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Triplanar U-Net with lesion-wise
voting for the segmentation of
new lesions on longitudinal MRI
studies

Sebastian Hitziger*, Wen Xin Ling, Thomas Fritz,

Tiziano D’Albis, Andreas Lemke and Joana Grilo

Mediaire GmbH, Berlin, Germany

We present a deep learning method for the segmentation of new lesions in

longitudinal FLAIR MRI sequences acquired at two di�erent time points. In

our approach, the 3D volumes are processed slice-wise across the coronal,

axial, and sagittal planes and the predictions from the three orientations are

merged using an optimized voting strategy. Our method achieved best F1

score (0.541) among all participating methods in the MICCAI 2021 challenge

Multiple sclerosis new lesions segmentation (MSSEG-2). Moreover, we show

that our method is on par with the challenge’s expert neuroradiologists: on an

unbiased ground truth, our method achieves results comparable to those of

the four experts in terms of detection (F1 score) and segmentation accuracy

(Dice score).

KEYWORDS

multiple sclerosis, lesion detection, longitudinal lesion segmentation, biomedical
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1. Introduction

Multiple Sclerosis (MS) is a chronic, autoimmune disease which causes lesions in

the central nervous system (CNS) (Kuhlmann et al., 2017). Magnetic resonance (MR)

imagery is routinely used for diagnosis (Thompson et al., 2018) and prognosis (Brownlee

et al., 2019) of MS by assessing the dissemination of CNS lesions in space and time.

The lesions appear as white matter hyperintensities on T2 or fluid attenuated inversion

recovery (FLAIR) weightedMR sequences. Tracking changes in the lesion load over time

facilitates monitoring of MS activity and measuring the efficacy of disease modifying

therapies (Sormani et al., 2016).

However, manually detecting and delineating lesions on MR images is a time-

consuming and error-prone process with high intra- and inter-expert variability (Altay

et al., 2013; Egger et al., 2017), especially when the MR acquisitions differ in terms

of scanners, sequences, resolution, and quality. For these reasons, a great number of

automated methods for lesion detection have been proposed and originally relied on

explicit statistical features such as voxel intensities (Van Leemput et al., 2001; Lao et al.,

2008; Shiee et al., 2010; Mortazavi et al., 2012; Schmidt et al., 2012; García-Lorenzo

et al., 2013). However, most methods target cross-sectional segmentation and although
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the ISBI 2015 challenge provided longitudinal datasets, methods

were not assessed on their ability to segment new or enlarging

lesions (Carass et al., 2017). Existing approaches for new lesions

segmentation mostly use classical image processing techniques

such as image subtraction (Battaglini et al., 2014; Ganiler et al.,

2014; Fartaria et al., 2019), deformation fields (Bosc et al., 2003;

Salem et al., 2018), or statistical features from the independently

segmented time points (Schmidt et al., 2019).

In the recent past, a number of unsupervised (Baur et al.,

2021) and supervised deep learning (Zhang and Oguz, 2020;

Ma et al., 2022) methods have been suggested for lesion

segmentation. Especially convolutional neural networks (CNN)

with encoder-decoder architectures and skip connections such

as the U-Net (Ronneberger et al., 2015) have shown good

performance in the ISBI 2015 and MICCAI 2016 lesion

segmentation challenges (Carass et al., 2017; Commowick et al.,

2018). Despite the potential of CNNs for lesion segmentation

accuracy, their performance has remained below that of human

experts (Carass et al., 2017; Commowick et al., 2018). In

addition, deep learning based methods have only recently

been designed explicitly for the segmentation of new lesions,

which only appear in the follow-up but not the baseline scan.

The authors of McKinley et al. (2020) independently segment

both time point volumes and use the masks and confidence

maps to identify new and enlarging lesions. Fully convolutional

networks, in contrast, directly take as input the different time

points (Krüger et al., 2020). To incorporate correlations between

the different time points in the network architecture, Gessert

et al. (2020b) use attention-guided interactions and (Gessert

et al., 2020a) convolutional gated recurrent units. The authors

of Salem et al. (2020) suggest a combined registration and new

lesion segmentation network.

To foster the development ofmethods for assessing temporal

lesion activity, the objective of the MICCAI 2021 Multiple

sclerosis new lesions segmentation (MSSEG-2) challenge was the

design of a method for automatic segmentation of new MS

lesions on FLAIR MR sequences. Based on two FLAIR time

points of a patient, methods had to delineate lesions that had

formed on the follow-up but not on the baseline scan. The

performance of the submitted algorithms was evaluated in terms

of (a) their ability to detect new lesions, measured by the F1

score, and (b) the segmentation accuracy of the new lesions,

measured by the Dice score. Pairs of FLAIR volumes from 40

patients were given to the challenge participants for training the

algorithms, another 60 patients were held out for validation.

Our approach to this challenge starts with the observation

that plain end-to-end CNNs with U-Net like architecture

perform exceptionally well in most biomedical image

segmentation tasks. This was clearly shown by the authors

of the nnU-Net (Isensee et al., 2021), a framework which

relies on either 2D or 3D U-Nets (Çiçek et al., 2016) and

adjusts its hyperparameters to the given segmentation

task. It achieved excellent results in many segmentation

challenges, including the ISBI 2015 longitudinal lesion

segmentation. While the authors found their 3D version

to outperform the 2D counterpart, the performance of

2D models can be enhanced by integrating more 3D

information. The triplanar or 2.5D approach processes

slices across all three orthogonal directions and then merges

the predictions from the different orientations (Roy et al., 2019;

Henschel et al., 2020; Sundaresan et al., 2021). A triplanar

approach was also used by the winner of the MICCAI 2016

challenge (McKinley et al., 2016).

In this approach, we adapt the triplanar segmentation

approach and use a single 2D U-Net (Ronneberger et al., 2015)

as base model. This model is trained on slices from the axial,

coronal, and sagittal planes. To incorporate information from

both time point volumes, corresponding slices from the two

volumes are paired and given as a two-channel input. Compared

to other triplanar U-Net approaches, our architecture contains

two main differences:

• It uses a single U-Net which is trained on sagittal,

coronal, and axial slices, allowing to share common features

across orientations. This is opposed to the training of

three orientation-specific U-Nets in previous approaches

(McKinley et al., 2016; Roy et al., 2019; Sundaresan et al.,

2021).

• For merging the predictions from different orientations,

we observed that single orientation predictions tend to

contain many false positive lesions. Hence, we challenge

the commonly used softmax averaging and compare it to

voting strategies of different sensitivity.

We submitted two segmentation pipelines to the

challenge, mediaire-A and mediaire-B, which use the

same model architecture but make use of different

data: while the model in mediaire-A is trained only

on the official training data, we use additional datasets

for training the model in mediaire-B, as described

below. Besides this difference, the two pipelines

are identical.

Both segmentation pipelines were evaluated by the challenge

organizers on the unseen test set, resulting in mediaire-B

ranking 1st and mediaire-A 3rd across all submitted models

in terms of detection performance (F1 score). In additional

validations, where we compare our pipelines to the challenge’s

annotators, we show that our algorithms are on par with

the neuroradiologists in terms of F1 score and segmentation

accuracy (Dice score).

2. Materials and equipment

The majority of the 3D FLAIR images used in this

study for training and testing the models was provided
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TABLE 1 Datasets used for training, validation, and testing, provided by the MSSEG-2 challenge organizers and internal data.

Name Source No. of patients Sequence Voxel resolutions

TRAIN-MSSEG2 OFSEP HD 40 (29) 3D FLAIR 0.5–1.2 mm anisotropic

TEST-MSSEG2-NL OFSEP HD 32 3D FLAIR 0.5–1.2 mm anisotropic

TRAIN-B-NL Internal 25 3D FLAIR 0.5–1.2 mm anisotropic

VAL-A-NL Internal 20 3D FLAIR 0.5–1.2 mm anisotropic

The suffix -NL denotes that all datasets exhibit new lesions, otherwise the number of patients with new lesions is denoted in parentheses. Each dataset contains 3D FLAIR images of a

patient, a baseline and a follow-up scan. Note that the internal datasets in VAL-A-NL are a subset of TRAIN-B-NL. The datasets are described in more detail in Section 2.

by the MSSEG-2 challenge organizers. In addition, 25

internal datasets with pairs of 3D FLAIR images were used

for training and validation. All used data, including the

corresponding ground truth masks, is described in the

following paragraphs. An overview of the datasets is provided

in Table 1.

2.1. MSSEG-2 datasets

The data provided by the organizers of the MSSEG-2

challenge consists of 100 pairs of 3D FLAIR weighted MRI

sequences from the OFSEP HD cohort1, each corresponding

to two scans of the same patient acquired at different time

points (1–3 years apart). The images had been acquired on

15 MRI scanners from different manufacturers (GE, Philips,

Siemens) in different locations and exhibited varying resolutions

and anisotropic voxel sizes, with resolutions between 0.5

and 1.2 mm. Besides the 3D FLAIR sequences, no other

sequences were used for the creation of the ground truth or

provided to the participants. For each data pair, a consensus

ground truth mask was created from the delineations of

four expert neuroradiologists using the protocol described in

the following paragraph. Forty of the 100 3D FLAIR image

pairs were provided to the challenge participants for training

their models, together with the four experts’ new lesion

segmentations and the consensus ground truth masks. We will

refer to these datasets as TRAIN-MSSEG2. The remaining 60

pairs were used for evaluating the submitted models. These

datasets, including consensus ground truth and the experts’

segmentation masks, were provided to the participants after

publication of the official challenge results for further analysis.

For the calculation of the challenge’s main metrics, i.e., the

Dice and the F1 score, only the 32 of the 60 dataset pairs

that exhibited new lesions were taken into account. We

will denote this subset, which is used for the evaluations

in Section 4, as TEST-MSSEG2-NL. The remainder of the

MSSEG-2 test datasets were used by the challenge organizers

for further evaluations which are outside the scope of this

1 https://www.ofsep.org/en/hd-cohort

study and are not used here. The information on data, data

access, and annotations is also available on the challenge

websites.2–4

2.1.1. Consensus reading protocol

For every dataset, manual delineations of new lesions

were performed by four expert neuroradiologists, medically

trained for MS and at the start of their career (a few years

after taking their permanent position). They received

instructions to delineate lesions not in contact with

other lesions and above 3 mm in size in one of the

image planes. The delineation was performed using the

software ITK Snap, for which the experts had received a

user manual.

Based on the resulting four expert segmentation masks,

a consensus ground truth was created with the help of a

senior expert neuroradiologist with much longer experience

in neuroradiology and MS than the other four experts.

The ground truth creation was done in two steps: (i)

lesion approval or rejection and (ii) delineation. In step

(i), every majority lesion, i.e., found by at least three of

the four experts, automatically transferred to the ground

truth; for any disputed lesion, i.e., found by at most two

of the experts, the senior expert decided whether to accept

or reject it. In step (ii), the delineation of every accepted

lesion was calculated using the STAPLE (Akhondi-Asl and

Warfield, 2013) algorithm based on the concerned experts’

lesion segmentations.

As the ground consensus ground truth masks were created

by the experts, a direct evaluation of the experts on this

same ground truth would be biased. Therefore, we additionally

created expert-specific unbiased ground truth masks to compare

our pipelines to the experts (see Section 3.6).

2 https://portal.fli-iam.irisa.fr/msseg-2/data/

3 https://gitlab.inria.fr/amasson/lesion-segmentation-challenge-

miccai21/-/blob/master/DATASET.md

4 https://files.inria.fr/empenn/msseg-2/Challenge_Day_MSSEG2_

Introduction.pdf
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2.2. Internal datasets

While our model in pipeline mediaire-A was trained only

on the challenge’s official 40 patient volumes, we added internal

datasets to train pipeline mediaire-B. These consisted of 25

pairs of all 3D FLAIR images from 25 patients, where each

pair exhibited new lesions, and will be referred to as TRAIN-

B-NL. The datasets had been acquired on different scanners

by Siemens (Aera 1.5 T, Magnetom Vida 3.0 T, Skyra 1.5 T,

Skyra 3.0 T) and Philips (Achieva 1.5 T, Achieva 3.0 T) and

had anisotropic voxel resolutions between 0.5 and 1.2 mm.

In order to match the challenge data, we also only used the

3D FLAIR sequences for ground truth creation and model

training without any additional sequences. Each of the image

pairs was annotated by up to four experts (a medical doctor

and neuroscientist, a radiologist, and two radiographers with

special training in segmenting MS lesions, all of them with more

than 2 years of experience with MS-specific MRI interpretation

and annotation), and a consensus ground truth had been

formed similar to the one used in the challenge, as described

in Section 2.1.1. The segmentations were performed using an

annotation application integrated into an internal image viewer.

As we trained the models in pipelines mediaire-A and

mediaire-B on 5 data folds (see Section 3.1.2) with random

80–20% train-validation splits, we validated the individual fold

models on these validation splits. However, for the validation of

the orientation merging strategies (cf. Section 3.4), we required

the final ensemble model of all folds. For this purpose, we

used a subset of 20 patients from TRAIN-B-NL. Since pipeline

mediaire-B was trained on these datasets, they could only be

used to validate mediaire-A and we denote them as VAL-A-

NL. We assume that the results of comparing the orientation

merging strategies transfer qualitatively from mediaire-A to

mediaire-B, as the pipelines are very similar.

2.3. Pre-processing

For each patient in the datasets provided by the MSSEG-2

challenge, the organizers had transformed the two scans onto a

common middle point through rigid registration.

We further applied the following preprocessing steps to all

3D FLAIR image pairs in the challenge’s and internal training,

validation, and test sets: (1) affine registration of each pair of

3D FLAIR images to the MNI template, (2) cropping the FOV

to an area around the brain, (3) resampling the volume to 256

× 256 × 256 voxels, and (4) pixel normalization through mean

subtraction and division by the standard deviation.

To increase the generalization ability of the model,

data augmentation was performed on the preprocessed 3D

volumes of the training sets during training, including contrast

augmentation, rotations, flipping across the three orthogonal

planes, elastic deformations, and bias field augmentation.

3. Methods

The basis for our segmentation pipeline, which we refer to

as triplanar U-Net, is a 2D U-Net (Ronneberger et al., 2015). It

has two input channels with corresponding slices—either axial,

coronal, or sagittal—from the two different time points of each

patient. The output of the model is a single-channel 2D binary

mask, representing the segmentation of the new lesions found in

the corresponding slice. For an illustration and the dimensions

of the network (see Figure 1).

Compared to previously suggested triplanar U-Net

architectures (Roy et al., 2019; Sundaresan et al., 2021), our

approach has two main differences:

1. It uses a single U-Net which is trained on sagittal, coronal,

and axial slices, allowing to share common features across

orientations. This is opposed to training three orientation-

specific U-Nets in the former approaches. Note that this

procedure requires the all slices to be of the same dimensions,

which is ensured by resampling the volume to a regular cube,

as described in Section 2.3.

2. For merging the predictions from different orientations, we

test different techniques. In addition to softmax averaging

(i.e., averaging the predicted probabilities), we implement

and validate three voting strategies of different sensitivities to

optimize the method’s recall and precision. The best strategy

is then implemented.

3.1. Model training

The U-Nets trained for pipelines mediaire-A and mediaire-

B use exactly the same training protocol and hyperparameters.

However, only the 40 datasets in TRAIN-MSSEG2 were used for

training mediaire-A, while mediaire-B was trained on TRAIN-

MSSEG2 plus the additional 25 datasets in TRAIN-B-NL (see

Section 2).

We trained the triplanar U-Net on batches, each combining

a total of 20 axial, coronal, and sagittal slices from different

patient volumes for robustness. For the updates of the model

weights, we used stochastic gradient descent with momentum

and an initial learning rate of 0.0001, which was reduced when

the validation loss plateaued. Training was performed with early

stopping when the validation loss stopped decreasing, which was

usually the case after around 50 epochs.

3.1.1. Loss function

Recently, it has been observed that combined loss functions

tend to be more robust and accurate, especially in segmentation

tasks with high class imbalance. For instance, the self-

configuring segmentation network nnU-Net (Isensee et al.,

2021) uses the combo loss as a default, which is the sum of the
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FIGURE 1

Architecture of the 2D U-Net used. Input are C = 2 slices (axial, coronal, or sagittal) corresponding of dimension 256 × 256, corresponding to

the two FLAIR time points. In every layer of the encoding branch (left), two convolution blocks, consisting of Conv2D (3 × 3), BatchNorm, and

ReLU activation, are applied. When passing to a new layer, dimensions are reduced to half by max pooling while the number of channels is

doubled in the first convolution block. In the decoding branch (right), the max pooling operations are replaced by transpose convolutions for

upsampling and the data from the corresponding layer of the encoding branch is concatenated through skip connections. Output of the U-Net

is the 256 × 256 binary mask containing the new lesions segmentation.

Dice loss and the cross entropy loss. For training our models,

we use a combination of Dice loss and the TopK loss (Wu

et al., 2016), which has shown good performance, for example

in the winning and runner up model (Ma, 2021) of the Miccai

2020 ADAM segmentation5 challenge. The TopK is a hard-

mining variant of the cross-entropy loss, focussing only on the

k% hardest voxels. We denote with gic ∈ {0, 1}, pic ∈ (0, 1)

the ground truth index and the softmax prediction for voxel i

and class c, respectively, and by select_topk the function that

returns the k% largest values. Then the partial loss functions

LDice, LTopK, and the total loss function Ltotal are defined by

LDice = 1−
2
∑

i,c gic · pic
∑

i,c g
2
ic +

∑

i,c p
2
ic

LTopK = −mean
(

select_topk (SCE)
)

Ltotal = LDice + LTopK

where SCE = {giclog(pic)}i,c is the set of cross entropy scores

for all voxels and classes. Note that LTopK reduces to the cross

entropy loss for k = 100. In our experiments, we chose k = 10.

3.1.2. Cross validation

For each pipeline, mediaire-A and mediaire-B, we train the

triplanar U-Net five different data folds, resulting in modelsM0,

5 https://adam.isi.uu.nl/

..., M4. For each Mi, we hold out 20% of the training data. For

inference, the ensemble of all five fold models will be used for

segmentation, as explained in Section 3.2.

3.2. Inference

The segmentation process at inference is depicted in

Figure 2. From the two 3D FLAIR volumes of each patient,

three datasets are created, consisting of pairs of axial, coronal,

and sagittal slices, respectively. For each such dataset, inference

is performed slice-wise with every fold model M0, ..., M4

and the ensemble average of the resulting softmax slices is

calculated, resulting in axial, coronal, and sagittal predictions.

Then, the three single-orientation predictions are merged

to produce the final segmentation mask. This is explained

in detail in Section 3.4, where different merging strategies

are compared.

3.3. Metrics

To evaluate our experiments, we use the official performance

metrics from the MSSEG-2 challenge. These are defined via the

true positives (TP), false positives (FP), and false negatives (FN)

on the lesion level (TPl, . . .) and the voxel level (TPv, . . .). The
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FIGURE 2

Segmentation process using the triplanar U-Nets M0, ..., M4 trained on slices from the three orthogonal planes of the di�erent training folds. The

3D FLAIR input volumes are sliced along the coronal, axial, and sagittal planes and grouped together in pairs of corresponding slices. For every

orientations, the segmentation is now performed independently: (I) each slice pair is given as a two-channel 2D input to the models M0, ..., M4

and predicted softmax scores are averaged. (II) In the final step, the predictions of the individual orientations are merged to yield the final

segmentation.

principal new lesion detection metric is the F1 score, but we also

investigate precision and recall. They are defined as

F1 score =
2 ∗ TPl

FPl + 2 ∗ TPl + FNl

Recall =
TPl

TPl + FNl

Precision =
TPl

TPl + FPl

The principal segmentation metric used is the Dice score,

which is the equivalent of the F1 score on a voxel level:

Dice score =
2 ∗ TPv

FPv + 2 ∗ TPv + FNv

We note that the quantities TPl, FPl, and FNl depend on the

definition of when lesions in the prediction and the ground

truth shall be matched. In the competition evaluation, a match

requires certain overlap thresholds to be fulfilled. This is

described in detail in the official documentation6. All metrics

in this paper were calculated using the “animaSegPerfAnalyzer”

command from the Anima toolbox7, which was also used by

the challenge organizers to calculate the official results for the

leaderboard.

6 https://portal.fli-iam.irisa.fr/files/2021/06/

MS_Challenge_Evaluation_Challengers.pdf

7 https://anima.irisa.fr/

3.4. Validation of orientation merging
strategies

As described in Section 3.2, the inference pipeline requires

to merge predictions from different orientations. While softmax

averaging is commonly used for this step (McKinley et al.,

2016; Roy et al., 2019; Sundaresan et al., 2021), we additionally

compare three different voting strategies in order to find the

optimal balance of recall and precision. This step is depicted in

Figure 2(II).

Starting from the predicted probability maps (softmax

scores) of each orientation, we first calculated the softmax

average as a baseline approach. For the other approaches, which

operated on a lesion level, we first thresholded the softmax scores

of each of the three orientations to yield hard predictions. Then

three different lesion-selection strategies were applied: A lesion

was predicted if detected in (a) at least one orientation (union);

(b) at least two orientations (majority); (c) all orientations

(unanimous voting). The exact segmentation of each selected

lesion was defined as the union of the corresponding positive

voxels across orientation predictions.

The four approaches were implemented into pipeline

mediaire-A and used for segmenting the internal datasets VAL-

A-NL (see Section 2.2). The segmentation masks were then rated

against the corresponding expert annotations and the results

in terms of F1 score, precision, recall, and Dice are shown in

Figure 4. The optimal strategy was chosen based on the best

F1 score. As mediaire-B was trained on datasets containing
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VAL-A-NL, this validation could not be performed directly for

this pipeline. However, due to the similarity of both pipelines, it

was assumed that the optimal strategy for mediaire-A would also

be the best strategy for mediaire-B.

3.5. Challenge evaluation: Comparison to
other participants

Both pipelines, mediaire-A and mediaire-B were submitted

to the challenge among a total of 29 rated submissions from

24 teams. For all submitted pipelines, the organizers calculated

the predictions on the test dataset with 60 patients. However,

for calculating the scores on the detection (F1 score) and the

segmentation leaderboard (Dice score), only the 32 patients in

TEST-MSSEG2-NL, i.e., those with at least one new lesion, were

taken into account (cf. Section 2.1).

The official raw scores for all submissions are publically

available8. In addition to the official average scores across

patients, we visualize the score distributions across patients.

3.6. Challenge evaluation: Comparison
on unbiased ground truth

For assessing how our pipelines mediaire-A and mediaire-

B perform compared to human neuroradiologists, we evaluate

the lesion delineations conducted by the four challenge experts.

A naive approach would simply rate the human segmentation

masks against the consensus ground truth, as it has been done

for the segmentation masks produced by the algorithms. In

fact, the resulting scores from this approach are published by

the challenge organizers and correspond to those in Figure 5.

However, this approach comes with a problem: The ground truth

has been created based on the individual segmentation masks of

the human experts, which makes it biased toward these experts.

Thus, the measured human performance is likely to be higher

than it would be on an unbiased ground truth.

We therefore suggest a comparison on an unbiased ground

truth of the official challenge test datasets with new lesions,

TEST-MSSEG2-NL (cf. Section 2.1), constructed from the

corresponding experts’ segmentation masks and the consensus

ground truth masks, which were provided to the participants

after the challenge. For a fair comparison, the segmentation

mask si of Expert i should be rated against a ground truth

ui whose definition is independent of si. We create ui from

the segmentation masks of all other experts Si = {sj|j 6= i}

using the challenge’s consensus reading protocol, as described

in Section 2.1.1. By doing so, we exclude the minimal

information necessary (segmentation si) to unbias the ground

8 https://zenodo.org/record/5775523#.YkVWKjxCRhE

truth while preserving the maximal expert knowledge available

(segmentations Si and senior expert decisions). The protocol

involves (i) the acceptance or rejection of lesions found by any

expert and (ii) calculating the segmentation of each accepted

lesion through majority voting. While (ii) is a simple voxel-wise

calculation, the decisions (i) on disputed lesions are taken by

a senior expert. We cannot consult the senior expert, however,

we can derive the decisions as they are implicitly contained in

the consensus ground truth c. The only assumption we make

for this derivation is that of constant decisions: if a disputed

lesion l was approved (rejected) by the senior expert in the

original reading, this same lesion l is also approved (rejected)

in a different reading (where the number of total expert masks

may be different).

The complete lesion selection process (i) is illustrated in

Figure 3 for the example of creating an unbiased ground truth u4
for Expert 4: First, all lesions in the segmentation masks s1, s2, s3
are grouped into majority lesions (found by at least two experts)

and disputed lesions. The majority lesions are automatically

accepted according to the protocol (cf. Section 2.1.1). If a lesion l

is disputed, i.e., found by a single expert, it must have been found

by at most two experts in the original reading (as this reading

had an additional expert). Hence, it was already a disputed lesion

in the original reading (cf. Section 2.1.1) and we can derive the

senior expert’s decision from the consensus ground truth c: if c

contains lesion l, it has previously been approved and we include

it into the unbiased ground truth. Otherwise, it has previously

been rejected and we exclude it.

Having selected all relevant lesions, their exact

segmentations are calculated as (ii) the voxel-wise majority

vote across the segmentation masks s1, s2, s3, resulting in the

unbiased ground truth u4.

We apply the protocol (i, ii) defined above to generate

unbiased ground truth masks u1, . . . , u4 for all experts and all

patients in the test set. Each expert i is now evaluated by rating

the segmentation si against ui in terms of recall, precision, F1

score, and Dice score. As each expert is now rated against a

different ground truth, their scores are not directly comparable.

Hence, for every expert i, we also rate pipeline mediaire-A and

mediaire-B on ui and compare the resulting scores to this expert.

From these four individual assessments, we then calculate the

mean scores for experts, mediaire-A, andmediaire-B to compare

the average performance model vs. human performance.

3.6.1. Statistical testing

In order to assess whether our pipeline performance is

comparable to or better than the expert performance, we tested

for statistical significance. To this end, we first defined a margin

d = 0.05 and regarded performances as comparable if their

absolute difference was below d. If we wanted to test for

comparability only, we could use equivalence tests with margin

d. However, since we want to investigate if the models are
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FIGURE 3

Illustration of unbiased ground truth creation u4 for Expert 4, (right) from the segmentation masks of experts 1, 2, and 3 (left). If a lesion is found

by at least two experts (blue lesion), it is automatically selected for u4. Otherwise, it is a disputed lesion (green, red) and has to be decided on by

the senior expert. If it is contained in the consensus ground truth c (red lesion), it has been accepted by the senior expert before, so we approve

it. Otherwise, it is rejected.

comparable or better than the experts, we choose to conduct

noninferiority tests (Walker and Nowacki, 2011) with margin

d. This leads to the null hypothesis H0 that the expected

difference E(Y −X) between expert performance Y and pipeline

performance X is above d. We assess the validity of the null

hypothesis H0 using paired difference Student’s t-tests with

significance level α = 0.05. The tests are conducted for F1

score andDice and for every combination of pipeline and expert.

In addition, we test the pipelines average performance across

the different masks ui against the average performance across

experts.

3.7. Implementation

The model is implemented and trained in Python using the

PyTorch package.

4. Results

4.1. Validation of orientation merging
strategies

As described in Section 3.4, we tested four different

strategies for merging the predictions from the three orthogonal

orientations: three lesion voting procedures and softmax

averaging. Figure 4 shows the performances of the respective

methods validated on the datasets in VAL-A-NL (Section 2.2).

The most inclusive strategy, union of all lesions, achieves the

best recall but a very low precision and thus a bad overall F1

score. While majority voting is significantly better, unanimous

voting clearly achieves best F1 score due to a high precision.

The baseline method, softmax averaging, shows a performance

similar to majority voting. It is only in terms of segmentation

accuracy (Dice), that softmax averaging outperforms all voting

strategies.

It is interesting that the precision gain when using the

very restrictive unanimous voting strategy largely outweighs

the slight loss in recall. Apparently, the weakness of a single-

orientation model is not its capability to find enough lesions—

it rather bears the risk of classifying too many confounding

hyperintensities as lesions. The unanimous voting strategy could

also be reformulated as: Accept only lesions which have been

“seen” in all three orientations.

Since the focus of the challenge is on the detection

performance and the most important metric is the F1 score, we

implement unanimous voting in both pipelines mediaire-A and

mediaire-B.

4.2. Challenge evaluation: Comparison to
other participants

The boxplot in Figure 5 shows the official F1 scores of

the challenge’s main leaderboard for all 29 submissions rated

against the consensus ground truth of the datasets in TEST-

MSSEG2-NL. It also includes the scores obtained by the experts’

segmentation masks when rated against the consensus ground
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FIGURE 4

Performance of pipeline mediaire-A with di�erent strategies for merging the predictions from axial, coronal, and sagittal orientation. Scores are

calculated on the 20 datasets in VAL-A-NL. The approaches union, majority voting, unanimous voting, and softmax averaging are compared in

terms of F1 score, precision, recall, and Dice.

FIGURE 5

F1 scores of experts (gray), our pipelines mediaire-A and mediaire-B (red), and the models submitted by the other MSSEG-2 participants (black),

calculated on the 32 datasets in TEST-MSSEG2-NL, all of which exhibited new MS lesions. Horizontal bars indicate the median and white circles

the mean values. All experts and models are ordered by their mean F1 score, which also determined the ranking of the main challenge

leaderboard. The three best performing methods are our pipeline mediaire-B, Empenn, and pipeline mediaire-A. The scores of the expert

segmentations are shown for reference, however, these scores are biased as discussed in Section 3.6.

truth. As discussed in Section 3.6, the latter scores are positively

biased, as the rated segmentation masks were the basis for

the ground truth creation. An unbiased comparison between

our submissions and expert performance is therefore done in

Section 4.3.

In terms of detection performance (F1 score), the three best

methods are mediaire-B (0.541), Empenn (0.532), and mediaire-

A (0.525), respectively. The second best submission Empenn

performed segmentation with a 3D nnU-Net (Isensee et al.,

2021) trained on official and internal datasets. The great majority

of submissions, including all top 10 methods, used deep learning

with 3D or 2.5D U-Net-like architectures.

4.3. Challenge evaluation: Comparison
on unbiased ground truth

The results of the comparison between algorithms and

experts on the unbiased ground truth of the TEST-MSSEG2-

NL data (cf. Section 4.3) are shown in Figure 6. Clearly,

both pipelines mediaire-A and mediaire-B have higher recall

but lower precision than the experts (second and third

plot, respectively). In the overall detection performance, the

algorithms slightly outperform the experts on average (first plot,

last block) and only Expert 1 achieves a slightly higher F1 score.

This is in contrast to the evaluation on the (biased) consensus
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FIGURE 6

Unbiased comparison of each of the experts 1, . . . , 4 to segmentation pipelines mediaire-A and mediaire-B, in terms of F1 score, recall,

precision, and Dice. The scores are calculated on the unbiased ground truth masks of the 32 patients in TEST-MSSEG2-NL. For every expert, this

unbiased mask is constructed from the other expert masks (cf. Section 3.6) resulting in four individual comparisons with di�erent ground truths.

In the last block of each plot, we show the average score across the four experts against the average score of each pipeline across the di�erent

ground truth masks. Clearly, the segmentation pipelines have a higher recall while the experts have higher precision. In terms of F1 and Dice

scores, the pipelines achieve slightly higher average results.

TABLE 2 p-values for testing non-inferiority of the performance of a pipeline (rows) compared to an expert (columns) with a margin of d = 0.05.

Expert 1 Expert 2 Expert 3 Expert 4 Mean

mediaire-A
F1 score 0.3186 0.0367 0.1160 0.1015 0.0551

dice 0.2037 0.0447 0.0873 0.0261 0.0161

mediaire-B
F1 score 0.2935 0.0248 0.0361 0.0326 0.0135

dice 0.2254 0.0245 0.0532 0.0204 0.0101

Significant p-values (p < 0.05) are marked in bold. The last column shows the p-values for the scores averaged across the different experts. The values are calculated using paired t-tests

using the pipeline and expert scores on the 32 datasets in TEST-MSSEG2-NL.

ground truth in Section 4.2, where experts 1, 2, and 3 had

significantly higher F1 scores than all submitted methods. In

terms of segmentation accuracy (last plot), expert and algorithm

performances are very similar.

The differences in F1 score and Dice between experts and

models are relatively small and statistically not significant.

We therefore tested for non-inferiority, i.e., if each pipeline’s

performance is within a d = 0.05 margin or better than

each expert’s performance using paired t-tests, as described in

Section 3.6.1. The resulting p-values are shown in Table 2 with

the significant values (p < 0.05) in bold. In terms of F1 score,

the results for mediare-A are significant only when compared

to Expert 2, while for mediaire-B they are significant when

compared to expert experts 2, 3, 4 and the average across experts.

In terms of Dice score, test results for mediaire-A and mediaire-

B are significant when compared to experts 2 and 4 and themean

of experts.

In conclusion, we showed that our better pipeline, mediaire-

B, is at least comparable to three (two) of the four experts and

the expert average in terms of F1 score (Dice score).

Processing of the segmentations took an average of 97 s per

dataset (±2 s standard deviation) on a Laptop with graphics

processing unit (CPU: Intel Core i7-10750H, 32 GiB RAM;GPU:

NVIDIA GeForce RTX 2080 Super, 8 GiB RAM).

5. Discussion

The detection of new MS lesions is clinically important for

diagnosis, prognosis, and treatment monitoring. An automatic

method with a detection and segmentation accuracy comparable

to that of an expert neuroradiologist can be highly beneficial

to improve diagnostic quality by providing a “second pair

of eyes,” to decrease inter-rater variability, and to reduce the

manual reading time and effort. For instance, the study in

Altay et al. (2013) assumed a maximal time of 10 min for

a clinician to count lesions on an MS dataset and showed

significant variability in the results of clinicians of different

expertise level.

We presented a deep learning based approach using the

U-Net to segment new lesions on 3D FLAIR volumes by

processing slices from axial, coronal, and sagittal planes. We

showed that our U-Net based segmentation pipelines not
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only outperform all other competing methods in the MSSEG-

2 challenge in terms of detection accuracy measured by

lesion-wise F1-score. They are also on par with an average

expert neuroradiologist, both in detection (F1 score) and

segmentation accuracy (Dice score) when compared on an

unbiased ground truth. The automatic lesion segmentation

was performed in <2 min on a Laptop with GPU, which is

significantly less than the expected annotation time needed by

a human annotator.

As a major difference to other triplanar or 2.5D U-

Nets with softmax averaging of orientations, our algorithm

uses unanimous voting which only accepts lesions that have

been confirmed in all three orientations. Even though this

approach may seem restrictive, it is actually aligned with

the diagnostic guideline for MS lesions detection that lesions

should be confirmed on multiple planes to avoid false

positive results (Filippi et al., 2019). In addition, we saw

in Section 4.3 that our algorithm outperformed the human

experts in recall but had lower precision. For any less

restrictive strategy than unanimous voting, this discrepancy

would have been even more severe, which also becomes clear

from the validation in Figure 4. We therefore suggest that

unanimous voting is a key factor for the good performance of

our algorithm.

Another slight performance gain was achieved through the

use of additional training data, leading to a higher recall of

the model mediaire-B compared to mediaire-A (cf. Figure 6).

While the augmentation of the training size does not always

lead to improved model performance in our experience, we took

particular care to optimize the distribution of the additional

data: (i) we added only patients with new lesions, leading to

a recall improvement with only slight decrease in precision,

and (ii) the corresponding consensus ground truth was created

using a protocol similar to the one used by the challenge

organizers.

While the presented outcomes are encouraging, there is

still room for improvement: our algorithms had a higher

recall than the average neuroradiologist, however, the

precision was lower. Future works may therefore focus on

an improved false positive reduction. Furthermore, we could

observe a performance gain by increasing the relatively small

training set from 40 (mediaire-A) to 65 datasets (mediaire-B).

Training on a larger set could therefore increase performance

even further.

Another limiting factor of this study is the use of only

3D FLAIR datasets acquired with high resolution which does

not necessarily reflect the clinical reality. While the presented

approach can be applied to 2D, low-resolution, or low-quality

datasets, we do not know how well the present results translate

to such a data regime. In particular, the information in thick

slices may not be sufficient to distinguish a lesion from

brain tissue. To this end, we suggest a follow-up study with

a larger and more diverse training and test set in order

to yield a complete assessment covering a broad range of

clinical settings.
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