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Current decoding algorithms based on a one-dimensional (1D) convolutional

neural network (CNN) have shown e�ectiveness in the automatic recognition

of emotional tasks using physiological signals. However, these recognition

models usually take a single modal of physiological signal as input, and

the inter-correlates between di�erent modalities of physiological signals are

completely ignored, which could be an important source of information for

emotion recognition. Therefore, a complete end-to-end multi-input deep

convolutional neural network (MI-DCNN) structure was designed in this

study. The newly designed 1D-CNN structure can take full advantage of

multi-modal physiological signals and automatically complete the process

from feature extraction to emotion classification simultaneously. To evaluate

the e�ectiveness of the proposed model, we designed an emotion

elicitation experiment and collected a total of 52 participants’ physiological

signals including electrocardiography (ECG), electrodermal activity (EDA),

and respiratory activity (RSP) while watching emotion elicitation videos.

Subsequently, traditional machine learning methods were applied as baseline

comparisons; for arousal, the baseline accuracy and f1-score of our dataset

were 62.9 ± 0.9% and 0.628 ± 0.01, respectively; for valence, the baseline

accuracy and f1-score of our dataset were 60.3 ± 0.8% and 0.600 ± 0.01,

respectively. Di�erences between the MI-DCNN and single-input DCNN were

also compared, and the proposed method was verified on two public datasets

(DEAP and DREAMER) as well as our dataset. The computing results in

our dataset showed a significant improvement in both tasks compared to
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traditional machine learning methods (t-test, arousal: p = 9.7E-03 < 0.01,

valence: 6.5E-03 < 0.01), which demonstrated the strength of introducing a

multi-input convolutional neural network for emotion recognition based on

multi-modal physiological signals.

KEYWORDS

biological signals, multi-modality, emotion recognition, convolutional neural

network, machine learning

Introduction

As an important component of artificial intelligence,

affective computing plays an essential role in human–computer

interaction (HCI). Emotion is the attitude and experience of

people toward objective things; it integrates the state of human

feelings, thoughts, and behaviors. When external stimuli cause

changes in people’s emotions, their physiological responses will

change accordingly. The purpose of emotion recognition is

to build a harmonious HCI environment by empowering the

computer with human emotion capabilities and making the

HCI process more intelligent. Research in the field of emotions

can be traced back to the nineteenth century when American

psychologist William James and Danish physiologist Carl Lange

independently proposed the oldest theories of emotion (James,

1922), which supposed that emotional experience was the result

of peripheral physiological changes caused by external stimuli.

In the current stage, there are many emotion recognition

tasks based on facial images (Akhand et al., 2021) and human

speech signals (Chourasia et al., 2021; Mustaqeem and Kwon,

2021), which have achieved great development. Simultaneously,

according to the maturity of wearable sensor technology, people

have paid more and more attention to emotion recognition

based on physiological signals, different from facial expressions

and speech signals, and most changes in physiological signals

cannot be voluntarily controlled, cannot be hidden, and

can better reflect people’s true emotional state. Furthermore,

recording physiological signals can be continuous without

interruption, which leads to feasible continuous emotional

assessment. In this study, we collected subjects’ multi-modal

physiological signals, including ECG, EDA, and RSP through

an emotion elicitation experiment. ECG reflects small electrical

changes on the surface of the skin each time myocardial cells

depolarize in the heartbeat, Agrafioti et al. (2012) found that

when the induction method is active for subjects, ECG has

a higher chance of responding to emotion, which proves the

feasibility of using ECG for emotion recognition. EDA is a

change in the electrical characteristics of the skin caused by the

activity of sweat glands, which can reflect the change in arousal

(Lang et al., 1993; Cacioppo et al., 2007). Respiration activity

can reflect a person’s stress states. When people are in a relaxed

or pleasant state, their breathing rate will be relatively gentle,

and when in a stressful or frightening state, their breathing

rate could change rapidly or even stop. It has been proven

in previous studies that the use of multi-modal physiological

signals makes up for the limitation of the single modal in

emotion recognition (Verma and Tiwary, 2014); applications

based on multi-modal physiological signals are also increasing,

such as emotion recognition (Zhang X. et al., 2021) and wearable

health device (Cosoli et al., 2021). However, there are also

disadvantages of physiological signal-based emotion recognition

mainly because the difficulty of acquiring physiological signals is

much higher than that of facial expressions and speech signals,

which also limits the development of this field.

In recent years, the advancement of deep learning promoted

the study of emotion recognition (Abbaschian et al., 2021;

Makowski et al., 2021; He et al., 2022; Liu et al., 2022). In

comparison with traditional machine learning, the use of deep

learning for emotion recognition has a high improvement in

accuracy and other aspects (Tang et al., 2017; Santamaria-

Granados et al., 2019). Research shows that both convolutional

neural networks and recurrent neural networks can achieve

good results on emotion recognition tasks. Long short-term

memory (LSTM) recurrent neural networks can extract context

information from input sequences and avoid the long-term

dependency problem. Zhang et al. (2017) used a deep learning

framework to perform classification tasks on valence and arousal

and confirmed its great potential in emotion recognition. Song

et al. (2019) weakened the weight of certain useless sequences

in the process of emotion classification by adding an attention

mechanism to the LSTM network. Research on emotion

recognition based on convolutional neural networks (CNNs)

using physiological signals has the following two paths: the first

is to transform physiological signals into spectrograms and then

two-dimensional (2D) convolution is used for feature extraction.

2D convolutional neural networks have a very mature structure,

which is beneficial for extracting physiological signal features

from 2D images. For instance, Siddharth et al. (2022) used

a pre-trained VGG-16 network to extract features from the

spectrogram, and then they used a long short-term memory

(LSTM) network for classification. The second one is to use a

one-dimensional (1D) convolutional neural network to directly
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classify raw physiological signals. For example, in the research

of Zhang Y. et al. (2021), they used a 1D convolutional neural

network to extract efficient features from biological signals;

this structure can automatically complete the feature extraction

and classification of physiological signals. Unlike using 2D

convolutional neural networks, the 1D-CNN does not require

many preprocesses and can be deployed in an end-to-end

manner. However, previous research on emotion recognition

based on 1D convolutional neural networks usually utilizes a

single modal physiological signal, and even if it is based on

multi-modal, it is only a decision-level fusion, not a feature-level

fusion. Therefore, we proposed an MI-DCNN, which enables

the feature-level fusion of multi-modal physiological signals for

emotion recognition.

This study focuses on using multi-modal physiological

signals for automatic emotion recognition, and the difference

between single-input and multi-input in the CNN will also be

discussed. Simultaneously, we evaluate our proposed method on

two public datasets and our collected data. This article consists

of five sections. Section Related research provides an overview of

related research. Section Introduction of our emotional dataset

introduces the experimental process and the preprocessmethods

used in our dataset. Our proposed method is presented in

Section Methods. We also give a baseline result of our dataset

and evaluation of our proposed method in Section Evaluation,

and we then draw conclusions in the last section.

Related research

The development of emotion recognition research based

on multi-modal physiological signals mainly benefits from the

establishment of physiological emotion datasets and the rise of

deep learning techniques. The research of Gross and Levenson

(1997) shows that audiovisual stimuli can better induce

participants’ emotions; we, therefore, summarized some popular

physiological emotion datasets and related research in Table 1,

where all datasets use audiovisual stimuli as elicitation materials.

Previous research studies (Kolodyazhniy et al., 2011;

He et al., 2020) have demonstrated the potential of

fusion of multi-modality for emotion recognition tasks.

Subramanian et al. (2018) recorded electroencephalogram

(EEG), electrocardiogram (ECG), and galvanic skin response

(GSR) of 58 subjects during watching the video and used

physiological features for emotion and personality trait

recognition. Abadi et al. (2015) presented a dataset to estimate

subjects’ physiological responses to elicitation materials

using brain signals and several physiological signals from 30

participants. Katsigiannis and Ramzan (2018) recorded EEG

and ECG signals of 23 subjects using wearable, low-cost devices

and showed the broad prospects of using these devices for

emotion recognition. Soleymani et al. published MAHNOB-

HCI (Soleymani et al., 2012) and DEAP (Koelstra et al., 2012) to

explore the relationship between human physiological responses

and emotional states. Miranda-Correa et al. (2021) recorded 40

subjects’ EEG, ECG, and GSR signals elicited by visual stimuli

for multi-modal research of emotion states on individuals and

groups. MPED (Song et al., 2019) consists of EEG, GSR, RSP,

and ECG signals of 23 participants while watching videos,

and an attention-long short-term memory (A-LSTM) network

was designed for emotion recognition. Siddharth et al. (2022)

used deep learning methods for physiological signal-based

emotion recognition on four public datasets (Koelstra et al.,

2012; Soleymani et al., 2012; Katsigiannis and Ramzan, 2018;

Miranda-Correa et al., 2021) and demonstrated the superiority

of deep learning methods.

As a structure of a deep learning network, the convolutional

neural network is mostly used in image classification and other

related fields and has made great achievements. However, the

1D convolutional neural network, with its special structure,

is widely used to process time series signals. Previous studies

(Acharya et al., 2018; Yildirim et al., 2018) had proved the

superiority of using the 1D convolutional neural network to

classify time series signals. Yildirim et al. (2018) designed a 16-

layer CNN model to detect 17 types of arrhythmia diseases and

reached an overall classification accuracy of 91.33%. Acharya

et al. (2018) used a 13-layer DCNN with an EEG signal

to classify normal, preictal, and seizures, which achieved an

accuracy of 88.76%. In the field of physiological signal-based

automatic emotion recognition, the 1D convolutional neural

network also achieved better results. Santamaria-Granados

et al. (2019) used 1D deep convolutional neural networks for

emotion recognition on the AMIGOS dataset and achieved a

great improvement compared with previous research. Several

models based on 1D convolutional neural networks are used for

automatic emotion recognition, and end-to-end characteristics

and better recognition results also prove the advantages of using

such models. However, current research on 1D-CNN-based

emotion recognition usually used a single-modal physiological

signal as input, which neglects the inter-correlates between

different modalities of physiological signals; therefore, in this

article, we proposed an MI-DCNN for linking the relationship

between multi-modalities.

Introduction of our emotional
dataset

Emotion elicitation experiment

A total of 52 subjects were recruited to participate in

our experiment. We elaborately chose 12 videos as elicitation

materials, which are shown in Table 2. All of these video

materials run 34–201 s and contain different emotional states,

such as fear, disgust, sadness, anger, and happiness. Before the

formal experiment, the participants need to complete the Patient

Health Questionnaire-9 (PHQ-9; Kroenke and Spitzer, 2002) to

evaluate their recent emotional state. The participants who do
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TABLE 1 Summary of the multi-modal physiological research using video stimulation.

Dataset References Modalities Feature extraction Emotion label Classifier Evaluation

ASCERTAIN Subramanian et al., 2018 ECG, GSR, EEG,

EMO

Multiple physiological features and

facial action units

Valance/arousal Non-linear statistics and

RBF SVM

64%/62% for valance and arousal with

peripheral Signals (ECG+ GSR)

(2-classes)

DECAF Abadi et al., 2015 EEG, MEG, NIR,

hEOG, ECG,

tEMG

Multiple physiological features and

audio-video features

Valance/arousal Linear SVM 56%/60% for valance and arousal with

peripheral physiological (2-classes)

DREAMER Katsigiannis and

Ramzan, 2018

EEG, ECG HRV, PSD Valance/arousal SVM 61.84%/62.32% for Valance/Arousal

using all modalities (2-classes)

Siddharth et al., 2022 EEG, ECG PSD, HRV Valance/arousal LSTM 79.95% Valance/Arousal using all

fusion(2-classes)

DEAP Wang and Shang, 2013 EEG, EOG, EMG Raw data Valance/arousal DBN 51.2%//60.09% Arousal/Valence

(2-classes)

Tripathi et al., 2017 EEG Image features extracted by

convolutional neural networks

Valance/arousal DNN/CNN 81.41%/73.36% for arousal and

valence using EEG (2-classes)

Siddharth et al., 2022 EEG, ECG, GSR Physiological features and features

extracted by pre-trained VGG-16

model

Valance/arousal LSTM 71.87%/73.05% for valance and

arousal (2-classes)

AMIGOS Santamaria-Granados

et al., 2019

ECG, GSR Time-domain-non-linear features,

mean, min, max, standard deviation

etc.

Valance/arousal DCNN 75%/76% for valance and arousal

using all modalities (2-classes)

Miranda-Correa et al.,

2021

EEG, ECG, GSR Multiple physiological features Valance/arousal Gaussian Bayes/SVM 56%/56.4% for valance and arousal

using all modalities (2-classes)

MAHNOB-HCI Siddharth et al., 2022 EEG, ECG, GSR PSD, HRV, Statistical features in time-

frequency domain.

Valance/arousal LSTM 80.36%/80.61% for valance and

arousal using peripheral physiological

features (2-classes)

Subramanian et al., 2018 ECG Statistical distributions of dominant

frequencies (DFs) from IMFs and their

difference

Valance/arousal KNN 59.2%/58.7% for valence and arousal

(3-classes)

MPED Song et al., 2019 EEG, GSR, RSP,

ECG

PSD, STFT, HHS, HOC, Hjorth (1970) Joy, funny, anger, fear,

disgust and neutrality

KNN/SVM/LSTM/A-LSTM Several protocols (Song et al., 2019)

The modalities include electrocardiography (ECG), electroencephalogram (EEG), galvanic skin response (GSR), horizontal electrooculography (hEOG), electromyography (tEMG), and respiratory activity (RSP). The feature extraction methods include

heart rate variability (HRV), power spectral density (PSD), short-time Fourier transform (STFT), Hilbert–Huang spectrum (HHS), higher order crossing (HOC), and intrinsic mode functions (IMFs). VGG-16: Visual Geometry Group Network (consists

of 13 convolutional layers and three fully connected layers). The classifiers include support vector machine (SVM), K-nearest neighbors (KNN), deep neural network (DNN), deep convolutional neural network (DCNN), long short-term memory

(LSTM), attention-long short-term memory (A-LSTM), and deep belief network (DBN).
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TABLE 2 Details of the emotion elicitation material in our dataset.

Emotion Video name Description Duration Video name Description Duration

Disgust FOOD FOR LOUIS A man eats mealworms 34 s FOOD FOR LOUIS A man eats cockroaches 42 s

Fear Myopia surgery Doctor does eye surgery

for a patient

116 s Ring A woman crawled out of the

television

201 s

Final destination A serious car accident 103 s The eye A woman meets a ghost in

the elevator

77 s

Sadness Redmond’s Olympic Story An athlete finishes the race

with injury

91 s Wenzhou train collision Families of the accident seek

the truth

117 s

Anger Beating gravida A man beats a woman in a

restaurant

144 s Dog abuse A man abetted a big dog to

bite a little dog

96 s

Happiness Larva farting episode Yellow tries to prevent the

fart from coming out

92 s Fault funny collection fragments of mistakes and

funny accidents

77 s

not reach the specified score are not allowed to participate in

the experiment, and those who reach the specified score were

givenMP150 physiological signal recorders in the shielded room

to randomly watch the videos, and then three physiological

signals (ECG, EDA, and RSP) were collected. There is a piece

of 30-s music between every two videos to calm their moods,

and the emotion evaluation scheme was the Self-Assessment

Manikin (SAM; Morris, 1995). After watching each video, the

participants filled in the evaluation according to their current

feelings, and the valuation options mainly include the arousal

level (discrete value of 1-9), valence level (discrete value of 1-

9), and familiar level (-1, 0, 1). Because the nine-point scale

was used, a threshold was placed in the middle, which leads to

unbalanced classes, also reported by the studies of the first two

public datasets (Koelstra et al., 2012; Katsigiannis and Ramzan,

2018).

In addition, each subject will first collect baseline data

in the initial state of 60 s, which are used to compensate

for data differences caused by individual differences (Wagner

et al., 2005). After the trial, the participants watched their

recorded video and marked the stimulus segments. Finally, two

psychologists evaluated the videos of all participants and cut out

the needed parts.

Feature extraction from physiological
signals

The physiological signal has weak amplitudes and high

susceptibility to noise and magneto- and electro-interference.

Different source signals come from different parts of the body.

Therefore, different preprocesses of raw signals are needed. We

use the Neurokit2 Toolbox (Makowski et al., 2021) to process

the raw biological signals. ECG signals are mostly concentrated

between 0 and 50HZ, and a finite impulse response (FIR)

band-pass filter between 3 and 45Hz is used to filter the

TABLE 3 ECG features used in this research.

Feature name

Time domain RMSSD, MeanNN, SDNN, SDSD, CVNN, CVSD,

MedianNN, MadNN, MCVNN, IQRNN, pNN50,

pNN20, TINN, HTI

Frequency domain HF, VHF, HFn, LnHF

Non-linear domain SD1, SD2, SD1SD2, S, CSI, CVI, CSI Modified,

PIP, IALS, PSS, PAS, GI, SI, AI, PI, C1d, C1a,

SD1d, SD1a, C2d, C2a, SD2d, SD2a, Cd, Ca,

SDNNd, SDNNa, ApEn, SampEn

raw ECG signal, as shown in Figure 1A where the gray line

represents the raw ECG signal and the pink line represents

the filtered ECG signal. Then, filtered data are passed through

Hamiltonian segmentation (Hamilton, 2002) to detect the QRS

complex of each heartbeat, the heartbeat changes while watching

the elicitation materials are recorded as Figure 1B shown,

and individual heartbeats during this period are shown in

Figure 1C. Finally, the R-peaks are identified as the orange

points, as shown in Figure 1A. Extraction of electrodermal

activity (EDA) is based on convex optimization (Greco et al.,

2016). For respiration, statistical characteristics were calculated,

such as mean, maximum, and variance value of the intensity

of each breathing cycle. From the three physiological signals

collected in our emotion elicitation experiment, 58 features

were extracted for traditional machine learningmethods, mainly

including 47 ECG features (Table 3), four EDA features, and

seven RSP features.

Methods

A multi-input deep convolutional neural network for

emotion recognition based onmulti-modal physiological signals
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FIGURE 1

ECG analysis of subject 1 in the selected interval (10 s) of video b. (A) Filtering and R-peaks detection of ECG signals. (B) Heart rate changes

during the selected interval. (C) Individual heartbeats.

is designed and compared with the previous DCNN model.

Our proposed multi-input deep convolutional neural network

can extract the features of different input signals separately,

and simultaneously, the filters in different channels are not

shared, which guarantees that each input can have a different

convolutional setting for the different input signals. The multi-

input deep convolutional neural network proposed in this

research can be regarded as a data fusion method at the

feature level, and each branch in this structure can rely

on the 1D-CNN to extract features automatically from the

input signals without the need for manual feature extraction

and selection, and the feature extracted from each input

will be concatenated together through the concatenate layer.

Then, the feature vector will be sent to the fully connected

network for feature fusion and selection. This efficient feature-

level fusion method does not base on any prior knowledge

or complex feature engineering, and it can automatically

fuse the most distinguishing features from each channel and

eliminate redundant features between each channel. The whole

process is end-to-end, which is more conducive to real-time

subsequent decision-making. In our designed multi-input deep

convolutional neural network, each channel inputs one modal

of physiological signal; therefore, by adding input channels,

the model can take multi-modal physiological signals, instead

of a single modal, which may have potential benefit for

emotion recognition.

The structure of the model is mainly composed of

convolution layers, pooling layers, and fully connected layers.

Figure 2 illustrates the overall structure of the multi-input deep

convolutional neural network designed in this study, and Table 4

details the parameter setting of the automatic feature extraction

structure used in our model.

The model is divided into three parts according to its

functionality (convolutional, concatenate, and fully connected

layers). Convolutional layers play the role of feature extraction,

concatenate layer will concatenate the features of each channel

from deep convolution layers, and fully connected layers

get emotion class by these features. As shown in Figure 2,

in each processing channel, multiple convolution blocks are

stacked to form a deep convolution structure. The composition

structure of the convolutional blocks is shown in Figure 3,

which consists of four parts: (1) 1D convolutional layer, (2)

activation function, (3) batch normalization layer, and (4)

max-pooling layer.
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FIGURE 2

Multi-input deep convolutional neural network.

(1) One-dimensional convolutional layer: It consists of fixed-

number and fixed-size filters (convolution kernels). Each

filter can be regarded as a fuzzy filter (Zhang Y. et al., 2021),

and it slides on the input signal or is a result of the previous

layer, and performs the convolution operation according to

Equation 1:

xkj =
∑

iǫMj

wk
ij
∗xk−1i +bkj (1)

Where xk−1i represents the input vector of this convolutional

layer, Mj indicates the size of the receptive field, and wk
ij, b

k
j

are two trainable parameters, where wk
ij denotes the kernel

weight between the ith neuron in the k − 1 layer and the

jth neuron in the k layer; bkj denotes the bias coefficient of

the jth neuron in the k layer; and xkj represents the output

vector corresponding to the jth convolution kernel in the

k layer.

(2) Activation function: We add an activation function after

each convolutional layer, and the activation function can

increase the non-linearity of the model and improve the

expression ability of the model. There are many types of

activation functions. In order to prevent the vanishing

gradient problem, we choose the rectified linear unit

(ReLU) as the activation function. Equation 2 shows

the ReLU function.

f (x) =

{

x, x>0

0, otherwise
(2)

(3) Batch normalization: This method has been proposed by

Ioffe and Szegedy (2015), which is based on adjusting

the activation value distribution of each layer to have the

appropriate breadth, eliminating the problem of internal

covariate shift. Simultaneously, the addition of the batch

normalization layer can also accelerate the learning process

and suppress overfitting. This can be expressed in a

mathematical formula as follows:

µB←
1

m

m
∑

i=1

xi (3)

σ 2
B←

1

m

m
∑

i=1

(xi−µB)2 (4)

x̂i←
xi−µB
√

σ 2
B+ε

(5)

yi← γ x̂i+β (6)
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TABLE 4 Detailed feature extraction structure of the multi-input deep convolutional neural network.

Layer name Filters × kernel size Other layer parameters

Input-1 Input-2 Input-3

Conv Block1















128× 32

128× 32

−

−





























64× 16

64× 16

−

−





























128× 16

128× 16

−

−















Activation= ReLU, Strides= 2/2/3, Padding=”’same”

Activation= ReLU, Strides= 2/2/3, Padding= “same”

-

Pooling size= 2

Conv Block2















128× 32

128× 32

−

−





























64× 16

64× 16

−

−





























64× 16

64× 16

−

−















Activation= ReLU, Strides= 2/3/2, Padding= “same”

Activation= ReLU, Strides= 1/3/2, Padding= “same”

-

Pooling size= 2

Conv Block3















128× 16

128× 16

−

−





























32 × 4

32 × 4

−

−





























64 × 8

64 × 8

−

−















Activation= ReLU, Strides= 1/1/1, Padding= “same”

Activation= ReLU, Strides= 1/1/1, Padding= “same”

-

Pooling size= 2

GAP layer [(?, 128)] [(?, 32)] [(?, 64)] -

Concatenate layer [(?, 224)] -

GAP, global average pooling. ? means batch size.

where µB and σ 2
B represent the mean and variance of the data

input to the batch normalization layer. Equation 5 indicates that

the input data are regularized with a mean value of 0 and a

variance of 1. In order to prevent the situation of dividing by

0, a minimum value ε is added. Equation 6 represents the scaling

and translation transformation of regularized data; x̂i, γ, and β

are parameters, which will be adjusted to appropriate values by

the training of the model.

(4) Max-pooling layer: A max-pooling layer is added at the

end of each convolution block. The max-pooling layer

removes redundant information from the input vector and

extracts important features by taking the maximum value of

the input vector within the set range. Simultaneously, the

complexity and calculation of the model are reduced, and

overfitting is prevented.

A global average pooling layer is added at the end of the

deep convolution structure of each channel. It is an important

step to achieve multiple inputs. Through this step, the features

extracted from different channels can be concatenated. We also

evaluated that the global average pooling layer was added behind

the concatenate layer, but in this case, it is necessary to ensure

that the shape of the featuremap output by each channel must be

consistent, which also limits the structure of the model. Finally,

the prediction results are output through two fully connected

layers. During the model training process, the Adam (Kingma

and Ba, 2015) optimizer is selected for parameter update, and

cross-entropy is used as the loss function. The used framework

is TensorFlow (Abadi et al., 2016). The network is trained on a

GTX2080Ti GPU. The dataset is divided into two parts (train

dataset and test dataset), with a division ratio of 80/20, and a

5-fold cross-validation was performed.

Evaluation

In this article, we will use three traditional machine learning

methods (support vector machines, random forests, K-nearest

neighbors) and deep learning methods to analyze our dataset

and public datasets, including the classification of valence

and arousal.

The results obtained by the three traditional machine

learning methods are used as the baseline data of our dataset,

which can be used for follow-up research. The machine learning

method used in this study is from scikit-learn (Pedregosa et al.,

2018). Simultaneously, a single-input DCNN is used to evaluate

the three modalities together and separately, and the evaluation

results, along with the results from our MI-DCNN, were used

to investigate when the input signals are significantly different,

and whether the multi-input DCNN model performs better

than the single-input DCNNmodel. Figure 4 shows the emotion

recognition framework based on traditional machine learning

methods and our proposed deep learning method, where the

blue arrow represents the emotion recognition process based

on traditional machine learning and the red arrow represents

the emotion recognition process based on deep learning. For

the traditional machine learning process, the following steps

are required: (a) data collection from the subjects, (b) signal
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FIGURE 3

Architecture of convolutional blocks.

preprocessing and feature extraction for raw signals, (c) feature

engineering and construction of balanced subsets, and (d)

training the ML models and predicting the emotion class. For

our proposed deep learning methods, the following steps are

necessary: (a) data collection from the subjects, (b) construction

of balanced subsets, (c) training the DL models, and predicting

the emotion class. Compared with traditional machine learning

methods, our proposed deep learning emotion recognition

method eliminates the process of signal processing, feature

extraction, and feature engineering, which is a complete end-to-

end model.

Baseline of our dataset

Considering our dataset is not a balanced dataset, we

randomly created five fully balanced datasets on the current

dataset according to the least type of categories to make our

results more convincing. For each sub-dataset, 80% of the

samples are used as the training set, the remaining 20% of the

samples are used as the test set, and five-fold cross-validationwas

performed. The average of the results of the five sub-datasets is

regarded as the result of the sentiment dataset.

We used single-modal physiological signals (ECG, EDA,

and RSP) and multi-modal physiological signals for emotion

recognition, respectively. While using traditional machine

learning classifiers, we also used random classifiers and majority

classifiers as baseline comparisons. Random classifier makes

random predictions on samples, and the majority classifier is

a model that makes predictions based on most samples. For

the training process of the three traditional machine learning

algorithms, the grid search was used to search and compare

the inherent parameters of each machine learning model to

select the best combination of parameters. The specific results

of using traditional machine learning methods are shown

in Table 5.

We analyzed the baseline results of the dataset and discussed

the performance differences of emotion recognition based on

single-modality and multi-modality physiological signals on

different traditional machine learning classifiers. For arousal, the

results of using the multi-modal had a significant improvement

than single modal (t-test, ECG: 6.5E-04 < 0.01, EDA: 7.5E-04 <

0.01, RSP: 3.6E-05 < 0.01), and for valence, the results of using

themulti-modal also showed a significant improvement than the

single modal (t-test, ECG: 5.2E-06 < 0.01, EDA: 1.2E-04 < 0.01,

RSP: 8.9E-04 < 0.01). The support vector machine algorithm

achieved the best classification results in arousal classification

tasks, with an accuracy of 62.9 ± 0.9% and an f1-score of 62.8

± 1.0%. Compared with the results of arousal, the results of

valence were relatively inferior at the level of the classifier or

at the level of different modalities. The support vector machine

algorithm also achieved the best results on the valence task,

with an accuracy of 60.3 ± 0.8% and an f1-score of 60.0

± 1.0%.

Comparisons with the other public
datasets

To evaluate the quality of our dataset, we compared the

baseline results of our dataset with those of three public datasets.

The comparison results are shown in Table 6. First, a brief

introduction to the three public datasets was performed.

DEAP

A total of 32 participants were recorded with EEG

data, peripheral physiological data, frontal facial videos, and

participants’ self-assessment reports while watching emotion

elicitation video stimuli. Considering the relevance of the

study, only peripheral physiological signals and participants’

self-assessment reports were analyzed in this study. In total,

40 emotional videos were selected as stimuli, and through

an effective highlighting algorithm, the 60-s segment with

maximum emotional content is detected. The emotional

evaluation model uses the Self-Assessment Manikin (SAM;

Morris, 1995), including valence, arousal, and dominance, in

which the dominance scale ranges from submissive to dominant.

The values of all three options are continuous values from 1 to 9;
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FIGURE 4

Framework of emotion recognition in our research.

in addition, the division of valence/arousal degree is also strictly

in accordance with the study mentioned in Koelstra et al. (2012).

DREAMER

Instead of medical-grade devices, the DREAMER dataset

is used with low-cost, wearable devices. The stimuli materials

were obtained from a dataset consisting of 18 videos

evaluated by Gabert-Quillen et al. (2015). EEG, ECG, and

self-assessment reports of 23 participants were recorded

through the emotional eliciting experiment, and the length

of stimuli videos ranges from 65 to 393 s. Only the data

corresponding to the last 60 s of each video are clipped for

research. Similar to DEAP, the emotional evaluation model

also uses the Self-Assessment Manikin, but the scope scale

is different.

AMIGOS

It is a multi-modal physiological signal dataset for

personality characteristics and emotion recognition research of

individuals and groups, using long and short video-inducted

materials, collecting EEG signals, ECG signals, GSR signals, and

facial videos of 40 participants. The emotional evaluation model

is also a Self-Assessment Manikin.

Different from the other three datasets, we did not collect

EEG data in our experiment, so we will not discuss EEG signals

in detail. For peripheral physiological signals, the baseline results

of arousal and valence in the DEAP dataset are lower than those

in our dataset, which had an accuracy of 57 and 62.7%, and an

f1-score of 0.533 and 0.608, respectively. In addition, the results

in the DEAP dataset were not obtained by using balanced data,

and from the majority class classifier, it can be seen that when

the model predicts the test samples according to the proportion,

the accuracy is even higher than that of the trained machine

learning model, but the f1-score is very low. This is because

the majority class classifier predicts the test set into the same

class (the class with more samples in the training set). The

DREAMER dataset uses EEG and ECG to perform the emotion

recognition task, which had accuracies of arousal and valence of

62.4 and 62.4%, and f1-scores of arousal and valence of 0.580

and 0.531. The AMIGOS dataset only calculated the results of
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TABLE 5 Baseline of our dataset.

Classifiers Modality Arousal Valence

Accuracy F1-score Accuracy F1-score

SVM ECG 60.0± 1.7% 0.599± 0.02 58.0± 1.1% 0.573± 0.02

EDA 58.5± 1.3% 0.584± 0.01 55.3± 1.7% 0.512± 0.02

RSP 59.2± 2.3% 0.579± 0.04 55.5± 1.4% 0.548± 0.01

Fusion 62.9± 0.9% 0.628± 0.01 60.3± 0.8% 0.600± 0.01

RFC ECG 61.4± 2.4% 0.612± 0.02 56.8± 1.1% 0.567± 0.01

EDA 56.3± 1.2% 0.561± 0.01 54.6± 1.5% 0.535± 0.02

RSP 59.9± 1.4% 0.595± 0.01 57.6± 1.1% 0.569± 0.01

Fusion 62.9± 2.1% 0.627± 0.02 59.7± 1.3% 0.594± 0.02

KNN ECG 59.5± 3.1% 0.592± 0.03 55.9± 2.1% 0.554± 0.02

EDA 54.3± 2.1% 0.523± 0.02 53.6± 1.6% 0.520± 0.02

RSP 58.9± 1.9% 0.588± 0.02 55.7± 2.1% 0.552± 0.02

Fusion 62.7± 1.2% 0.625± 0.01 59.2± 0.7% 0.584± 0.01

Random 50.1± 0.2% 0.489± 0.01 49.9± 0.1% 0.489± 0.01

Majority 50.0% 0.333 50.0% 0.333

TABLE 6 Comparison with other public datasets.

Datasets Modality Arousal Valence

Accuracy F1-score Accuracy F1-score

DEAP EEG 62.0% 0.583 57.6% 0.563

Peripheral 57.0% 0.533 62.7% 0.608

Majority class 64.4% 0.389 58.6% 0.368

DREAMER EEG 62.2% 0.577 62.5% 0.518

ECG 62.4% 0.580 62.4% 0.531

Fusion 62.3% 0.575 61.8% 0.521

AMIGOS EEG N/A 0.577 N/A 0.564

GSR N/A 0.541 N/A 0.528

ECG N/A 0.551 N/A 0.545

Fusion N/A 0.564 N/A 0.560

OURS ECG 61.4% 0.612 58.0% 0.573

EDA 58.5% 0.584 55.3% 0.512

RSP 59.9% 0.595 57.6% 0.569

Fusion 62.9% 0.628 60.3% 0.600

Majority class 50.0% 0.333 50.0% 0.333

the f1-score, which were slightly lower than our results when

using fusion peripheral data. In our dataset, we first construct

a fully balanced dataset and then judge on the balanced dataset

so that the results obtained will not be falsely high, from the

majority class classification used in our baseline results. It can

be seen that when the test set is predicted according to the class

with more samples in the training set, the result is 50.0%, which

is a completely random result for a binary classification task. In

addition, the f1-score is only 0.33. It is because all the samples

in the test set are predicted to be of a certain category, and the

proportions of the two categories in the test set are exactly the

same. Compared with the public datasets, our research obtained

a better result based on the use of a balanced dataset, which also

shows that our dataset has better quality.

Results of using deep learning methods

This section discusses the results of our proposed methods.

The convolutional neural network is a network structure widely
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TABLE 7 Results of using our proposed methods in our dataset.

Arousal Valence

Accuracy F1-score Accuracy F1-score

Single-in DCNN ECG 75.6± 0.5% 0.751± 0.00 64.5± 1.0% 0.642± 0.01

Single-in DCNN EDA 58.3± 0.5% 0.569± 0.01 55.6± 0.5% 0.544± 0.02

Single-in DCNN RSP 66.2± 0.8% 0.656± 0.01 58.5± 0.4% 0.579± 0.01

Single-in DCNN ECG&EDA&RSP 63.9± 1.7% 0.635± 0.02 56.6± 1.3% 0.554± 0.02

Multi-in DCNN ECG&EDA&RSP 78.3± 1.6% 0.780± 0.01 67.1± 1.2% 0.666± 0.01

FIGURE 5

Comparison of emotion classification based on ECG and ECG&EDA&RSP fusion data.

used for image processing. It has been well-applied in computer

vision and related fields, but it is still in the exploration

stage in the field of emotion recognition using physiological

signals. Unlike the three-channel picture information, each

type of physiological signal is one unique channel signal;

they are independent and represent different functions, so

if stacked different physiological signals into one input for

convolution like the process for a 2D image, we may not

be able to get the effective features of each physiological

signal, or even get some meaningless features because in the

generation process of each feature map, all the input channels

should be considered. Therefore, we introduced the concept

of multiple inputs and verified our idea on our collected

dataset. Table 7 shows the comparison results of using single-

input convolution and multi-input convolution. The first three

schemes are based on single-input single-modal, the fourth

scheme is single-input multi-modal, and the fifth scheme is

multi-input multi-modal. The results show that when the

network structure is a single-input DCNN, the classification

result of fusion data is worse than that of ECG, which proved

that if the single input DCNN is used for different input data,

the performance of the classifier may be degraded. However,

when using an MI-DCNN, the best results were obtained

and compared with the former schemes, and the classification

results on valence and arousal were significantly improved,

which verified the effectiveness of MI-DCNN. Simultaneously,

the fifth scheme also confirmed the superiority of using

multi-modality for emotion recognition. We compared the

classification performance between traditional machine learning

methods and our proposed MI-CNN, and the detailed results

are shown in Figure 5. Compared with traditional machine

learning methods, our proposed MI-CNN showed a significant
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FIGURE 6

Confusion matrixes using fusion data (ECG&EDA&RSP) of our proposed method: (A) arousal; (B) valence.

TABLE 8 Comparison with other research.

Dataset References Modality End-to-end Arousal Valence

Accuracy F1-score Accuracy F1-score

DEAP (Koelstra et al., 2012) Peripheral No 62.7% 0.608 57.0% 0.533

(Wang and Shang, 2013) EEG, EOG, EMG Yes 51.2% - 60.9% -

Our Peripheral Yes 67.9% 0.67 68.4% 0.69

DREAMER (Katsigiannis and Ramzan, 2018) ECG No 62.37% 0.5305 62.37% 0.5798

Our ECG Yes 78.6% 0.77 74.7% 0.74

improvement in both tasks (t-test, arousal: p = 9.7E-03 < 0.01,

valence: 6.5E-03 < 0.01).

Figure 6 shows confusion matrixes using fusion data of our

proposed method, where the row represents the actual label

and the column represents the predicted label. Through the

confusion matrix, we can observe the specific classification

results of our proposed method in each category, including

precision and recall. For arousal, the precision of low arousal

is 77.57% and recall is 83.84%, and the precision of high

arousal is 82.42% and recall is 75.76%. For valence, the

precision of low valence is 64.38% and recall is 76.42%, and the

precision of high valence is 71.00% and recall is 57.72%. Table 8

shows the comparison of results on two public datasets. The

results of our proposed methods were higher than the baseline

results (Koelstra et al., 2012; Katsigiannis and Ramzan, 2018).

Simultaneously, compared with other end-to-end research

(Wang and Shang, 2013), our method also had improvement,

which shows a high potential for using the 1D convolutional

neural network for automatic emotion recognition tasks.

Conclusion

This work studied the response patterns of physiological

signals in different emotions. By designing an emotional

induction paradigm, a physiological emotional dataset was

constructed, and a complete end-to-end MI-DCNN structure

was designed. The results of the MI-DCNN in emotion

recognition tasks showed better performance than traditional

machine learning methods, and less preprocessing and

automatic feature extraction progress showed the MI-DCNN

more suitable for automatic emotion recognition. We also

studied physiological signal-based emotion recognition from

a new perspective, and physiological signals are different from

picture information. Considering the application scenario, we

propose a multi-input deep convolutional neural network that

implements end-to-end automatic emotion recognition based

on multi-modal physiological signals. By adding input channels,

we solved the problem of interference between channels and

achieved the automatic feature extraction step. Simultaneously,
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by comparing the difference between a single-input CNN and

a multi-input CNN, we elaborated on the necessity of using

a multi-input CNN when the channel information is quite

different. However, some limitations should be noted. First,

to obtain a model with stronger generalization ability, the

individual difference and temporal difference of biological

signals should be considered. Second, we only discussed the

benefits of adding input channels to the classification results,

ignoring the increase in complexity and parameters they bring

to the model. In our future research, we will seek to develop

lightweight neural networks that can learn individual and

temporal differences from biological signals for automatic

emotion recognition.
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