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Transmissible spongiform encephalopathies (TSEs), or prion diseases, are

progressive neurodegenerative disorders of the central nervous system that

a�ect humans and animals as sporadic, inherited, and infectious forms.

Similarly to Alzheimer’s disease and other neurodegenerative disorders, any

attempt to reduce TSEs’ lethality or increase the life expectancy of a�ected

individuals has been unsuccessful. Typically, the onset of symptoms anticipates

the fatal outcome of less than 1 year, although it is believed to be the

consequence of a decades-long process of neuronal death. The duration

of the symptoms-free period represents by itself a major obstacle to carry

out e�ective neuroprotective therapies. Prions, the infectious entities of

TSEs, are composed of a protease-resistant protein named prion protein

scrapie (PrPSc) from the prototypical TSE form that a	icts ovines. PrPSc

misfolding from its physiological counterpart, cellular prion protein (PrPC),

is the unifying pathogenic trait of all TSEs. PrPSc is resistant to intracellular

turnover and undergoes amyloid-like fibrillation passing through the formation

of soluble dimers and oligomers, which are likely the e�ective neurotoxic

entities. The failure of PrPSc removal is a key pathogenic event that

defines TSEs as proteopathies, likewise other neurodegenerative disorders,

including Alzheimer’s, Parkinson’s, and Huntington’s disease, characterized

by alteration of proteostasis. Under physiological conditions, protein quality

control, led by the ubiquitin-proteasome system, and macroautophagy

clears cytoplasm from improperly folded, redundant, or aggregation-prone

proteins. There is evidence that both of these crucial homeostatic pathways

are impaired during the development of TSEs, although it is still unclear

whether proteostasis alteration facilitates prion protein misfolding or, rather,

PrPSc protease resistance hampers cytoplasmic protein quality control.

This review is aimed to critically analyze the most recent advancements

in the cause-e�ect correlation between PrPC misfolding and proteostasis
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alterations and to discuss the possibility that pharmacological restoring

of ubiquitin-proteasomal competence and stimulation of autophagy could

reduce the intracellular burden of PrPSc and ameliorate the severity of

prion-associated neurodegeneration.
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Introduction

The capacity to withstand environmental variations, keeping

a continuous control of structure and function, represents

a primary need for all living beings and is often referred

to as homeostasis. In both uni- and multicellular organisms,

an extraordinarily wide range of mechanisms cooperate

to keep homeostasis, whose functioning is a mandatory

requirement to grant long-term survival (Magalhaes et al.,

2018). Protein homeostasis, or proteostasis, balances protein

synthesis and degradation not only to adapt the number

of intracellular proteins to the cell needs but also to

control their proper folding, trafficking, and recycling; this

is particularly relevant within the central nervous system

(CNS) to prolong neuronal viability, synaptic functions, and

ultimately cognitive performances (Hetz, 2021). Defective

proteostasis is the basis of CNS alterations in several

pathologic conditions. Protein misfolding, oligomer/fibryl

accumulation, and cellular inability to eliminate them are

the common histopathological traits of Alzheimer’s disease

(AD), Parkinson’s disease (PD), fronto-temporal dementia

(FTD), Huntington’s disease (HD), amyotrophic lateral sclerosis

(ALS), and transmissible spongiform encephalopathies (TSEs),

also known as prion diseases (Thellung et al., 2019; Le

Guerroue and Youle, 2021). Walker and Levine III (2000)

proposed the term cerebral proteopathy to semantically unify

all the disorders that are associated with the alteration of

protein conformation in the CNS. Such semantic unification is

particularly useful because comprehends, under a common basic

alteration, neurodegenerative diseases otherwise heterogeneous

for etiology, histopathology, and clinical presentation. Although

sporadic onset represents the most prevalent occurrence of all

neurodegenerative disorders, significant signs of progress in

the characterization of the mechanisms of pathogenesis have

been obtained by studying inherited forms of proteopathies.

Noteworthy, pathogenic mutations have been described not

only in genes encoding for disease-specific proteins but also

in genes involved in the mechanisms of protein quality

control and turnover (Lehman, 2009). TSEs, rare and fatal

neurodegenerative conditions universally known as prion

diseases, affect humans and domestic and feral animals, inducing

a rapid neurological decline. Neurohistology lesions, although

differences among the different forms are present, comprise

spongiform degeneration of brain parenchyma, neuronal loss,

astrogliosis, and deposition of the amyloidogenic protein,

prion protein scrapie (PrPSc). PrPSc is derived from the

post-translational rearrangement of the glycoprotein cellular

prion protein (PrPC) (Prusiner and Dearmond, 1991). Human

TSEs, including Creutzfeldt–Jakob disease (CJD), Gerstmann–

Sträussler–Scheinker disease (GSS), fatal familial insomnia

(FFI), and Kuru, are different in etiology being sporadic,

familial, iatrogenic, and infectious. A peculiar distinctive feature

of TSEs is transmissibility through inter-human passage of

PrPSc (Prusiner, 1998; Will and Ironside, 2017). PrPC to

PrPSc transition may be either spontaneous or favored by

mutations within PRNP, the PrPC encoding gene, or forced by

the interaction with exogenous PrPSc that acts as a template

(Prusiner, 1982). PrPSc infection may follow parenteral or

enteral routes (for example, via ingestion of contaminated meat

during the “mad cow” disease epidemic in the 1990s; Diack

et al., 2014). PrPC misfolding leading to the formation of PrPSc

concerns the secondary structure of the protein, increasing

β-sheet structure content, hydrophobicity, and resistance to

proteolysis (Pan et al., 1993). PrPSc accumulation leads to

the activation of amyloidogenic pathways, leading to the

formation of oligomers and fibrils, whose accumulation is

generally associated with histological lesions in all prion diseases

(Corsaro et al., 2012).

Although a direct cause-effect relationship between PrPSc

accumulation and pathology is still a debated issue (Parchi et al.,

1996; Hill and Collinge, 2003), there is growing evidence that

PrPC misfolding is normally prevented by a protein quality

control system whose failure plays a pathogenic role in all

TSEs. Moreover, the impairment of the two major cellular

mechanisms that control proteostasis, the ubiquitin–proteasome

quality control (UPS), and autophagy (ALP) has been also

described in association with other neurodegenerative disorders

characterized by protein misfolding (Nixon, 2013; Ciechanover,

2015; Zheng et al., 2016; Colacurcio et al., 2018). These

similar pathogenic mechanisms, identified in all proteopathies,

prompted the search for common targets to Exeter effective

neuroprotective intervention in all these conditions (Kumar

et al., 2020). This review is focused on the most recent insights

into the pathogenic role of proteostasis failure in prion diseases

and the possibility to counteract neuronal death through the

pharmacological modulation of UPS and autophagy.
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Protein quality control

In eukaryotic cells, the control of proper folding of newly

synthesized proteins and the prevention of their aberrant

accumulation are granted by a series of interconnected

mechanisms, whose intervention ranges from assisted refolding

in the endoplasmic reticulum (ER), to degradation or

disaggregation in the cytosol. All these pathways provide

vital contributions to proteostasis and are also joined in

a complex network of mutually compensatory activities

(Ciechanover and Kwon, 2017). Improper protein folding

often produces the exposure of hydrophobic amino acid

sequences that are recognized and bound by chaperones

resident in ER, nucleus, and cytoplasm. Binding to chaperones

favors the reestablishment of the correct structure of client

proteins or drives them to proteolysis via the ubiquitin-

proteasomal system (UPS) or the autophagic pathway. There

is compelling evidence that cellular and pathological prion

proteins are crucial clients of the mechanisms of protein quality

control undergoing chaperone-assisted refolding (Tittelmeier

et al., 2020), ubiquitination, proteasomal, and lysosomal

degradation (Ciechanover, 2015). There is also hope that a

better comprehension of these pathways may lead to novel

effective neuroprotective strategies against prion diseases.

Chaperone-assisted refolding and
proteolysis

Molecular chaperones is a large group of evolutionarily

conserved proteins that play a vital role in protein quality

control and allow adaptations of the cellular proteome to

environmental changes; their loss of efficacy in CNS has often

been associated with brain proteopathies (Ciechanover and

Kwon, 2017).

Chaperones assist proper protein folding by recognizing

exposed hydrophobic sequences in nascent polypeptides as

a hallmark of protein misfolding and forming complexes

that temporarily block proteins in an unfolded state. This

complexation may either determine the correct refolding of

client proteins or activate their degradation by the ubiquitin-

proteasome system (UPS) and autophagy. Heath shock

proteins (HSPs) are chaperones activated by a variety of

cell stresses, including heat, oxidative, and inflammatory

insults; they comprehend different subgroups (named based

on respective molecular weight: Hsp90, HsP70, Hsp40,

and others). Accessory proteins, named co-chaperones,

are also often recruited to the complexes with substrate

proteins and act as adaptors to guide ubiquitination and

interaction with proteasomes (Abildgaard et al., 2020).

Not surprisingly, the control of prion protein folding is an

important task of molecular chaperones and is currently

under investigation to characterize its involvement in prion

disease pathogenesis, as well as the therapeutic potential of its

pharmacological modulation (Tittelmeier et al., 2020; Thackray

et al., 2022).

Ubiquitin proteasomal system

Eukaryotic cells rely on UPS for survival because this

proteolytic system exerts a continuous control of the quality and

the amount of newly formed, short-living proteins. Excessive

and/or wrongly folded proteins, instead of being transported

from rough ER to Golgi, for further processing and insertion

in the plasma membrane or secretion, are retrotranslocated

in the cytosol, conjugated with multiple chains of ubiquitin,

and degraded by the 26S proteasome (Pickart, 2001; Sloper-

Mould et al., 2001). The addition of poly-ubiquitin chains,

essential for further proteolytic processing of the substrate,

is carried out by a sequence of three ATP-consuming steps,

catalyzed by the ubiquitin-associated enzymes E1, E2, and

E3. Ubiquitin is transiently bound to and activated by E1

(ubiquitin-activating enzyme), transferred to E2 (ubiquitin-

conjugating enzyme), and then to E3 (ubiquitin ligase) that

covalently binds ubiquitin to substrates. This process is repeated

several times by adding further units to the previously attached

ubiquitin, thus tagging the substrates by a chain of poly-

ubiquitin that is recognized by 26S proteasome (Glickman

and Ciechanover, 2002). Proteasome is a large cytosolic and

nuclear 26S, ATP-dependent enzymatic complex, composed

of a catalytic (proteolytic) 20S unit and a regulatory 19S

unit, both composed of multiple subunits. The regulatory

19S unit that forms a cap at one or both sides of the

20S unit, comprehends a base and a lid and works as a

gatekeeper that selects the substrate to degrade and prepare it

for digestion. Broadly, the 19S unit recognizes ubiquitinylated

proteins, removes the poly-ubiquitin chains, and unfolds the

proteins, thus allowing the recycling of ubiquitin moieties and

the entry of the substrates into the 20S proteolytic chamber

(Sahu and Glickman, 2021). The catalytic 20S subunit has

the shape of a cylinder, composed of four stacked rings, each

made of seven subunits; the two external rings are called

α rings and delimitate the entrance and exit of the barrel,

whereas the two β rings, endowed with caspase-like, trypsin-like,

and chymotrypsin-like proteolytic activity, digest the proteins

(Glickman and Ciechanover, 2002; Sakata et al., 2021). While

digestion is carried on by β subunits, the α-structures control

the opening of the gate to let the substrate in and expel

digested peptides.

The extremely complex regulation of ubiquitin ligation and

proteasome functioning is beyond the aim of this review, and

thus, we will focus on themost recent insight into the association

between UPS failure and the development of neurodegeneration

in prion diseases.
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Autophagy

Autophagy is a lysosomal-dependent, pro-survival

proteolysis of portions of cytoplasm, damaged organelles, and

potentially harmful protein, which allows cells to cope with

several stress conditions. Through autophagy, cells may survive

starvation via the recycling of cytoplasmic nutrients, avoid

apoptosis by removing damaged mitochondria, and control

proteostasis by digesting aberrant and aggregation-prone

proteins (Klionsky et al., 2021).

Different types of autophagy can be identified based on the

nature of substrates and the mechanisms by which substrates

are delivered to lysosomes. While macroautophagy, classically

referred to as autophagy, traps large portions of cytoplasm in

double-membrane autophagosomes that fuse with lysosomes to

digest and recycle nutrients, other protein-targeted forms called

aggrephagy and chaperone-mediated autophagy (CMA) play a

crucial role in the control of proteostasis.

Aggrephagy, cooperates with UPS, being mainly involved

in the removal of larger or aggregation-prone proteins that

cannot enter the narrow pore of the proteasome (Lamb et al.,

2013; Kumar et al., 2022). Broadly, misfolded proteins that

escape the degradation by proteasome because of abundancy,

aggregated structure, or as a consequence of defects of specific

UPS steps, cluster in the cytoplasm to form inclusion bodies

(Kopito, 2000), which may be engulfed in autophagosomes

(Fortun et al., 2003). Aggrephagy is a remarkably selective

process, allowed by adaptor proteins in which clusters of

ubiquitinylated substrates committed to degradation are driven

into growing phagophores and digested as autophagosomes

fused with lysosomes (Bjorkoy et al., 2005; Pankiv et al.,

2007). Perhaps the best characterized of these adaptors is a

multidomain protein of 440 amino acids, named sequestosome

1 (SQSTM1) or p62, whose activity is not exclusively involved in

the proteostasis, but lies at the crossroads of multiple signaling

(Katsuragi et al., 2015). P62 role has been extensively studied

in many neurodegenerative diseases, and its accumulation on

the cytoplasm is nowadays regarded as a reliable hallmark of

either activation of autophagy or reduced efficiency of a protein

quality control system (Pankiv et al., 2007; Klionsky et al., 2021).

The sequence of p62 has been defined in detail, leading to

the identification of multiple domains responsible for protein-

to-protein interactions (Berkamp et al., 2021). Three of these

domains are considered critical to govern the fate of protein

degradation between UPS and aggrephagy: the PB1 domain

that allows p62 oligomerization, the LIR domain that interacts

with LC3BII located in the membranes of phagophores, and

a ubiquitin-binding domain (UBA) that binds ubiquitinylated

substrates (Pankiv et al., 2007; Katsuragi et al., 2015). There

is recent evidence that condensation of cytoplasmic proteins

in solid aggregates, as occurs in typical aggrephagy, is not the

only mechanism by which autophagosomes eliminate clustered

misfolded proteins. Through its UBA domain, p62 sequesters

ubiquitinylated proteins into membrane-less droplets, called

p62 bodies that increase in size by progressive coalescence

(Berkamp et al., 2021). Although composed of aggregated

proteins, p62 bodies have a spherical shape and a viscosity

that separates them from cytosol with a liquid-liquid phase

separation (Brangwynne et al., 2009; Sun et al., 2018). Through

LIR sequence, p62 interacts with LC3-II proteins that marks

the growing phagophore, thus promoting the engulfment of the

bodies in the autophagosome (Zaffagnini et al., 2018; Simonsen

and Wollert, 2022). The process continues with the fusion

of autophagosomes with lysosomes, allowing the digestion

and the recycling of ubiquitinylated substrates present in the

autophagosomes (Klionsky et al., 2021).

Selective removal of proteins from cytosol is made possible

by an alternative form of autophagy called chaperone-mediated

autophagy (CMA), in which client substrates bind with

chaperone and co-chaperone complexes and are translocated

within lysosomes by lysosome-associated protein 2A (LAMP2A)

(Bourdenx et al., 2021). Typical targets of CMA contain

the amino acid sequence KFERQ and need the binding of

chaperones belonging to the family of Hsp70 and the heat

shock protein 70 cognate (Hsc70) that are overexpressed under

stressful conditions. Nevertheless, other chaperones, linked to

the control of the cell cycle, have been described to operate

via CMA recognizing different pentapeptide sequences, for

example, in prion proteins (Wang et al., 2015, 2017).

Protein quality control of prion
protein

PrPC is a glycoprotein anchored to the outer leaflet of the

plasma membrane via a glycosylphosphatydylinositol moiety

(Stahl et al., 1987). Along the pathway of PrPC maturation,

the removal of the N-terminal signal peptide is followed by the

formation of a disulfide bridge and the addition of one or two

oligosaccharide chains (Haraguchi et al., 1989). GPI anchor is

hence attached to the N-terminus of the protein following the

removal of a 22 AA peptide (Stahl et al., 1992; Hegde and Rane,

2003). Mature PrPC is exposed on the outside of the plasma

membrane surface and, being characterized by a high turnover

and rapidly recycled through the endocytic system (Shyng et al.,

1993), it is a likely candidate to undergo UPS control. PrPC

maturation follows the typical route for transmembrane proteins

as the removal of signal peptide and glycosylation in the ER,

translocation to Golgi, and the insertion into the outer leaflet of

the plasma membrane.

Crucial scientific questions about the biology of PrPC have

pertained to the molecular partners that not only assist its

proper folding but also affect PrPC-PrPSc conversion or bring

misfolded/aggregated prions to degradation. Among the several

chaperones reported to interact with prion proteins under

physiological and pathological circumstances, those belonging
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to heat shock proteins and in particular the Hsp70 subgroup

(Hsp70s) showed a consistent association with prion diseases

in humans, animals, and in experimentally infected rodents

and cells. Indeed, the analysis of brains from sporadic and

familial CJD patients showed that Hsp73 expression is inversely

proportional to neuronal loss indicating that differences of

vulnerability to PrPSc in different brain areas may depend on

the neuroprotective activity of chaperones (Kovacs et al., 2001).

Similar reports have been obtained in scrapie-infected sheep

where the pattern of expression of heat shock proteins was

associated with prion protein deposition, gliosis, and spongiosis

(Serrano et al., 2011). In mice infected by intracerebral injection

of scrapie strains, Hsp70 immunoreactivity was detected in close

vicinity of lysosome-related structures (Laszlo et al., 1992) and

a net increase of Hsp70 and ubiquitin gene expression was

observed (Kenward et al., 1994). Pharmacological induction

of Hsp70 in chronically prion-infected cell lines counteracted

intracellular accumulation of PrPSc, and, on the other hand,

the abrogation of Hsp70 in mice accelerates the progression

of neurodegeneration after the intracerebral injection of RML

prion (Mays et al., 2019). Another molecular chaperone, whose

activity plays a role in the posttranslational fate of prion

protein, is the 78 KDa glucose-regulated protein (GPR78), also

known as binding immunoglobulin protein (Bip), a member

of HsP70s, mainly resident in the ER. Independent researchers

have demonstrated that Bip can bind physiological and disease-

associated forms of PrP, inducing proteasomal degradation of

mutant PrP (Jin et al., 2000; Park et al., 2017). Importantly,

Bip can also revert PrPSc protease resistance and can inhibit

PrPSc replication in persistently infected cells, and its expression

is necessary to prolong mouse survival after intracerebral

infection with scrapie strains (Park et al., 2017). Moreover,

although devoid of consequence in normal conditions, knocking

out stress-sensing proteins, such as heath shock factor 1,

reduces survival in mice infected with scrapie prions (Steele

et al., 2008). Altogether these reports suggest that activation

of chaperones belonging to the group of Hsps represents an

attempt of neuroprotection that may explain the late onset of

most familial TSEs.

PrPC is a typically short-lived protein with a half-life

of about 6 h (Taraboulos et al., 1992), and it is estimated

that about 10% of newly formed protein does not pass the

quality control and is degraded by the proteasome. In fact,

pharmacological inhibition of proteasome activity produces an

accumulation of cytosolic aggregates of protease-resistant PrP,

rich in ubiquitin moieties (Ma and Lindquist, 2001; Yedidia

et al., 2001), whereas the inhibition of proteasome negative

regulators causes a reduction of the PrPSc intracellular content

(Homma et al., 2015). Prion protein mutations are associated

with familial forms of CJD, GSS, and FFI, producing PrP variants

characterized by incomplete processing and altered folding

and topology. The degradation of these mutant prion proteins

is partially granted by chaperones that temporarily bind the

protein favoring its processing by UPS, CMA, or disaggregation

(Jin et al., 2000; Wang et al., 2017; Thackray et al., 2022). In vitro

studies, performed in cell lines expressing PrP mutant forms,

have demonstrated that the pharmacological inhibition of UPS

induces intracellular accumulation of detergent-insoluble and

partially protease-resistant PrP that accumulates in aggregation

bodies (Zanusso et al., 1999; Jin et al., 2000; Ma and Lindquist,

2001; Mishra et al., 2003). Moreover, the ubiquitinylation of

PrPC by the ubiquitin ligase TRAF6 favors its interaction with

p62 and the formation of aggresomes (Masperone et al., 2022).

Similarly, to PrPC and its variants harboring disease-

associated mutations, the presence of PrPSc, the pathogenic

form of PrP, induces the cells to activate the UPS and favors

the formation of aggregates, as a defense strategy. Using

intracerebral and intraperitoneal prion injection in experimental

animals as infection models, Homma observed an increased

expression of p62 and autophagosome-associated LC3-II in

the brain of terminally ill animals (Homma et al., 2014).

Moreover, the pharmacological inhibition of proteasome, using

the inhibitor MG-132, stimulated the formation of perinuclear

aggregates containing both PrPSc and p62 in PrPSc persistently

infected neuroblastoma cells. Importantly, p62 colocalization

with PrPSc is dependent on p62 ability to bind ubiquitin.

High levels of p62 also abrogate cell commitment to apoptosis

when mutant forms of PrPC escape UPS degradation and

form PrP- and p62-containing cytoplasmic inclusion bodies

(Xu et al., 2014). Although intracellular accumulation of

PrPSc is believed to be counteracted by the autophagosome-

autolysosome pathway, there is evidence that PrPSc can be also

recognized by chaperones and digested in lysosomes through

the activation of CMA. One of these chaperones is the polo-

like kinase 3 (PLK3), whose overexpression upregulates Hsc70

and LAMP2A, which, in turn, translocate PrPSc in the lysosomal

lumen (Wang et al., 2015, 2017). Altogether, this evidence

suggests that the UPS system could, at least temporarily and

partially, counteract the accumulation of pathological prion

proteins in the brain, during the development of both inherited

and acquired forms of TSEs and that selective aggrephagy

and CMA can act as complementary clearing systems when

aggregated PrPSc escape UPS or because of its overwhelming.

The evolving concept of transmissible proteopathies faced

the crucial issue to define the mechanisms that may favor the

diffusion of aberrant proteins, in particular prion protein, to

distant body districts or within the brain. Several mechanisms

have been hypothesized including axonal- or cell-mediated

transport and diffusion through macrovesicles released from

infected neurons (Glatzel and Aguzzi, 2000; Bellingham

et al., 2012). In particular, microvesicle-mediated transport is

emerging as a pivotal mechanism for short- and long-range

intercellular communication. It was reported that exosomes,

microvesicles contained in multivesicular bodies (MVBs), are

released into the extracellular space and uptaken by neighboring

cells through receptor-mediated endocytosis or phagocytosis.
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Importantly, both exosome release and autophagy activation are

used by cells not only for cell-to-cell communication but also for

proteostasis maintenance (Xu et al., 2018).

The cooperation between autophagy and exosome release

is particularly relevant for neurons that alternatively use these

systems to reduce the burden of unwanted proteins. Cell

commitment to degrade or release cargo proteins contained in

exosomes is evidenced by the fate of MVBs: that may fuse with

autophagosomes and follow the autophagy flux producing the

digestion of exosomes and their cargo or they may fuse with

the plasma membrane and release exosomes in the extracellular

space (Fader et al., 2008) (Figure 1). Prion-infected cells release

exosomes containing PrPSc which can transmit disease to

recipient mice (Fevrier et al., 2004; Vella et al., 2007). These

in vitro results are in line with the histochemical analysis of

autophagy-related structures in TSE-affected brains, revealing

the presence of MVBs immunoreactive for PrPSc, suggesting

exosome-mediated diffusion of PrPSc within the brain (Sikorska

et al., 2004; Liberski et al., 2011; Guo et al., 2016).

Neuronal capacity to engulf disease-associated proteins

through exosomes is currently under extensive investigation

and has been described as a “double-edged sword” in many

protein conformational diseases including tauopathies and α-

synucleinopathies, where neurons can adopt the same strategy

to avoid apoptosis while favoring the dissemination of pathology

(Perez-Gonzalez et al., 2020; Meldolesi, 2021). Importantly,

pharmacological modulation of autophagy is easily achievable

thus producing an indirect modulation of exosome release

(Abdulrahman et al., 2018; Thellung et al., 2019).

Recently, it was discovered that also other neurotoxic

protein aggregates from different neurodegenerative diseases

(AD and PD in particular) can be transported from affected areas

to distant neurons. In particular, misfolded forms of b-amyloid

or α-synuclein can be secreted into the extracellular milieu,

possibly via exosomes, thereby affecting in a prion-like manner

the normal physiology of the neighboring cells. This hypothesis

was proposed as a plausible reason for the time course of

idiopathic AD and PD, which only become symptomatic in

middle to late life. For a review, see Yoshida and Hasegawa

(2022).

Proteostasis failure is a pathogenic
trait shared by prion diseases and
other neurodegenerative conditions

Neuronal plasticity and long-term survival rely on a

complex network of sensors that detect perturbation of

proteostasis and effectors that put in action a series of

countersteps, including chaperone-assisted protein refolding

and disaggregation, UPS, and autophagy (Weibezahn et al.,

2005; True, 2006; Overhoff et al., 2021; Giandomenico et al.,

2022). The loss of competence of these control systems, although

occurring at a low level also during physiological aging, is

enhanced in many neurodegenerative disorders and favors

the accumulation of misfolded proteins, the production of

neurotoxic oligomers, and their diffusion within CNS (Braak

et al., 2004; Nixon, 2013; Tsakiri and Trougakos, 2015). The

discovery of pathogenic prions has attracted an unprecedented

interest in protein folding as a transmissible disease-related

trait. This observation prompted neuroscientists to consider

protein aggregation as a dynamic phenomenon in which

protein tendency to adopt aberrant conformations may take

over the proteolytic capacity of host cells and, under certain

circumstances, favor the diffusion within the brain or be

transmissible in other organisms (Harrison et al., 2001). Indeed,

the Braak hypothesis, originally formulated to explain the

progressive infiltration of adjacent brain areas with Levy bodies

in Parkinson’s disease, has been recently applied to explain also

the progression of hyperphosphorylated tau within dystrophic

neurons in Alzheimer’s disease, and the centripetal progression

of PrPSc from the periphery to the brain in infectious TSEs

(Braak and Braak, 1995; Braak et al., 2004; Iwasaki, 2020).

Moreover, the capacity of a pathological protein to recruit its

physiological counterpart driving its spatial refolding, which

originally was described as a unique property of PrPSc, has been

recently proposed to play a role also in the pathogenesis of

Alzheimer’s and Parkinson’s diseases, as a mechanism favoring

intracellular aggregation of hyperphosphorylated tau and α-

synuclein (Caughey and Kraus, 2019; Duyckaerts et al., 2019).

According to the “gain of toxicity” hypothesis, to explain the

neuroanatomical alterations associated with the accumulation

of PrPSc in the brain, it was proposed that, regardless

of the etiology of the disease (transmission from infected

material, mutation in the PrP-encoding gene, or stochastic

events), neuronal death results from the toxic activity of PrP

soluble oligomers generated during the amyloidogenic process

occurring after its misfolding (Bucciantini et al., 2002; Chiovitti

et al., 2007; Simoneau et al., 2007). The different human prion

diseases are characterized by remarkable differences in clinical

presentation and neuropathology, in particular as PrPSc deposits

in brain parenchyma. Amyloid plaques containing PrPSc are not

invariantly present, being detected in a minor part of variant

and sporadic CJD cases, and their ultrastructural aspect ranges

from multicentric, typical of familiar GSS, florid in most cases

of variant CJD or unicentric, typical of kuru (Ghetti et al.,

1995; Ironside and Bell, 1997; Sikorska et al., 2009; Liberski

et al., 2010). Regardless of this heterogeneity, the presence of

ubiquitin surrounding amyloid plaques and its association with

dystrophic neurons in spongiotic areas has been consistently

reported by histochemical and ultrastructural analyses of brains

in vCJD, GSS, and kuru patients, and it is an important common

trait that prion diseases share with Alzheimer’s and other

neurodegenerative conditions (Suenaga et al., 1990; Ironside

et al., 1993; Lowe et al., 1993; Migheli et al., 1994; Sikorska et al.,

2009; Zhou et al., 2015).

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.966019
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Thellung et al. 10.3389/fnins.2022.966019

FIGURE 1

Schematic representation of the interplay between exosome release and autophagy to reduce the intracellular burden of PrPSc. PrPC (green)

conversion into neurotoxic PrPSc isoform (red) occurs during PrPC recycling through a stochastic event or after interaction with exogenous

PrPSc. Neuronal strategies to remove cytoplasmic PrPSc comprehend protein degradation through macroautophagy or PrPSc insertion into

exosomes contained in multivesicular bodies (MVBs). MVBs can either release exosomes containing PrPSc, or reenter the autophagy cycle

through the formation of autophagosomes, amphysomes (not depicted in the figure) and autolysosomes.

The increase in vacuolar structures with the features of

lysosomes, containing ubiquitinylated proteins, and of large

autophagosomes, containing ribosomes and other cytoplasmic

constituents, has been often described by post-mortem analysis

of brains from animals and humans affected by prion

diseases and in experimentally prion-infected rodent brains

(Boellaard et al., 1989, 1991; Jeffrey et al., 1992; Liberski

et al., 1992; Alves-Rodrigues et al., 1998). Moreover, by

electron microscopy observation of brain tissue from scrapie-

infected brains, the presence of electron-dense lysosomes

containing undigested prion protein, ubiquitin, and chaperons

was observed, suggesting that the impairment of the proteolytic

cycle leads to lysosomal disruption and neuronal death

(Laszlo et al., 1992).

Relevant insight regarding such issue also comes

from studies about the pathogenic consequence of

autophagy impairment in Alzheimer-related neuronal death.

Immunohistochemical analysis of cortical dystrophic neurites

of patients affected by Alzheimer’s disease shows a significant

increase in electron-dense autophagosomes compared with age-

matched healthy subjects (Boland et al., 2008). In this regard, it

has been recently demonstrated that the extracellular deposition

of β-amyloid-containing plaques is the consequence of impaired

autophagic digestion of Aβ peptides, due to the lack of

acidification of autolysosomes and incomplete autophagy cycle

(Lee et al., 2022). Importantly, this alteration largely precedes

extracellular deposition of β-amyloid, and it was proposed to

represent a causal event in amyloid plaque formation.

Given the involvement of UPS and autophagy impairment

in a broad spectrum of human proteopathies (Bence et al.,

2001; Paul, 2008), it will be crucial to understand whether the

intracellular aggregation of prion protein is the consequence or
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the cause of proteostasis disruption. Such an important issue

is presently unresolved, although evidence of a causal role of

autophagy impairment in protein aggregation can be derived

from in vitro and preclinical studies, which demonstrated

that the stimulation of autophagy prevents or reverts the

aggregation, and the subsequent toxicity of several misfolded

proteins including PrPSc or derived peptides (Cortes et al., 2012;

Nakagaki et al., 2013; Thellung et al., 2019). The incubation

of neuroblastoma cells with a misfolded (Corsaro et al., 2006;

Chiovitti et al., 2007), neurotoxic (Thellung et al., 2013, 2017)

recombinant PrP peptide was shown to impair the proteostatic

machinery leading to cathepsin D leakage from lysosomes

and inhibition of the normal autophagic flux that lead to cell

death (Thellung et al., 2011, 2018). Moreover, It was reported

that intracerebral infection with PrPSc in mice led to the

deposition of ubiquitin-tagged proteins in brain areas interested

by vacuolation and the deposition of amyloid plaques containing

PrPSc (Lowe et al., 1990, 1992; Lopez-Perez et al., 2020). These

studies also described a correlation between the severity of

symptoms and the presence of ubiquitinylated proteins in the

mouse brain that, already detectable within a few months post-

infection, increased in quantity along with the deposition of

protease-resistant PrPSc and tissue degeneration (Lowe et al.,

1992; Kenward et al., 1994; Kang et al., 2004). The distribution

of ubiquitin-tagged proteins also significantly colocalizes with

the lysosomal enzyme cathepsin D and, as revealed by electron

microscopy analysis, it is concentrated in vesicular structures,

possibly lysosomes or autophagosomes (Lowe et al., 1990, 1992;

Ironside et al., 1993). Moreover, in scrapie infected mice, in

the late stages of the disease, an increase of p62 was observed,

indicating the impairment in autophagic flux progression and

a possible deficiency of neuronal lysosomal-mediated control of

proteostasis (Homma et al., 2014; Lopez-Perez et al., 2020).

Direct links between pathological prion proteins and the

impairment of specific proteostatic effectors are reported by

relevant papers and comprehend mainly the downregulation

of chaperones in prion-infected cell lines and animals, and the

impairment of the capacity of the proteasome to accept the

aggregated form of PrPSc for degradation (Figure 2).

Studies performed in transgenic mice and transfected

cell lines harboring mutant forms of PrP have demonstrated

that PRNP mutations produce modifications in structure,

topology, and metabolism of mature PrP and favor spontaneous

conversion in protease-resistant PrPSc (Petersen et al., 1996;

Capellari et al., 2000a,b; Chiesa et al., 2000; Stewart et al., 2001;

Zaidi et al., 2005; Corsaro et al., 2011; Quaglio et al., 2011).

Impaired proteostasis may also favor PrPSc accumulation in

some late-onset inherited forms of prion diseases since it has

been demonstrated that disease-associated mutations of prion

protein downregulates chaperones and hamper UPS-mediated

proteolysis (Zanusso et al., 1999; Peters et al., 2016). Although

the capacity to avoid retrotranslocation in the cytosol and

ubiquitination is not invariantly associated with PrP mutations,

there is evidence that the expression of mutant prion proteins

associated with familiar CJD (e.g., V210I and M323R) induces

downregulation of the ER chaperone Bip and the activity of

Hrd1 ubiquitin ligase (Peters et al., 2016). A heritable form of

GSS, linked with an amber mutation (Y145stop) in PRNP gene,

produces a truncated form of PrP lacking the C-terminal GPI,

which retains its N-terminal signal peptide and is not properly

exposed in the plasma membrane. Such form of PrP is rapidly

degraded by intact UPS, but accumulates in the cytoplasm as PK-

resistant protein if UPS is pharmacologically blocked (Zanusso

et al., 1999; Jin et al., 2000). Of particular relevance, it has been

demonstrated that both PrPSc extracted from scrapie-infected

mouse brain and recombinant β-refolded prion protein inhibit

the proteolytic activity of 26S proteasome due to the stabilization

of the 20S core in a closed conformation and the prevention

of its opening by ubiquitinylated substrates (Kristiansen et al.,

2007; Deriziotis et al., 2011). Conversely, proteasome activity

was not inhibited by fibrillar PrPSc, and it was restored

if PrPSc or β-refolded recombinant PrP are incubated with

antibodies directed against its oligomeric aggregation state

(Kristiansen et al., 2007).

UPS blockade, which mainly affects chymotrypsin and

caspase-like proteolytic activity of the proteasome, leads to the

intracellular accumulation of otherwise short-living proteins

and has been proposed as a possible mechanism by which PrPSc

oligomers exert neurotoxicity (Amici et al., 2010; Deriziotis et al.,

2011). Robust scientific evidence links ubiquitin accumulation

and proteasomal dysfunction with neuronal rarefaction in

different conditions beyond TSEs. This decline occurs during

aging (Carrard et al., 2002), AD (Gregori et al., 1997; Tseng

et al., 2008), PD (Lindersson et al., 2004), and poly(Q) repeat-

related diseases (Verhoef et al., 2002). Extensive studies have

proposed that proteasomal activity may prevent intracerebral

accumulation of β-amyloid peptides and hyperphosphorylated

tau. Aβ binding to the 20s proteolytic unit of proteasome

causes a reduction of its enzymatic activities (Gregori et al.,

1995, 1997; Cecarini et al., 2008). In line with this evidence,

mainly derived from cell lines or transgenic mouse studies, a

reduction of proteasomal activity was also identified in post-

mortem brain samples from AD patients. Proteosome activity

was particularly reduced in the hippocampus and in cortical

areas in which neurodegeneration is prominent, while it was

not affected in the cerebellum and in the occipital cortex where

tissue degeneration is usually not detectable (Keller et al., 2000).

Similarly, autoptical analysis of substantia nigra of idiopathic

PD patients demonstrated the presence of partially inactive

proteasome indicating that, even in the absence of α-synuclein

or parkin mutations, proteasome impairment contributes to

the formation of Lewy bodies and nigral neurodegeneration

(Mcnaught et al., 2001). More recently, soluble oligomers of

Aβ1-42, α-synuclein, and poly-Q huntingtin were demonstrated

to be able to block proteasome activity stabilizing the gate in

the closed conformation, through a specific binding with its

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.966019
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Thellung et al. 10.3389/fnins.2022.966019

FIGURE 2

Schematic representation of protein quality control mechanisms of misfolded PrP. Structural aberrancy of nascent PrPC (spontaneously

occurring or favored by PRNP mutations) is sensed in the ER leading to the recruitment of chaperones that block PrPC in unfolded state until

proper folding (1) is restored. Terminally misfolded PrP is translocated in the cytosol (2) for lysosomal chaperone associate autophagy (CMA) (3)

or ubiquitination (red dots: ubiquitin moieties) (4) and proteasomal digestion (5). Cytosolic aggregates of ubiquitinylated PrP escape proteasome

(6) and are clustered in larger inclusion bodies by the intervention of adaptor proteins mainly p62 (7). P62 drives the aggregates toward the

nascent phagophores that engulf PrP clusters in autophagosomes (8). Autophagosomes fusion with lysosomes produces digestion of

aggregates (9) and recycling of nutrients (10).

α subunit (Thibaudeau et al., 2018). These reports indicate

that the accumulation of ubiquitinylated proteins observed

in prion diseases may be caused by PrPSc itself through the

impairment of proteasome-mediated protein degradation and

that this mechanism represent could represent a major cause of

neurotoxicity induced by misfolded oligomers in a wide range of

neurodegenerative diseases.

Pharmacological enhancement of
autophagy is a therapeutic
perspective for prion diseases

Except for the vCJD outbreak in the mid of 1990s that

attracted a significant interest in the scientific community

on prion biology, the very low incidence of human TSEs,

with the most frequent sCJD affecting 1–2 individuals per

1,000,000 persons per year, poses objective obstacles toward

the pursuit of a cure. The scarcity of recruitable patients and

the rapid progression of neurological and cognitive decline

after diagnosis are the reason of very few clinical trials

performed, which were also characterized by the frustrating lack

of efficacy of all the therapeutic approaches that have been so

far tested. Noteworthy, most of these trials have been carried

out using structurally and clinically unrelated compounds

with the main goal to prevent PrPC-PrPSc conversion

and PrPSc aggregation as observed in preclinical studies

(Forloni et al., 2019).

However, the growing evidence that the impairment of

proteostasis is a shared pathogenic trait between prion diseases

and other protein misfolding diseases suggests the utility of

changing therapeutic strategy to adopt a common approach for

all neurodegenerative disorders of CNS, both the more prevalent

and rarest ones (Butler et al., 2006; Nixon, 2013; Engelender

et al., 2022). Significant preclinical evidence supports the

idea that pharmacological stimulation of autophagy through

mTOR-dependent and independent mechanisms is beneficial

to reduce neuronal death and prolong survival associated with

amyloidogenic proteins such as α-synuclein, Aβ, and poly(Q)-

huntingtin. The molecular pathways involved are heterogeneous

and comprehend the reduction of hyperactivated mTOR, the

increased digestion of misfolded oligomers, and the removal of
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TABLE 1 Preclinical anti-prion activity of autophagy enhancers.

Drug Class Mechanism of action References

Rapalogues Immunosuppressant mTOR inhibition Cortes et al., 2012

Astemizole H1 histamine receptor

antagonist

mTOR inhibition Karapetyan et al., 2013

Lithium, valproic acid Mood stabilizers Phosphoinositide turnover inhibition Heiseke et al., 2009

Trehalose Disaccharide Autophagy activation and chaperone-like

inhibition of PrPSc aggregation

Beranger et al., 2008; Aguib

et al., 2009

Metformin Hypoglycemizing AMPK-dependent activation of autophagy Abdelaziz et al., 2020

damaged mitochondria preventing Cytochrome C diffusion and

activation of apoptosis (Bove et al., 2011; Bordi et al., 2019).

Newer approaches able to boost the self-defensive

proteostatic competence of neurons are presently investigated

(Thellung et al., 2019). Many of these compounds display

a still non-characterized anti-prion activity, evidenced the

ability to activate autophagy flux and have been proposed as

proof of principle of common therapeutic strategy against

different proteopathies of CNS with the aim of restoring

proteostasis (Table 1). The first evidence in such direction has

been provided by the use of macrolide derivatives, originally

used as immunosuppressant drugs by the virtue of their

capacity to inhibit cell cycle progression and protein synthesis,

but that are also able to inhibit mTORC phosphorylation to

induce autophagy (Rubinsztein et al., 2007). Among these,

sirolimus (rapamycin) and tacrolimus, along with their

derivatives (rapalogues) everolimus and temsirolimus, are

still the most effective and powerful autophagy activators.

Although no anti-prion, compassionate or off-label, use of

rapamycin or rapalogues on humans has yet been reported,

there is preclinical evidence that these drugs could play a

role in the treatment of familial forms of prion diseases.

In particular, it was demonstrated that rapamycin reduces

the deposition of amyloid plaques and delays symptoms’

onset in transgenic mice that express a mutant PrP (A116V),

associated with an inheritable form of GSS (Cortes et al.,

2012), and restored autophagy flux in neuroblastoma cells

incubated with a cytotoxic recombinant PrP-derived peptide

(Thellung et al., 2018). In accordance with this evidence,

tacrolimus induces a sustained autophagic activity leading

to the degradation of newly misfolded PrPSc molecules in

persistently infected cells and counteracts PrPSc accumulation

in the brain of mice intracerebrally inoculated with two

prion strains. Thus, the pharmacological inhibition of mTOR

could find rational use also in the treatment of non-inherited

forms of prion disease (Nakagaki et al., 2013). It must be

acknowledged, however, that the side effects of all rapalogues

when used in a chronic regimen pose significant uncertainty

about the feasibility of such therapy for neurological diseases

(Mandrioli et al., 2018).

The proof-of-principle of a possible anti-prion activity of the

autophagy-stimulating molecules, acting through the inhibition

of mTOR, prompted the screening of many other compounds,

heterogeneous for structure, origin, mechanism of action, and

possible original therapeutic indications, for the capacity to

stimulate autophagy and inhibit intracellular aggregation of

PrPSc and other aggregation-prone polypeptides linked to brain

proteopathies. Moreover, the possibility to stimulate autophagy

without interfering with the function of immune systems, as

is the case of rapamycin analogs, would be highly desirable

in virtue of a potentially milder toxicity in chronic treatment.

Indeed, besides the direct mTOR inhibition, other mechanisms

that can stimulate autophagy and produce inhibition of PrPSc

intracellular accumulation have been described.

Astemizole, an H1 histamine receptor antagonist, has the

capacity to inhibit mTOR signaling and is able to prevent

PrPSc replication in a persistently infected neuroblastoma cell

line, prolonging the survival of mice infected with intracerebral

inoculation of RML scrapie prion (Karapetyan et al., 2013; Lyu

et al., 2018).

Metformin is a first-choice drug for type II diabetes that

is currently repurposed for independent clinical indications

(Wurth et al., 2014). Metformin exerts hypoglycemic activity

through the activation of the AMP-activated protein kinase

(AMPK) (Zhou et al., 2001) and displays a pro-autophagic

activity through the same mechanism (Lu et al., 2016). AMPK

stimulates the formation of autophagosomes by inhibiting

mTOR and has been described to reduce the amount of PrPSc in

a neuroblastoma cell line persistently with permanent infection

(Heiseke et al., 2009; Howell et al., 2017; Abdelaziz et al., 2020).

Mood stabilizers, as lithium and valproic acid, have been

recently demonstrated to possess the ability to stimulate

neuronal autophagy and increase neuronal resistance to

neurotoxic proteins, inhibiting Intracellular accumulation and

toxicity of Aβ peptides, mutant huntingtin, and α-synuclein. The

most exhaustive characterization of the pharmacodynamical

basis of their neuroprotective activity is obtained with lithium

that stimulates the formation of autophagosomes through the

blockade of phosphoinositol turnover and IP3 production

(Sarkar and Rubinsztein, 2006). Another promising compound
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is the natural disaccharide trehalose produced by bacteria,

yeast, and small invertebrate, due to its capacity to stabilize

protein folding (Wolkers et al., 2001). Trehalose displays

neuroprotective activity against neuronal death induced by

different types of aggregation-prone proteins, including Aβ,

tau, huntingtin, α-synuclein, and SOD1 (Tanaka et al., 2004;

Liu et al., 2005; Rodriguez-Navarro et al., 2010). Trehalose

stimulates the clearance of amyloid-related oligomers, through

mTOR-independent activation of autophagy flux (Tanaka

et al., 2004; Sarkar et al., 2007; Mardones et al., 2016).

Using persistently infected neuroblastoma cells as a model

of PrPSc, trehalose reduced the amount of protease-resistant

PrPSc accumulated within the cells, protecting them from

oxidative damage (Beranger et al., 2008; Aguib et al., 2009).

Recently, it has been also proposed the efficacy of trehalose

in reducing the formation of amyloid plaques since it may

interfere with the formation of Aβ peptides altering the

endosomal-mediated cleavage of the amyloid precursor protein

(Tien et al., 2016; Liu et al., 2020).

The present and the future of
neuroprotective therapies targeting
protein clearance

Four decades have passed since the first formulation of

the prion hypothesis, and an apparent scientific heresy has

become a major milestone for the biology of living beings

and the pathology of some sporadic, familial, and infectious

neurodegenerative disorders of humans and animals (Prusiner,

1982, 1998). The discovery of a physiological counterpart of the

pathological PrP in the brain that under certain circumstances

undergoes an aberrant refolding, had a special aftermath among

neuroscientists. In particular, a great interest was posed on

the role of protein misfolding in the pathogenesis of many

neurodegenerative disorders characterized for the deposition of

aggregated proteins in inclusion bodies, neurofibrillary tangles,

and extracellular amyloid plaques (Basler et al., 1986; Scheckel

and Aguzzi, 2018). Besides the limited efficacy of the non-opioid

drug flupirtine in contrasting cognitive decline in CJD patients,

by virtue of antiapoptotic activity (Otto et al., 2004), most of

the therapeutic approaches so far evaluated for human TSEs

were directed to contrast PrPC misfolding by preventing its

interaction with PrPSc templates. On the basis of encouraging

results, obtained in silico or in experimentally infected rodents, a

number of drugs, whose chronic administration was considered

ethical, were tested as inhibitors of the PrPC-PrPSc transition.

One of the first strategies, which has been pursued to

prevent PrPC-PrPSc conversion or stimulate PrPSc removal,

employed natural and synthetic polymers endowed with PrPSc

and misfolded PrPC binding ability, acting as chaperone-

like agents (Teruya and Doh-Ura, 2022). Prompted by the

emergency caused by the vCJD outbreak among young people

in the UK in the 1990s, the encouraging results obtained

by treating scrapie-infected mice with the anionic polymer

pentosane polysulfate in terms of prolonging post-infection

survival (Doh-Ura et al., 2004) were readily translated in

human treatment programs. Few vCJD patients have been

treated, by intraventricular route, with pentosane polysulfate

and evidenced a significant increased survival (Newman et al.,

2014). The capacity of the antimalarial drug quinacrine to

interfere with the PrPC-PrPSc interface, by virtue of its planar

three-dimensional, resulted in neuroprotection in cellular and

animal models of TSEs (Forloni et al., 2002; Villa et al., 2011),

and inspired different clinical trials in humans. Two double-

blind, randomized trials were conducted on more than 150

patients affected by sporadic, familial, iatrogenic, and variant

CJD; patients were orally treated with quinacrine and evaluated

for survival, and neurological and cognitive decline (Collinge

et al., 2009; Geschwind et al., 2013). Pursuing a similar strategy,

other clinical trials, using tetracycline antibiotics doxycycline

and minocycline, were shown to be efficacious in vitro (Forloni

et al., 2002; Gu and Singh, 2004; De Luigi et al., 2008;

Corsaro et al., 2009), and doxycycline was tested in patients

affected by CJD and FFI. However, despite the encouraging

preclinical effects the administration of either quinacrine or

doxycycline did not produce significant effects on survival in

CJD patients (Collinge et al., 2009; Haik et al., 2014; Varges et al.,

2017; Forloni et al., 2019). Noteworthy, results from a clinical

trial performed using doxycycline as preventive approach in

FFI in still asymptomatic patients are expected in the near

future (Forloni et al., 2015). In 2018, another experimental

treatment program was initiated at University College London

Hospital on six patients diagnosed with CJD (five sporadic

and one iatrogenic) to evaluate the tolerability and efficacy of

a humanized monoclonal antibody, named PRN100 directed

against PrPC, administered by intravenous administration

(Mead et al., 2022). None of the aforementioned programs

have shown stable cognitive improvement or prolonged survival,

although the treatment with PRN100 was very well tolerated

(Table 2). A possible factor that explains this lack of efficacy

is that, differently from animal models, human prion diseases

are characterized by a very long asymptomatic phase in which

progressive accumulation of PrPSc occurs. Thus, diagnosis

and treatments start when the prion burden in the brain

and neuronal death are already beyond sensitivity to any

therapy (Forloni et al., 2019). Conceptually similar, disease

modifying therapeutic approach aimed to delay neuronal death

in Alzheimer’s disease and Parkinson’s disease, the most diffuse

neurodegenerative conditions among elderly, are directed to

the removal of Aβ peptides, hyperphosphorylated tau protein,

and α-synuclein (Engelender et al., 2022). These strategies,

pursued with the use of antibodies specifically directed toward

Aβ, tau, and α-synuclein showed good efficacy in animal

models of these diseases and led to the approval by US Food

and Drug Administration of a human monoclonal antibody
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TABLE 2 Human clinical trials.

Compound

(class)

Mechanism of action

(hypothetical)

Trial/(status) Disease (patients’

number)

Outcome References

Flupirtine

(non-opioid

analgesic)

Antiapoptotic Double-blind,

randomized (closed)

sCJD (28) Delayed cognitive

decline; no extended

survival

Otto et al., 2004

Quinacrine

(antimalarial)

Inhibition of PrPC-PrPSc

interaction

Patient-preference

(closed)

sCJD (45) fCJD (42) vCJD (18)

iCJD (2)

No effects on clinical

course

Collinge et al., 2009

Quinacrine

(antimalarial)

Inhibition of PrPC-PrPSc

interaction

Double-blind

placebo-controlled

(Closed)

sCJD (54) No effects on clinical

course

Geschwind et al., 2013

Pentosan polysulfate

(chaperone)

PrPC stabilization Observational study

(Closed)

vCJD (5) Extended survival

(unclear reason)

Newman et al., 2014

Doxycycline

(antibiotic)

Inhibition of PrPC/PrPSc

interaction

Phase 2, randomized,

double-blind,

placebo-controlled

(Closed)

CJD (121) No effects on clinical

course

Haik et al., 2014

Doxycycline

(antibiotic)

Inhibition of PrPC/PrPSc

interaction

Phase 2, randomized,

double-blind,

placebo-controlled

(Closed)

sCJD (62) Slight extension of

survival

Varges et al., 2017

Doxycycline

(antibiotic)

Inhibition of PrPC/PrPSc

interaction

Preventive trial

Patient-preference

(ongoing)

FFI (25) Ongoing Forloni et al., 2015

PRN100 (anti-PrPC

monoclonal Ab)

Removal of PrPC Systematic

observation

sCJD (5) iCJD (1) Ongoing Mead et al., 2022

(aducanumab) directed against Aβ (Cummings et al., 2021).

Regretfully, most efforts in developing effective immunotherapy

against AD did not produce effective results and also the use of

aducanumab is still debated and its actual efficacy has not been

completely proved (Whitehouse et al., 2022). The increasing

characterization of the mechanisms of proteostasis and the

evidence of a relationship betweenUPS andALPmalfunctioning

and accumulation of misfolded proteins is opening a new

therapeutic strategy focused on restoring protein metabolism

control in neurons, rather than acting on the disease-specific

proteins, might pave the way for future therapeutic approaches

possibly acting on all proteopathies (Gregori et al., 1995;

Ciechanover and Brundin, 2003; Ciechanover and Kwon, 2017;

Thellung et al., 2019; Chen et al., 2021; Leri et al., 2021).
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