting. However,

outside of this context, pooling features into larger models (e.g.,

containing both acoustic and linguistic features) can generally

be advantageous, especially for more accurate estimation of

feature-specific model contributions (e.g., Gillis et al., 2021; see

discussion section “Modeled feature spaces”).

2.5. EEG procedure

Data were acquired using a non-invasive 64-electrode

BioSemi ActiveTwo system (BioSemi B.V., Amsterdam, The

Netherlands), sampled at 4,096Hz. Electrodes were placed

according to the international 10–20 system. Additional external

electrodes were used to obtain activity at mastoid sites, as well as

a vertical electro-oculogram. Data from these external electrodes

were not analyzed in the present study.

2.6. EEG preprocessing

Here we include a brief overview of pre-processing steps

applied to the data. For more detailed description of pre-

processing, see Mesik et al. (2021). Unless otherwise stated, pre-

processing steps were implemented using the EEGLAB toolbox

(Delorme and Makeig, 2004; version 14.1.2b) for MATLAB.

To reduce computational load, raw data were downsampled

to 256Hz and band-pass filtered using pop_eegfiltnew function

between 1 and 80Hz using a zero-phase Hamming windowed
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sinc FIR filter (846th order, 1Hz transition band width).

Next, the data were pre-processed using the PREP pipeline

(Bigdely-Shamlo et al., 2015), in order to reduce the impact

of noisy channels on the referencing process. This procedure

involved three stages: (1) power line noise removal via multi-

taper regression, (2) iterative referencing procedure to detect

noisy channels based on abnormally high signal amplitude,

abnormally low correlations with neighboring channels, poor

predictability of channel data based on surrounding channels,

and excessive amount of high-frequency noise, and (3)

spherical-interpolation of the noisy channels detected in stage

2. For this procedure, we used the default parameters outlined

in Bigdely-Shamlo et al. (2015). Following up to 4 iterations of

stages 2–3 (or until no further noisy channels were identified),

the cleaned estimate of global mean activation was used to

reference the dataset.

Subsequently, we epoched all 1-min blocks and applied

independent component analysis (ICA; Jutten and Herault,

1991; Comon, 1994) to remove components of data

corresponding to muscle artifacts and other sources of

noise. ICA decomposes EEG signal into a set of statistically

independent components that reflect various underlying

contributors to the channel data (e.g., eye blinks, different

aspects of cognitive processing, etc.), allowing for removal

of components driven largely by nuisance factors such as

muscle activity.

The data were then band-pass filtered between 1 and 8Hz

using a Chebyshev type 2 filter (80 dB attenuation below

0.5Hz and above 9Hz, with 1 dB band-pass ripple), applied

with the filtfilt function in MATLAB. This was done given the

existing evidence that cortical speech processing mechanisms

track speech predominantly via low-frequency dynamics in the

1–8Hz range (e.g., Ding and Simon, 2012; Zion Golumbic

et al., 2013). Finally, the data were transformed into z-scores

to account for variability in overall response amplitudes due

to inter-subject variability in nuisance factors such as skull

thickness. Data from the first block of each run were excluded

from analysis due to a small subset of participants accidentally

confusing the attended and ignored speakers in the initial block

(this became apparent during behavioral task following the first

block, which pertained to the to-be-attended story).

2.7. TRF analyses

The time courses of speech-evoked responses, or TRFs, were

extracted from the pre-processed EEG data using regularized

linear regression (i.e., ridge regression), implemented via the

mTRF Toolbox (Crosse et al., 2016, version 2.3). Briefly, TRFs

are estimated by regressing a set of n time-lagged copies of the

time series of a given speech feature (e.g., acoustic envelope)

against the EEG time course at m channels. This results in m

separate TRFs, each representing how the response at a given

electrode site is affected at the n time lags relative to that feature’s

presentation times. This procedure can be simultaneously

applied to multiple features, enabling the decomposition of

EEG signals into contributions from different stages of speech

processing (e.g., acoustic vs. semantic processing). Specific to

our stimulus representations (see section “Modeled speech

features”), fitting the denser and sparser models to signals from

each of the 64 electrodes resulted in estimation of 234 and 696

beta coefficients, respectively (Denser: 2 features× 117 samples,

i.e., time lags between −100 and 350ms; Sparser: 3 features ×

232 samples, i.e., time lags between−100 and 800 ms).

Due to the non-white spectral content of speech signals,

the TRF estimation procedure is prone to high degree of

variance in the resulting TRFs (Crosse et al., 2016). Regularized

(ridge) regression introduces a “smoothing” bias into TRF

estimation by penalizing large regression coefficients, resulting

in the reduction of this (undesirable) variance. Note that other

methods of TRF estimation procedures, such as “boosting”

(David et al., 2007; Brodbeck et al., 2021), rely on alternative

approaches to regularization. These alternative methods were

beyond the scope of this work, although recent work directly

comparing these methods suggests that they typically produce

highly similar results (Kulasingham and Simon, 2023).

To minimize overfitting, the regression procedure was

implemented using leave-one-trial-out cross-validation in which

all-but-one (training) trials or subjects (see sections “Subject-

specific analyses” and “Generic subject analyses” for details) were

used to estimate the TRFs, and the remaining held-out (test)

trial/subject was used to evaluate the prediction accuracy of the

estimated model parameters. In the fitting stage of each cross-

validation loop, the data were first used to select the optimal

regularization (ridge) parameter λ. This was done via a separate

leave-one-out cross-validation loop utilizing only the training

trials. In each of these cross-validation folds, the model was

fit using a range of different λ parameter values and evaluated

by predicting the data from the left-out trial. The prediction

accuracies for each λ value were then averaged across all cross-

validation folds and electrodes. The λ corresponding to the

highest average prediction accuracy was used in the final fit to

the entire training set. The resulting fit was then evaluated on

the held-out “test” trial or subject to determine the ability of the

TRF model to predict EEG responses to speech. The Pearson’s

correlation between the predicted and the actual data represents

the model’s overall prediction accuracy, a key measure of model

performance. This procedure was repeated j-times, where j

denotes the number of trials or subjects, each time holding out

data from a different trial/subject, resulting in j sets of TRF

estimates and prediction accuracies.

In addition to overall model prediction accuracies, we

further estimated the degree to which each speech feature

(see section “Modeled speech features”) contributed to the

model performance. Briefly, this was done by comparing the

full model’s prediction accuracy to “reduced” model prediction
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accuracies, which were obtained by fitting models in which

individual features were excluded. For example, to estimate

contribution of envelope in a model containing envelope and

word onsets, we computed the prediction accuracy difference

between model containing both features, to model containing

only word onsets. In other words, the additional predictive

power of a full model over a reduced model can be interpreted as

reflecting the contribution of the extra feature present in the full

model. In the remainder of this manuscript, these differentials

are referred to as feature-specific model contributions.

The main goal of the present work was to explore how

estimates of cortical responses to a range of speech features are

influenced by the quantity of EEG data included in the analysis.

To explore this question, we iteratively applied identical sets of

analyses to progressively larger amounts of the pre-processed

EEG data. This was done via two distinct analysis approaches:

(1) subject-specific analyses, where data from each participant

was fit independently, and (2) generic analyses, where data from

multiple subjects were fit jointly. Below we provide details of

each analysis approach.

2.7.1. Subject-specific analyses

The subject-specific analyses involved repeated TRF

estimation using data from individual subjects with

progressively larger amounts of their data. Cross-validated

fitting procedure was repeated with 11 distinct data quantities

(3, 4, 6, 8, 10, 14, 18, 24, 30, 36, and 42min of data), with data

in each analysis selected in chronological order to reflect real

constraints of data collection. While this may potentially bias

analysis outcomes via temporally systematic phenomena such

as fatigue or adaptation, such order effects are a natural aspect

of most experiments and thus reflect realistic data acquisition

scenarios. The data quantities in this, as well as generic analyses

(see section “Generic subject analyses”), were chosen to be

spaced quasi-logarithmically to more densely sample changes in

model performance at relatively low data quantities, under the

assumption that at larger data quantities performance would

begin to saturate. Group-level analyses were performed using

each subject’s average TRFs and prediction accuracies across

all cross-validation folds (see section “Statistical analyses of

subject-specific models”).

2.7.2. Generic subject analyses

In generic subject analyses, we repeatedly estimated TRFs

using data pooled across progressively larger number of subjects.

Cross-validatedmodel fitting was again repeated with 11 distinct

numbers of subjects (3, 4, 6, 8, 10, 14, 18, 24, 30, 36, and 41

subjects) at three distinct data acquisition durations per subject

(2, 4, and 8min), yielding 33 unique analysis outputs per model.

The data per subject was constrained both because of memory

limitations for analyses involving larger numbers of subjects,

but also to explore the extent to which small amount of data

per subject can support accurate TRF estimation and robust

prediction accuracies.

A notable limitation of generic analyses, as implemented

here, is that all of the data is utilized within a single cross-

validation procedure, resulting in a single set of average

prediction accuracy and TRF estimates. While individual subject

prediction accuracies from cross-validation can be used for

group level statistics, these statistics are highly susceptible to

noise from outlier data when utilizing small numbers of subjects.

As such, to assess the central tendencies of generic analysis

performance more accurately as a function of subject count, we

utilized a resampling approach to obtain distributions of model

performances for each sample size. Briefly, for each analysis

(i.e., sample size), we randomly resampled, with replacement,

participant data 20 times, and used leave-one-subject-out cross-

validation to fit each such resampled data set with a TRF model.

We then used the mean TRFs and prediction accuracies across

the cross-validation folds for further analyses, yielding 20 sets

of TRFs and prediction accuracies for each sample size, model,

and per-subject data quantity. Note that the 20 resamplings

were performed independently at each sample size, rather than

being done in a dependent manner via incremental sampling

(with increasing sample size) of more participants into the to-

be-analyzed data pool. To obtain maximally comparable full

and reduced model performances for estimating feature-specific

model contributions (see section “TRF analyses,” paragraph

4), we utilized identical sets of resampling indices (i.e., same

participant data) for full and reduced models.

To aid statistical evaluation of the analyses (see section

“Statistical analyses of generic models”) we corrected the

model prediction accuracies using estimates of the noise floor,

i.e., range of prediction accuracies that may be expected by

chance, by mismatching regressor-data pairings and computing

their corresponding prediction accuracies. This was done at

the level of each cross-validation fold (i.e., held-out subject),

where we computed prediction accuracies for each 1-min

data segment for all mismatched regressor-data pairings. Each

subject’s true prediction accuracy was then noise-floor corrected

by subtracting the average mismatched prediction accuracy.

Results of the 20 resampling analyses were then interpreted

as a distribution of mean TRFs and prediction accuracies

expected for a given sample size. Because each of the 20

iterations corresponded to 5% of the analyses, results in which

all 20 analyses showed consistent results (e.g., same sign of

prediction accuracies) were interpreted as statistically significant

(albeit uncorrected for multiple comparisons). To allow for

more reliable statistical inference, bootstrap-based analyses are

typically performed ≥1,000 times to more precisely estimate

the degree of overlap between the distributions of parameter

estimates for different conditions. However, because the goal of

this work was to demonstrate general behavior of TRF analyses

rather than to draw strong statistical conclusions about our
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data, and the computational load of running≥1,000 resamplings

for each of the 66 analyses (2 models x 11 subject counts

x 3 data quantities/subject) would have been very high, we

chose to perform the more modest bootstrap procedure with

20 iterations.

2.7.3. Regions of interest

Due to the relatively low spatial resolution of EEG data and

for simplicity of result presentation, we chose to limit the spatial

dimensionality of the results to two regions of interest (ROIs),

the frontal and parietal ROIs. These ROIs were chosen based

on the peak locations of activation for the two models. Both

ROIs contained 13 electrodes, which symmetrically surrounded

electrode Fz in the frontal ROI (i.e., AF3, AFz, AF4, F3, F1,

Fz, F2, F4, FC3, FC1, FCz, FC2, and FC4), and electrode Pz

in the parietal ROI (i.e., CP3, CP1, CPz, CP2, CP4, P3, P1, Pz,

P2, P4, PO3, Poz, and PO4). ROI-specific TRFs and prediction

accuracies were computed by averaging TRF analysis results

from these sets of electrodes (i.e., models were initially fit to all 64

electrodes). All statistical analyses were performed on these ROI-

averaged results. Note that the choice of ROI-based analyses

was driven primarily by the simplicity of data presentation,

for educational purposes. TRFs of individual features may

potentially perform better at specific electrode sites not directly

analyzed here.

2.8. Statistical analysis

2.8.1. Statistical analyses of subject-specific
models

The primary goal of this work was to describe general

patterns of TRF model behavior as a function of data quantity

used in model fitting. For subject-specific analyses, to test

whether a given quantity of data was sufficient for the derived

TRF to yield prediction accuracies that were significantly greater

than zero, we utilized either t-tests or Wilcoxon signed-rank

test, based on the outcome of the Anderson-Darling test of

normality. These tests were conducted at the group level,

using all 41 individual prediction accuracies. To normalize the

distribution of correlation coefficients, their values were Fisher

z-transformed prior to conducting the statistical tests. Note that

statistics were not corrected for multiple comparisons, as we

treated the analysis of each data quantity as a quasi-independent

experiment, emulating the scenario where only that amount of

data was acquired. Because analyses on different data quantities

were not independent due to utilizing partially overlapping

data, we abstained from direct pairwise comparisons of model

prediction accuracies, and instead focused on more general

description of model performance patterns (e.g., trajectory of

mean model performance and between-subject variance) as

a function of data quantity. However, in order to provide a

statistical description of linear changes in model performance

as a function of data quantity, we fit linear mixed effects

models (LMM) to the prediction accuracy results (as well as

each feature’s unique model fit contributions), with a fixed

effects of training data quantity, ROI, and a random effect of

participant identification number. In all LMM analyses, training

data quantity was treated as a continuous numeric variable,

while ROI was treated as a categorical variable. Significance of

these models were assessed using LMM ANOVA (type 3) and

Satterthwaite approximation for degrees of freedom.

We additionally used the subject-specific model fits to

explore the relationship between the size of participant pool and

the data quantity per subject required to achieve statistically

reliable detection of cortical tracking of attended speech for

different significance levels. To do this, we utilized subject pool

sizes ranging from 2 to 41 subjects, and for each pool size,

we resampled with replacement the prediction accuracies from

analyses of each training data quantity (i.e., minutes of data per

participant) 10,000 times. Within these samples, we conducted

t-tests on results derived from each of the 11 data quantities per

subject, searching for the minimum data quantity for which at

least 80% of the 10,000 analyses exceeded the t-score thresholds

corresponding to p < 0.05, p < 0.01, and p < 0.001. For these

analyses we used parametric statistics, although non-parametric

tests resulted in similar patterns of results.

2.8.2. Statistical analyses of generic models

For generic analyses, we estimated prediction accuracy noise

floors as described in section “Generic subject analyses.” Within

each cross-validation fold of each resampling analysis, we

computed the difference between the true prediction accuracy

and the “mismatched” prediction accuracy estimated using

mismatched regressor-data pairings for the held-out participant.

Thus, the distribution of these corrected prediction accuracies

across resampling analyses reflects the proportion of times in

which the true regressor-data pairings enabled more accurate

data predictions than mismatched-pairings. Given that our

analyses included 20 resamplings, only analyses where all data

points exceeded the 0-point were deemed to be significant (i.e.,

since 1/20 corresponds to 5%). Note that noise floor correction

in generic analyses was motivated by the possibility that very

small positive prediction accuracies could occur by chance,

making it difficult to determine the proportion of analyses

with reliably elevated prediction accuracies. This correction was

particularly important given our use of only 20 resampling

analyses. In principle, this approach could also be used in

subject-specific analyses. However, we abstained from the use of

noise floors in subject-specific analyses because of their greater

statistical power (i.e., more independent data points), our use

of cross-validation, and the observation that in generic analyses,

noise floor prediction accuracies were concentrated around zero.
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To test for linear increase in prediction accuracy as a

function of number of participants used in generic analyses, we

fit linear functions to the patterns of generic model prediction

accuracies. Due to the dependent nature of the 20 resampled

estimates of prediction accuracies at each training data quantity,

we used a separate bootstrap analysis approach to establish

the likelihood of observing a positive slope relating training

data quantity and prediction accuracies. Specifically, on each

bootstrap iteration we randomly selected one result from the

pool of resampling analyses for each training data quantity,

and fit a two-parameter linear function (slope and intercept)

to the obtained series of 11 prediction accuracies. We repeated

this procedure 1,000 times, each time storing the slope of the

linear fit. Finally, we deemed the result of each such analysis

significant if >95% of obtained slopes were greater than zero.

This procedure was done separately for noise floor-corrected

overall prediction accuracies at each training data quantity per

subject, as well as the corresponding feature-specific model

contributions, of both the denser and sparser models.

For each model type and feature set, we assessed the

similarity of TRFs derived using different data quantities by

computing pairwise Pearson’s correlations between time courses

of the TRFs. Additionally, we assessed the extent to which

subject-specific and generic analyses resulted in estimation

of morphologically similar TRFs by computing Pearson’s

correlations between these TRFs. For these analyses, we focused

onmodels that utilized the greatest amounts ofminutes (subject-

specific analyses) and subjects (generic analyses). Because edge

artifacts are commonly observed in beginning and end TRF

samples, all TRFs were trimmed by 25-ms at each end when

computing TRF similarities, as well as for visualization purposes.

3. Results

We explored the effects of training data quantity on

performance of TRF models trained and evaluated on data

from individual subjects (section “Subject-specific analyses”), or

trained on aggregate data of multiple subjects and evaluated on

different subjects (section “Generic analyses”). Below we discuss

each modeling approach in terms of its prediction accuracies,

feature-specific model contributions, and the recovered TRFs.

3.1. Subject-specific analyses

In subject-specific analyses, each participant’s data was fit

individually using each of the two models and evaluated on

held-out data from the same participant. Group-level pattern

of overall model prediction accuracies as a function of data

quantity is depicted in Figure 1 for the denser (Figure 1A) and

sparser (Figure 1B) models. In general, increases in training

data quantity resulted in monotonic increases in performance

for both models (LMM ANOVA: effect of data quantity

at p < 0.001 for both models; see Supplementary Table 1),

along with reductions in inter-subject variability in prediction

accuracies. With 41 participants used in these analyses, both

models reached high degree of statistical significance with

as little as 5min of data per participant. However, at low

training data quantities (e.g., <10min), a subset of participants

exhibited prediction accuracies (i.e., correlations between the

predicted and actual EEG data) that did not exceed 0. At

larger data quantities (e.g., >20min), prediction accuracy

distributions were elevated and largely did not span the value

of zero.

Although overall prediction accuracy is a key metric in

evaluating TRF model performance, it does not reflect the

extent to which individual features in the model uniquely

contribute to this accuracy. To assess the unique contributions

from individual features, we compared the full model prediction

accuracies to those estimated using reduced models containing

all-but-one feature. Model fit contributions from individual

features (i.e., change in prediction accuracy due to adding a

given feature) as a function of training data quantity are depicted

in Figure 2 for the denser and Figure 3 for the sparser models,

respectively. In contrast to overall prediction accuracies, feature-

specific contributions showed a less pronounced increase

as a function of data quantity used in model fitting (see

Supplementary Table 2), especially in the case of the sparser

model, although generally models trained with more data

allowed for more robust detection of unique contributions

of individual features. Notably, the dense envelope feature

(Figure 2, bottom) had substantially higher model prediction

accuracies than either the onset feature in the dense model,

or any of the sparse features (Figure 3). Accordingly, highly

significant detection of unique contribution of acoustic envelope

was possible with mere minutes of data. In the sparser model,

highly significant model fit contributions were observed only

at relatively large training data quantities (> ∼17min) for the

word onset feature frontally, and lexical surprisal parietally.

For SNRword, weakly significant contributions were observed

sporadically, with no systematic relation to data quantity. In

fact, at very low data quantities, inclusion of SNRword in the

model led to a small decrease in prediction accuracies, likely

due to the full model having too many parameters relative to

the training data quantity. As such, with the available data

quantity and the chosen method for estimating feature-specific

model contributions, we were only able to detect reliable model

contributions for two out of three features of the sparser model.

In addition to prediction accuracies, a key output of TRF

models are the TRFs themselves: the impulse responses to

each of the modeled features. Figure 4 shows TRFs for the

denser model and Figure 5 shows TRFs for the sparser model.

Mirroring the high prediction accuracies and feature-specific

model contributions, the denser model TRFs (Figure 4) showed

a high degree of morphological similarity across the different
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FIGURE 1

Overall subject-specific model prediction accuracies for the denser (A; onset and envelope features) and sparser (B; onset, surprisal, and

SNRword features) models displayed as a function of training data quantity (data acquisition duration). The violin plots depict the distribution of

these values for all 41 participants, with a box plot depiction (interquartile range) shown within each violin. Red circles denote median values of

the distributions. The uncorrected significance levels of each statical comparison against zero are displayed at the top of each plot: *p < 0.05,

**p < 0.01, ***p < 0.001. To improve readability, the significance markers are o�set slightly to the left of their respective violins.

data amounts, albeit with a systematic increase in amplitudes

seen with increasing data quantity (for easier comparison across

data quantities, see Supplementary Figure 1). In line with its

lower feature-specific model contributions, the sparser model

TRFs (Figure 4; Supplementary Figure 2) generally exhibited

greater noisiness at low data quantities, with TRFs reaching

stable form once substantial data quantity (>17min) was

used in model fitting. These qualitative observations were

supported using correlational comparisons of TRF time

courses derived using different training data quantities (see

Supplementary Figures 3, 4 for correlation matrices for denser

and sparse models, respectively). While there was a trend for

lower TRF amplitudes with increasing data quantity, this pattern

is opposite to that seen for the denser model and generally

appears less systematic than that seen in Figure 4. Additionally,

for both the denser and sparser models, RMS amplitudes of the

TRFs showed significant positive correlations with the feature-

specific model contributions, particularly in models trained on

large data quantities (data not shown). This supports the often

assumed association between larger TRF amplitudes reflecting

higher predictive power.

The systematic increase in TRF amplitudes seen in Figure 4

could, in principle, reflect a genuine neural phenomenon related

to the chronological inclusion of data into models trained

on more data. For example, it could reflect improved neural

tracking of the target audiobook over the course of the study

session. However, examination of the regularization parameter

(Figure 6A), which controls the penalty assigned to large TRF

values during the fitting procedure, indicates a systematic

decrease in this parameter with increasing data quantity. In

other words, models fitted to greater data quantity penalized

large TRF amplitudes less, likely resulting in the systematic
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FIGURE 2

Feature-specific model fit contributions as a function of training data quantity for the denser model. Model fit contributions reflect the unique

contribution of each feature to the overall prediction accuracy of the full model, compared to reduced models in which those features were

excluded. Note the di�erent scales of the contributions for the Onset (Upper row) and Envelope (Lower row) features, with the latter fit

contributions being about an order of magnitude larger than the former. To facilitate visualization of the central portion of the distributions,

upper and lower limits of some of the violin plots for the “Onset” feature are truncated. Asterisks denote significance levels as in Figure 1.

increase in their amplitudes seen in Figure 4. This interpretation

was supported by a supplemental analysis (not shown), in

which we fit the denser TRF model to data selected using a

6-min moving window to assess whether the TRF amplitude

changes over the course of the study session. This analysis

revealed virtually identical TRF amplitudes in all analysis

windows, lending support to the effect in Figure 4 being entirely

technical in nature. Regularization parameter of the sparser

model (Figure 6B) showed a similar systematic decrease with

increasing data quantity without the corresponding increase

in TRF amplitudes (Figure 5). This may reflect the overall

greater noisiness in these TRFs at low data quantities (see

Supplementary Figure 4), as well as greater similarity in general

TRF amplitudes across the three features (in contrast to the

larger amplitude discrepancy between onset and envelope TRFs

seen in Figure 4).

Although utilization of data from all participants for

analyses in Figures 1–6 provides the most accurate estimates

of the average model performance for different training data

quantities, it is less informative about the statistical performance

of our TRF models with more limited samples. To provide

a more complete description of how subject-specific models

perform under more limited sample sizes, we performed a

resampling analysis using subsets of participant from our 41-

subject pool. More specifically, for each participant pool ranging

from 2 to 41 participants, we resampled (with replacement)

the subject-specific result pool 10,000-times at each of the

data quantities and determined how many minutes of data

per participants were required to reach significance in at least

80% of analyses at three commonly used significance thresholds

(p < 0.05, 0.01, and 0.001). The results of these analyses

are shown in Figure 7 for overall prediction accuracy, and

Figure 8 for feature-specific model contributions. These results

show the expected downward sloping pattern whereby larger

participant pools require smaller amount of data per participant.

Additionally, these results mirror those in Figures 1–3 in that

the sparser model generally requires more data per participant,

and capturing significant feature-specific model contributions

requires both more participants and more data per participant.

In fact, across the features in the sparse model, resampling

analyses revealed that model contributions could only be reliably

detected for the word onset feature frontally, and for lexical

surprisal frontally and parietally (Figure 8B; note that frontal

surprisal contributions are not shown, as these were only

detectable with 40+ participants at 17+ min of data, at the

lowest significance level of p < 0.05). Finally, while patterns of

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.963629
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mesik and Wojtczak 10.3389/fnins.2022.963629

FIGURE 3

Feature-specific model fit contributions as a function of training data quantity for the sparser model. The details of data visualization are as in

Figure 2, and asterisks denote significance levels as in Figure 1.

minimum data per participant required to reach significance

from Figures 1–3 (i.e., when n = 41) are similar to those in

Figures 7, 8 (rightmost data points in each plot), in some cases

the exact minutes per participants (or significance levels) don’t

match between the two, since the true participant sample in

Figures 1–3 corresponded to just one data point within the larger

bootstrap distribution used for Figures 7, 8.

3.2. Generic analyses

In the second set of analyses, we explored the effects of

subject count on performance of generic analyses using the

same two models (with denser and sparser features; section

“Modeled speech features”) used for subject-specific analyses

(section “Subject-specific analyses”). In contrast to subject-

specific analyses, generic models are simultaneously fit to

data from multiple participants and evaluated on their ability

to predict data of held-out participants. Due to the higher

computational load of fitting models to multiple subjects

simultaneously, these models were trained and tested on 2, 4,

and 8min of data per participant. Figures 9–14 depict results of

generic analyses analogous to those shown in Figures 1–6 for

subject-specific analyses. Note that the two sets of results are

not directly comparable, as the latter results depict distributions

over, and averages of, the central tendency of 20 resampled

generic analyses, rather than distributions of individual subject

results. The lower variability in these analyses is therefore not
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FIGURE 4

Group-averaged TRF time courses of model beta coe�cients for onset (top row) and envelope (bottom row) features from the denser model in

frontal (left column) and parietal (right column) ROIs. TRFs estimated using di�erent amounts of data are depicted in di�erent colors (see

legend above the lower right plot). The small sharp deflections in envelope response around t = 0ms reflect mild leakage of electrical artifact

from earphones into the EEG signal. See also heatmap depiction of the TRFs in Supplementary Figure 1 for easier comparison across di�erent

data quantities, and Supplementary Figure 3 for correlation matrices comparing TRF morphologies across di�erent data quantities.

directly indicative of generic analyses performing better than

subject-specific analyses. The resampling approach used here

was important due to inherent noisiness and strong influence

of outlier data in analyzing small subject counts (see section

“Generic subject analyses”).

Qualitatively, the generic model prediction accuracies

(Figure 9) as well as model fit contributions (Figures 10, 11) both

exhibited apparent monotonically increasing performance and

decreasing variability as the number of participants used to train

the model increased. Because these plots depict distributions

of average performances across 20 resampling analyses, only

subject counts for which the entire distribution is elevated

above zero can be deemed as reliably achieving significant non-

zero performance. Quantitatively, however, bootstrap analyses

of the linear relationship between the subject pool size used in

model fitting and prediction accuracies (see section “Statistical

analyses of generic models”) only revealed a significant linear

increase in overall prediction accuracies of the sparser model.

None of the feature-specific model contributions in any ROI

showed a significant relationship with the subject pool size.

This is likely driven by the high variance of prediction

accuracies with small numbers of participants. Nevertheless,

it is evident from Figures 9–11 that model performance did

improve with increasing participant pool, since significant

prediction accuracies and feature-specific contributions were

more consistently seen with increasing participant pools.

Depending on the ROI, about 5–7 participants were needed

to achieve reliably elevated overall model prediction accuracy,

while substantially greater number of participants were needed

to observe elevated feature-specific model contributions for

different features in the denser and sparser models, respectively.

A notable divergence between subject-specific and generic

results was that in the former analyses, feature-specific

contribution of surprisal but not SNRword reached significance

(Figure 3), whereas in the latter (Figure 11), SNRword exhibited

significant model contributions that were detected in a greater

number of analyses than contributions of surprisal.

Interestingly, comparisons of 2-, 4-, and 8-min of data

per subject used in model fitting (different boxplot fill colors

in each plot) made only a modest difference in performance,
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FIGURE 5

Group-averaged TRF time courses of model beta coe�cients for onset (top row), surprisal (middle row), and SNRword (bottom row) features

from the sparser model in frontal (left column) and parietal (right column) ROIs, as a function of training data quantity (see legend in bottom

right). Note that these TRFs contain a broader range of latencies than those in Figure 3 due to these features engaging higher-order processing,

reflected in key TRF features such as the N400 response seen in parietal ROI. See also heatmap depiction of the TRFs in Supplementary Figure 2

for easier comparison across di�erent data quantities, and Supplementary Figure 4 for correlation matrices comparing TRF morphologies across

di�erent data quantities.

with the models trained on more data per participant generally

producing tighter performance distributions, and reaching

significance with fewer participants. However, it is noteworthy

that the prediction accuracies and feature-specific contributions

of the sparse model (Figures 9B, 11, respectively) exhibited a

trend of decreasing peak prediction accuracies with increasing

per-subject amount of training data (e.g., 8-min/subject models

had slightly lower mean performance than 2-min/subject

models, especially with larger participant pools). The cause of

this is unclear and may warrant future exploration via analyses

of different data (and feature) sets.

TRFs derived from denser generic models, averaged

across the 20 resampling analyses, are depicted in Figure 12

(for easier comparison across data quantities, see heatmaps

in Supplementary Figures 5–7). These TRFs were highly

stereotypical across different subject pool sizes and the three

per-subject data quantities (see Supplementary Figures 11–13

for correlation matrices of pairwise comparisons of TRFs). In
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FIGURE 6

Distributions of subject-specific regularization parameters, lambda, from the denser (A) and sparser (B) models, as a function of training data

quantity. Red horizontal lines within each box represent the median value while the lower and upper bounds of the blue boxes depict the 25th

and 75th percentiles of the distributions. To aid the visualization of where bulk of the data points were, unusually large parameters (for a given

data quantity) were marked as outliers with red “+” symbols. “a.u.” denotes arbitrary units.

line with subject-specific analyses, there was some evidence of

increasing TRF amplitudes as the overall amount of data used to

fit the model increased (i.e., with increasing number of subjects;

see TRFs depicted by different colors in each subplot), although

for envelope TRFs this effect diminished with increasing per-

subject data quantities. This general patterns of increasing TRF

amplitudes was again accompanied by a systematic decrease in

the regularization parameters (Figure 14A). Notably, because

most generic models were trained on greater total amount of

data than any of the subject-specific models (for n > 20, n

> 10, and n > 5, in models using 2-, 4-, and 8-min of data

per subject, respectively), the upper bound of regularization

parameter values seen in generic analyses was substantially

lower than those seen in subject-specific analyses. These

differences likely account for the slightly weaker envelope TRF

amplitude increases as a function of training data quantity in

generic analyses, compared to subject-specific analyses.

TRFs from the sparser model (Figure 13;

Supplementary Figures 8–10) also exhibited a high degree

of similarity for models trained on different amounts of

data, although they generally show slightly higher degree of

noisiness across different sample sizes than those derived

using the denser model (except for dense model’s parietal

onset TRFs; see Supplementary Figures 14–16). Mirroring

the slight decrease in prediction accuracies with increasing

per-subject data quantity (Figures 9B, 11), there was an

analogous decrease in TRF amplitudes (Figure 13, left

vs. right pairs of columns). At the same time, we also

observed a pattern of slight increases in TRF amplitudes

for models trained on more participants (i.e., different

plot colors in each subplot of Figure 13; see heatmaps in

Supplementary Figures 8–10), mirroring the decreasing

amplitudes of regularization parameters in these analyses

(Figure 14B). We speculate that this apparently paradoxical

discrepancy between effects of more data per participant vs.

more participants could reflect tradeoff between phenomena

driven by cognitive (e.g., waning attention or increased

adaptation) vs. technical (i.e., decreasing regularization

parameter with more data) factors.

3.3. Similarity between subject-specific
and generic TRFs

While subject-specific and generic analyses produced

qualitatively similar TRFs (Figures 4, 5 vs. Figures 12, 13),

we sought to assess this similarity quantitatively using a

correlation analysis (Figure 15). To this end, we focused on

TRFs derived from the largest quantity of data in each analysis

(including generic TRFs based on each of 2-, 4-, and 8-min

of data per subject), as these TRFs most accurately capture

the underlying neural responses to each of the features. For

each feature, we computed the Pearson’s correlation between

TRFs derived in subject-specific and generic analyses. This

analysis confirmed that in vast majority of cases, the two

analyses produce highly similar TRFs, only seldom deviating

below r = 0.75, predominantly for sparser features in ROIs

with relatively low TRF amplitudes (e.g., parietal onset

and frontal surprisal responses). These results demonstrate

that at least for features modeled here, subject-specific
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FIGURE 7

The amount of training data per participant required to reach significant overall prediction accuracy as a function of participant sample size for

the denser (A) and sparser (B) TRF models in frontal (left column) and parietal (right column) ROIs. Di�erent line colors represent di�erent

significance levels (see legend in lower right). For visualization purposes, minutes of data are shown on a log axis. The discrete steps along the

y-axis stem from the fact that subject-specific analyses were run using 11 discrete data quantities per subject, the results of which were used in

this resampling analysis. Therefore, values on the plots represent approximate threshold data quantities needed for each sample size.

and generic analyses enable extraction of highly similar

neural responses.

4. Discussion

4.1. Summary of goals and findings

TRF analyses (Lalor and Foxe, 2010; Crosse et al., 2016)

of EEG and MEG data are increasingly popular in studies

of cortical responses to continuous, naturalistic stimuli such

as speech (e.g., Di Liberto et al., 2015; Broderick et al.,

2018; Weissbart et al., 2019) and music (e.g., Di Liberto

et al., 2020; Marion et al., 2021). However, relatively few

informational and educational resources demonstrating the

behavior of these analyses under various constraints exist. Such

resources allow researchers who are new to TRF analyses or

considering adopting them to gain key intuition and insight

to guide their study design. The goal of the present work

is to demonstrate how quantity of collected data, a key

parameter in experimental design, influences TRF analyses of

attended speech representations in the context of a dual-talker

continuous speech paradigm. We addressed this question using

a previously collected dataset (Mesik et al., 2021) using two

types of analyses: (1) Subject-specific analyses in which TRF

models are independently fit to each participant’s data, and

(2) Generic analyses in which data from multiple participants

are jointly used to fit a TRF model. For each analysis type we

fit two different models, one with temporally denser features

(acoustic envelope model), and one with temporally sparser
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FIGURE 8

Amount of training data per participant required to reach significant feature-specific contributions to model prediction accuracies, as a function

of participant sample size for the denser (A) and sparser (B) TRF models in frontal (left column) and parietal (right column) ROIs. Note that for the

sparser model, only feature-ROI combinations where significant feature-specific model contributions could be achieved are shown (except for

surprisal in the frontal ROI, where p < 0.05 could be achieved with 40+ participants at 17+ min of data). Line colors represent di�erent

significance levels (see legend in lower right).

features (surprisal and SNRword model). These models were fit

repeatedly to explore how the amount of data per participant and

number of participants influence model prediction accuracies

in subject-specific and generic analyses, respectively. Finally, we

used correlation analysis to compare the similarity of the TRFs

derived in the two analysis approaches.

It is unsurprising that fitting models to more data resulted

in monotonically improving prediction accuracies and more
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FIGURE 9

Noise floor-corrected generic model prediction accuracy distributions as a function of training subject pool size, for denser (A) and sparser (B)

models with 2-, 4-, and 8-min of training data per subject (violin color; see legend in the lower right plot). The distributions depicted by violin

plots represent collection of mean prediction accuracies across 20 resampling analyses (instead of across-subject variability seen in Figures 1, 2).

As such, only subject counts with distributions with no overlap with zero are deemed to be significant at p < 0.05 (uncorrected), as indicated by

asterisks above the respective violins. To improve readability, the significance markers are o�set slightly to the left of their respective violins. Note

that for each triplet of violins, the training subject pool is fixed with a value indicated by the x-tick label below the central violin of the triplet.

FIGURE 10

Feature-specific generic model contributions as a function of training subject pool size, for the denser model, with 2-, 4-, and 8-min of training

data per subject (violin color; see legend in the upper right plot). Asterisks denote significance levels as in Figure 9.
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FIGURE 11

Feature-specific generic model contributions as a function of training subject pool size, for the sparser model, with 2-, 4-, and 8-min of training

data per subject (violin color; see legend in the lower left plot). Asterisks denote significance levels as in Figure 9.

reliable TRF estimates. However, a closer examination of our

results revealed several noteworthy phenomena. First, across

both types of analyses, significant prediction accuracies could

be achieved with just minutes of data per participant (Figures 1,

9), although the denser model with envelope features had on

average higher prediction accuracies than the sparser model

with word-level features. Second, in analyses of feature-specific

contributions to the overall prediction accuracies (Figures 2,

3, 10, 11), we observed a marked dissociation between

denser and sparser models. Specifically, feature-specific model

contributions were generally much smaller for sparser features,

and capturing these model contributions required much greater

amount of training data. However, it is noteworthy that in

generic analyses, even 2–4min of data per participant were, in

some feature-ROI combinations, enough to reveal these feature-

specific model contributions (Figure 11). This demonstrates

that signals related to sparse features may have sufficient

signal-to-noise ratio to be detected even with relatively small

amounts of data, provided that the model is trained on a

sufficiently large dataset. Third, although TRFs derived with

different amounts of data generally showed a high degree of

time-domain consistency, we observed a systematic increase

in TRF amplitudes with increasing data quantity (Figures 4, 5,

12, 13). This pattern was mirrored by systematic decreases in

the regularization parameter (Figures 6, 14), which reflects the

degree to which larger TRF amplitudes are penalized during

model fitting. Finally, TRF patterns derived using subject-

specific and generic analyses were highly similar (Figure 15),

demonstrating that the two analyses reveal largely identical

signatures of cortical speech processing.

4.2. Relationship to past literature

While most existing works utilizing TRF methods have used

these tools to address specific questions about the nature of

speech and music processing, only a handful of studies have

explored the methodology itself. In general, the latter works
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FIGURE 12

Average generic model TRF time courses for onset (top row) and envelope (bottom row) features from the denser model trained with 2-min

(left pair of columns), 4-min (middle pair of columns), and 8-min (right pair of columns) of data per subject. TRFs estimated using di�erent

amounts of data are depicted in di�erent colors (see legend at the bottom of the figure). Note that the sharp deflections in envelope response

around t = 0ms reflect mild leakage of electrical artifact from earphones into the EEG signal.

FIGURE 13

Average generic model TRF time courses for onset (top row), surprisal (middle row), and SNRword (bottom row) features from the sparser model

trained with 2-min (left pair of columns), 4-min (middle pair of columns), and 8-min (right pair of columns) of data per subject. TRFs estimated

using di�erent amounts of data are depicted in di�erent colors (see legend at the bottom of the figure).

focused on bigger picture overview of TRF methods and their

utility in speech processing (Crosse et al., 2016; Sassenhagen,

2019), as well as on best practices in utilizing these methods

in studies of special and clinical populations (Crosse et al.,

2021). Additionally, Wong et al. (2018) explored performance

of a range of regularization approaches for fitting forward and
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FIGURE 14

Distributions of generic model regularization parameters, lambda, from the denser (A) and sparser (B) models, as a function of training data

quantity. Details of visualization are as in Figure 6.

backward models in the context of a growing body of attention

decoding literature.

Most closely related to the present work, Di Liberto

and Lalor (2017) investigated the effect of data quantity on

performance of subject-specific and generic forward models in

the context of phoneme-level speech processing. Similar to our

results, Di Liberto demonstrated that the ability of subject-

specific models to capture responses related to the phonemic

processing improved with greater amount of data, with models

requiring about 30min of data to do so reliably. Their generic

model derived via averaging of subject-specific models was able

to capture phonemic responses with 10-min of data, with no

further improvement when more data per subject was used.

While the prediction accuracies of our generic models improved

with increasing subject pool, our results are consistent with

those of Di Liberto in that we observed neither strong evidence

of increases in generic model performance with increasing

amount of data per participant, nor substantial increases in

the mean feature-specific prediction accuracies with increasing

subject pool. Nevertheless, utilizing larger training subject pools

did result in decreased variance in the estimates of these

contributions, and hence increased statistical power for their

detection. Overall, our results agree with those of Di Liberto

in that generic models can provide significant predictive power

even when they are trained and evaluated on relatively small

amounts of data per participant (2-/4-min and 10-min in our

and Di Liberto’s studies, respectively).

4.3. Utility of subject-specific and generic
TRF analyses

Given that generic analyses demonstrated superior

performance to subject-specific analyses when small amounts of

data per participant was available, it is important to consider the

scenarios for which each analysis approach may be appropriate.

Despite requiring more data per participant, subject-specific

analyses have been overwhelmingly more popular than generic

analyses in studies of speech and music processing. A key

advantage of these analyses is that for each participant, subject-

specific fits provide independent estimates of both prediction
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FIGURE 15

Similarity between average TRFs derived using subject-specific and generic analyses for features in the sparser (A) and denser (B) models. For

generic analyses, both the results from analyses utilizing 2-min (left column), 4-min (middle column), and 8-min (right column) per subject are

shown. Di�erent bar colors represent the frontal and parietal ROIs (see legend in lower left plot). Note that these analyses utilized TRFs derived

using models trained on largest amounts of data in each type of analysis, i.e., most data per subject for subject-specific analyses, and most

subjects for generic analyses.

accuracies, and the TRFs themselves, allowing for traditional

approaches to group-level statistics. Additionally, subject-

specific modeling is critically important for studies seeking

to characterize individual differences within a population,

and/or their relationship to behavioral performance or other

subject-level characteristics.

Conversely, while cross-validation used during generic

model fitting also provides independent prediction accuracies

for all participants, the TRFs from different cross-validation

folds are non-independent. Moreover, the interpretation of

prediction accuracies for individual subjects in the context

of generic analyses differs from subject-specific approach, as

they reflect the predictability of a given participant’s neural

representations by a generic model, as opposed to the overall

strength of speech representations in that participant. In other

words, it may be the case that due to individual differences

(e.g., due to anatomical variability) a particular participant’s

data may be poorly predicted by a generic model even if their

individual model could perform substantially better. However,

by capturing the shared aspects of neural processing within a

larger group, generic analyses may be particularly useful for

categorizing participants, or their mental states, which may

have important applications both in clinical diagnostics, and for

practical tools such as neuro-steered hearing aid devices. Indeed,

several studies utilizing backward models to decode attention

have demonstrated the utility of generic models, albeit with

a performance deficit relative to subject-specific models (e.g.,

Mirkovic et al., 2015; O’Sullivan et al., 2015). The potential

of generic models for clinical applications is further supported

by the key observation in the present work that they can

achieve substantial predictive power on highly limited amounts

of data per participant. However, as pointed out by Di Liberto

and Lalor (2017), generic models implicitly assume within-

group homogeneity in neural representations, which may be

particularly questionable within clinical populations (e.g., Levy

et al., 1997; Happé et al., 2006). As such, researchers need to be

cognizant about this limitation. Finally, on a practical note, one

disadvantage of generic analyses, as implemented in the present

work, is that fitting them to large datasets requires large amounts

of computational resources and time, especially when utilizing

a resampling approach to fitting. However, efficient use of

resources (e.g., downsampling and reducing data dimensionality
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via methods such as multiway canonical component analysis,

MCCA; de Cheveigné et al., 2018), and alternative model

estimation approaches, such as averaging of subject-specific

models (e.g., Di Liberto and Lalor, 2017) or models fitted to

subsets of participants, can mitigate these technical challenges.

Finally, it should be noted that in the broader context

of their neuroscientific applications, TRF analyses have been

utilized predominantly for discovery of scientific knowledge.

However, due to their ability to extract complex neural responses

to arbitrary stimulus features from M/EEG activity evoked by

continuous, naturalistic stimuli, TRF analyses have potential

for applications beyond basic science. As noted above, such

applications may include clinical diagnostics of deficits in speech

and music processing, as well as evaluation of interventions,

such as hearing aids or sensory training. For example TRF

analyses could aid in diagnosis speech perception deficits that

are difficult to capture via traditional audiological tests (e.g.,

Tremblay et al., 2015), as well as perceptual consequences of

cochlear synaptopathy (i.e., hidden hearing loss; see review

by Liberman and Kujawa, 2017). Notably, backward models

have recently started to show promise in revealing group-level

effects of hearing aids on cortical representations of speech

(e.g., Alickovic et al., 2020, 2021). However, while exploration

of TRF methods for clinical uses in individual patients is an

important future direction, significant methodological progress

will be needed before such methods become viable in practice.

4.4. Limitations and methodological
caveats

While the present work provides a detailed exploration of

TRF model performance as a function of training data quantity,

caution should be taken in generalizing our results to other

TRF studies. Choices in the experimental design, data pre-

processing, modeled feature space, and statistical analyses could

all influence the performance and interpretation of TRF analyses

(for a more detailed overview of associated issues, see Crosse

et al., 2021). Moreover, as TRF methods grow in popularity,

“best/recommended” analysis methods are likely to become

outperformed as new/improved analysis and statistical methods

emerge. Below we highlight several methodological choices

made within this study that could have influenced our results,

and briefly discuss alternative choices available to experimenters.

4.4.1. Study design considerations

This work utilized a dataset obtained using a challenging

dual-talker paradigm from a participant sample spanning a

wide range of ages (18–70). Alternative stimulus choices, such

as different talkers (e.g., male vs. female; single vs. multi-

talker), types of noise (e.g., speech-shaped noise, multi-talker

babble, etc.), spatial configuration of sound sources, and task

can alter the overall prediction accuracies, and TRF amplitudes.

For example, neural representations of unattended speech are

generally substantially weaker (e.g., Ding and Simon, 2012;

Mesgarani and Chang, 2012), or even absent in the case of

higher-order features related to phonetic (Teoh et al., 2022)

and semantic processing (Broderick et al., 2018). It is notable

that most existing speech TRF studies utilized single-talker

paradigms. It is likely that for a model with fixed complexity,

these paradigms require appreciably lower data quantities to

achieve significant prediction accuracies, given their high speech

intelligibility. Indeed, in the context of subject-specific models,

several single-talker works have reported significant feature-

specific contributions for higher-order features with as little as

12min of data (e.g., Broderick et al., 2021; Gillis et al., 2023).

We chose to use a dual-talker paradigm in part because studies

exploring neural correlates of speech perception difficulties

are increasingly popular, making the present analyses more

relevant to these investigators. Finally, despite using a dual-

talker paradigm, it is likely that the TRFs obtained here

are representative of TRFs one may derive in single-talker

paradigms, as similar TRFs have previously been observed using

both paradigms (e.g., Kong et al., 2014; Broderick et al., 2018).

In terms of participant sample, prior work has shown

amplified cortical tracking of speech in older (e.g., Presacco et al.,

2016; Decruy et al., 2019; Zan et al., 2020; Mesik et al., 2021,

but see Gillis et al., 2023) and hearing-impaired populations

(Decruy et al., 2020; Fuglsang et al., 2020; Gillis et al., 2022).

As such, the inclusion of older participants in our data set

may have resulted in slightly higher prediction accuracies and

hence a need of somewhat less data to reach a criterion level

of model performance, relative to what one may expect from

data obtained from younger adults. We chose to utilize the

combined data set given that in our previous work (Mesik

et al., 2021) younger and older adults exhibited similar temporal

morphologies of word-level TRFs, and hence it is likely that

these groups’ speech-driven responses vary along a continuum,

rather than reflecting categorically different speech processing

(the latter of which would make combined analysis of the two

participant groups invalid). Lastly, we caution the reader that

our results are likely less applicable to special populations, such

as clinical patients or children, whose speech processing may

be immature or otherwise altered relative to the healthy adult

population studied here.

4.4.2. Pre-processing considerations

Pre-processing operations applied to data to improve its

SNR, likewise, can have substantial impact on TRF analyses.

Filtering is one of the most common pre-processing operations,

allowing researchers to isolate a subset of frequencies thought

to contain the neural signals of interest, while removing

contributions of noise sources. While some filtering is usually

desirable, we caution the reader that different types of filters
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can introduce systematic distortions into the data, which can

negatively impact the interpretability of the extracted neural

signals, such as ERPs or TRFs. We refer the reader to a detailed

overview of issues related to filtering by de Cheveigné and

Nelken (2019). In the present work, data was filtered to isolate

the neural dynamics in the low-frequency delta (1–4Hz) and

theta (4–8Hz) bands of cortical responses to speech. Although

this was largely motivated by previous findings that speech

processing mechanisms track predominantly the low-frequency

dynamics of speech signals (e.g., Zion Golumbic et al., 2013),

auditory cortex is known to phase-lock to acoustics features at

rates up to 100Hz (e.g., Holmes et al., 2018). Thus, depending

on the nature of studied feature representations, different filter

cutoffs than those used here may be required.

Besides temporal filtering, of particular interest to TRF

analyses are more sophisticated denoising algorithms, such as

the denoised source separation (DSS; de Cheveigné and Simon,

2008), and multiway canonical correlation analysis (MCCA;

de Cheveigné et al., 2018). DSS is a dimensionality reduction

technique that can isolate components of neural activity most

strongly related to a particular stimulus representation, such

as the acoustic envelope, thus providing improved SNR for

subsequent TRF analyses. This technique may be used to

improve SNR in subject-specific analyses, likely achieving

significant predictive power with lower amounts of data.

Similarly, MCCA is a technique that isolates components

of neural activity shared across subjects within a data set,

which allows researchers to factor out subject-level sources of

variability, such as differences in anatomy. MCCA, therefore,

is particularly relevant for generic analyses that fit models to

multiple participants simultaneously. In present work, generic

analyses assumed anatomical alignment of neural activity at the

level of EEG sensors. Differences in anatomy may have therefore

contributed to lower prediction accuracies than could likely be

achieved with MCCA.

4.4.3. Modeled feature spaces

One of the key aspects of TRF analysis is the choice of

the modeled feature space. Here we fit two separate models

emphasizing denser and sparser features in order to compare

the relative performance of these types of feature sets. However,

it is important to highlight that this separation of features

into distinct models served a demonstrative role, rather than

being methodologically necessary (but see discussion of banded

ridge regression in section “TRF analysis methods”). Fitting

of models with smaller subsets of features can be particularly

problematic when the scientific question concerns whether a

given feature explains unique variance in cortical responses.

Specifically, it may be the case that variance explained by one

feature can be explained similarly or better by other, correlated

features that were not included in the model. By using a more

complete feature representation, researchers can gain greater

(albeit not complete) certainty about the unique explanatory

power of different features in the model. Indeed, several recent

studies have brought into question unique cortical tracking

of higher-order features, such as phonemic categories (Daube

et al., 2019; but see Teoh et al., 2022) and semantic dissimilarity

(Gillis et al., 2021), when more complete representations of

stimulus acoustics were included in the model. In this regard,

we acknowledge that the present work does not conclusively

establish that the modeled features per se were uniquely tracked

in our data.

Finally, while most existing TRF studies have modeled

responses to researcher-defined stimulus features, a notable

emerging approach relies on passing stimuli through pre-trained

artificial neural networks (e.g., deep neural networks; DNNs),

and deriving feature sets from the abstract representations

that emerge within these networks. This approach has been

successfully used in functional magnetic resonance imaging

(fMRI) studies (e.g., Güçlü and van Gerven, 2015; Kell et al.,

2018), and it will likely become increasingly popular in TRF

analyses as well. However, while fitting more complex models

can generally account for greater amount of variance, they

introduce several challenges that researches need to deal with.

First, a practical issue is that larger models require larger

amounts of data to more thoroughly sample the feature space

included in the model. As such, the quantities of data sufficient

to fit our relatively small models may be insufficient for

adequate fitting of substantially larger models, such as ones with

feature spaces based on activation patterns of DNNs. Second,

uninformative features may be particularly common in large

models, which can lead to overfitting of the training data set and

poorer test performance. Pruning (i.e., systematic elimination)

of uninformative features is therefore especially important with

these larger models. Finally, while larger models can more

accurately predict brain responses, they also tend to be more

challenging to interpret, particularly when their features are

derived using artificial neural networks. A major challenge in

the interpretation of larger models is determining what cognitive

processes (or neural computations) does tracking of various

abstract features reflect.

4.4.4. TRF analysis methods

The TRF estimation methods themselves offer researchers

several options that may affect the performance of TRF analyses.

In the present work, we fit TRF models using regularized

linear regression, while other existing methods include boosting

(David et al., 2007; for boosting-based analysis toolbox,

see Brodbeck et al., 2021), normalized reverse correlation

(Theunissen et al., 2001), as well as a method for TRF

estimation in the neural source space (Das et al., 2020).

Although these alternatives are beyond the scope of the present

work, we note that Kulasingham and Simon (2023) showed

that with a fixed amount of training data, regularized linear
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regression and boosting algorithms result in highly similar

TRF estimates, making it likely that most of the patterns

observed in the present work would also apply to boosting-based

analyses. However, since boosting uses an alternative approach

to regularization, it is unclear whether similar dependence of

TRF amplitudes on training data quantity would be observed

with boosting.

With respect to regularization methods used in the present

work, it is notable that each analysis utilized a single

ridge parameter, meaning that the fitting procedure penalized

regression (beta) coefficients of all features in the model to

the same extent. However, because different features may have

substantially different predictive powers, and may correlate with

one another to different extents, single regularization parameter

may be insufficient for accurate TRF estimation of all features

in a model (Nunez-Elizalde et al., 2019). To account for this,

banded ridge regressionmethods have recently been introduced,

which apply individualized ridge parameters to different features

in a model (Nunez-Elizalde et al., 2019; Dupré la Tour et al.,

2022). This method was not used in the present work, as we

chose to build our analysis pipelines using publicly available

tools (i.e., mTRF toolbox), which did not have this functionality

implemented, yet (but see Crosse et al., 2021 for the description

of forthcoming banded ridge regression functionality). Given

our use of relatively small feature sets, it is unlikely that banded

ridge regression would lead to substantial improvements in the

performance of our analyses. Nevertheless, exploration of the

effects of training data quantity on banded ridge regression

performance is a useful future direction.

Estimation of feature-specific model contributions

is another aspect of TRF analysis with multiple existing

methods. Here we utilized perhaps the most common

approach, which computes feature-specific contributions

as the difference in prediction accuracies between full and

reduced models containing all but one feature (e.g., Di

Liberto et al., 2015; Gillis et al., 2021). Another approach

utilizes comparisons of full and “null” models with equal

dimensionality, where regressors of individual features

are shuffled to disrupt their temporal relationship with

the stimulus (e.g., Brodbeck et al., 2018). In certain cases,

performances of these types of null models have been

computed from full model’s TRF estimates (Broderick et al.,

2021; Mesik et al., 2021), although potential biases this

may introduce in fit contribution estimates have not been

thoroughly assessed. The partial correlation approach for

estimating feature-specific model contributions relies on

comparisons of predictions of models utilizing individual

feature representations (e.g., Prinsloo and Lalor, 2022; Teoh

et al., 2022). Lastly, feature-specific contributions can also be

estimated by subtracting (i.e., partialling out) predictions of

an all-but-one feature model from the EEG data, and then

fitting this residual signal with a model containing the left-out

feature (O’Sullivan et al., 2021). In general, we anticipate that

most of these methods result in correlated estimates of model

contributions, albeit more work will be needed to assess their

relative performances.

Finally, we reiterate that the ROI-based statistical analyses

in the present work were used partly to highlight general

locations where the two models performed well, and partly

to simplify the presentation of results. As such, it is possible

that different subsets of electrodes, identified using, e.g.,

cluster-based permutation tests (Maris and Oostenveld, 2007),

could be more sensitive for detection of significant prediction

accuracies and feature-specificmodel contributions. Use of these

methods could, likewise, lead to increased statistical power, and

consequently lower required training data quantity.

4.5. Conclusions

The goal of this work was to develop an informational

resource for the growing field of TRF analyses of continuous

speech processing, demonstrating the behavior of TRF analyses

as a function of data quantity used in TRF fitting. In the

context of relatively simple models of lower-level envelope

processing, as well as higher-order processing of word-level

features, we demonstrate that given a large-enough participant

pool, small amounts of data (<5min) can be sufficient to

train subject-specific models that predict significant variance

in EEG responses to speech-masked speech. At the same

time, substantially more data (15+ min) may be needed to

capture feature-specificmodel contributions of individual word-

level features. On the other hand, generic models can support

significant prediction accuracy even for feature-specific variance

with as little as 2-min of data per participant, while providing

highly similar TRF estimates to those seen in subject-specific

analyses. As such, despite their infrequent use, generic models

have potential to be particularly useful for applications in

clinical diagnostics, and multi-task studies with low per-task

time budgets. While the present work is not, on its own,

intended to be prescriptive about experimental duration, it may

be a useful resource for informing selection of experimental

duration, especially in conjunction with other tools, such as

simulations and piloting.
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