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Illumination preference models are usually defined in a static scenery, rating

common-colored objects by a single scale or semantic di�erentials. Recently,

it was reported that two to three illumination characteristics are necessary

to define a high correlation in a bright o�ce-like environment. However,

white-light illumination preferences for vehicle-occupants in a dynamic semi-

to full automated modern driving context are missing. Here we conducted

a global free access online survey using VR engines to create 360◦ sRGB

static in-vehicle sceneries. A total of 164 participants from China and Europe

answered three levels in our self-hosted questionnaire by using mobile

access devices. First, the absolute perceptional di�erence should be defined

by a variation of CCT for 3,000, 4,500, and 6,000K or combinations, and

light distribution, either in a spot- or spatial way. Second, psychological

light attributes should be associated with the same illumination and scenery

settings. Finally, we created four driving environments with varying external

levels of interest and time of the day. We identified three key results: (1) Four

illumination groups could be classified by applying nMDS. (2) Combinations

of mixed CCTs and spatial light distributions outperformed compared single

light settings (p < 0.05), suggesting that also during daylight conditions

artificial light supplements are necessary. (3) By an image transformation in the

IPT and CAM16 color appearance space, comparing external and in-vehicle

scenery, individual illumination working areas for each driving scenery could

be identified, especially in the dimension of chroma-, partially following

the Hunt-E�ect, and lightness contrast, which synchronizes the internal and

external brightness level. We classified our results as a starting point, which

we intend to prove in a follow-up-controlled laboratory study with real object

arrangements. Also, by applying novel methods to display high fidelity 360◦

rendered images on mobile access devices, our approach can be used in the

future interdisciplinary research since high computational mobile devices with

advanced equipped sensory systems are the new standard of our daily life.
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Review of the mini-series

For the first time, led by artificial intelligence-based self-

learning algorithms, the vehicle itself will be able to drive.Within

this modern context of dynamic personal transportation, we

started to investigate the role, purpose, and target of interior

lighting in these modern vehicles.

In part one of our mini-series about human-centric in-

vehicle lighting (Weirich et al., 2022), we investigated the

application of ambient light in an indoor signaling context

globally. We schematically designed luminaires in line shapes,

positioned at state-of-the-art vehicle positions, and vary them

by 10 different mono- and multichromatic colors to create

specific visual stimuli for ambiance and messaging. We were

able to identify, three color-preference groups with a polarizing,

agreeing, or congruent expression. Next, only for the European

participants, a strong hue dependency was observed for the

mood of attention in the vehicle-signaling context but was

missing for the Chinese group. Finally, within all groups, the

door and the foot position were most favored for drivers

and passengers.

In this present paper as the second part of our mini-

series, we continue by separating light perception into three

dimensions named brightness, color, and spatial distribution.

At this time for passengers only, which are not driving, instead

sitting in the second row and enjoying the trip at different times

and place zones. We are going to introduce our study from

a vision science point of view but with a focus on the visual

pathway. First, we will introduce the opponent-color theory, as

a model for color perception. Next, a short overview of recently

developed indoor-lighting preference models and psychological

illumination attributes are outlined. Finally, we combined all

three fields in our study design and apply them to the modern

vehicle context.

FIGURE 1

(A) Three-dimensional color sphere based on the opponent color theory with lightness axis for ± LM, red–green as ±L±M, and blue–yellow as

±S±LM including chroma and hue. (B) Hue ratios, in dotted lines, and retinal cellular opponent responses as surfaces, data from De Valois (2004).

Opponent-color theory and
perceptual attributes

Trichromats are able to perceive 100 hue shades per cone,

leading to one million different perceived colors (Neitz et al.,

2001) from 10−6 to 108 or 109 cd/m² cd/m2 brightness levels,

resulting in around 1014 magnitudes (Hood and Finkelstein,

1986). Pure and mixed colors are following in this perceptional

process some regulations. Trichromats cannot perceive a

reddish–green or a yellow–blue color, but they can see a yellow-

reddish or a yellow-greenish color, which can be modeled in a

2D color circle (Newton, 1704) or with an extension by a third

lightness dimension as shown in Figure 1A.

There are still accepted but also debated opinions about

this color perception model since the underlying opponent-

theory, a combination of polarizing and hyperpolarizing retinal

cell responses, which will be outlined in the next paragraph,

is challenged (Patterson et al., 2019). Anyway, here we still

refer by applying the opponent-theory and focus on possible

interpretations to use opponent signals from L-cone, M-cone,

and S-cone, as illustrated in Figure 1B, and trying to transfer

them in dimensions used to describe illumination perceptual

quantities like lightness, hue or chroma settings.

Our three primary photoreceptors, L-cone, M-cone, and S-

cone, at the retina, hyperpolarize to photon-stimuli in general

(Schiller and Tehovnik, 2015). Hence, they are not able to

distinguish changes in wavelengths by changes in intensity,

which is called the principle of univariance, so a single

dimension output only (Rushton, 1972). For that, intracellular

connections compare the current activities of several receptors

or receptive fields to extract visual information (Solomon and

Lennie, 2007). Since the spectral absorption maximum between

L- and M-cone is narrowly separated from each other, primary

intensity can be triggered by them, resulting in the luminance
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axis for ± LM, which is also supported by the absence of S-

cones in the fovea centralis (Ahnelt, 1998). But since there is

still a ∼30 nm peak gap between them, they are still able to

process color information for the green as +M–L and red as

a +L–M region. The S-cone signal absorption peak is wider

separated by 90–120 nm between L- and S-cone. Hence, it is used

to define a bluish color, +S–LM, or a more yellowish color, –

S+LM (De Valois, 2004). This arrangement of perceiving only

signal differences of receptive fields, no absolute values at all, can

also lead to unequal color perceptions based on different bright

backgrounds (Schrauf et al., 1997; Schiller and Tehovnik, 2015),

which makes perceptual color modeling highly challenging.

Ebner’s approach to finding this transformation between

tristimulus activities and perceptual attributes resulted in a space

called IPT (Ebner, 1998). His model should be extremely simple

to implement to achieve linear hue lines and a neutral color

response with accurate chroma representation to the Munsell

data set. As a result, IPT performed better or at the same level as

CIELAB or CIECAM97s (Ebner and Fairchild, 1998) especially

for hue linearity to be able to calculate Euclidian distances for

color difference calculations. The nonlinearity factor of 0.43 in

IPT (Ebner, 1998) is very similar to gamma corrections defined

in display systems between 0.45 and 0.55. Already in 1969,

Marsden summarized exponential factors in the range of 0.15–

0.59, depending on the size of the presented object, surrounded

luminance, color of the presented stimulus, or level of eye

adaptation (Marsden, 1969).

One model which includes higher non-linear luminance and

chromatic adaption effects, like the Hunt–Effect (Hunt, 1977),

which are intentionally excluded in IPT, was latest derived as

CAM16 (Li et al., 2017), which solved computational failures

during image processing of the previous CIECAM02 color-

appearance model by CIE TC 8-01 (Moroney et al., 2002). Here

we shortly summarize key points of it:

– Input values: XYZ tristimulus values.

– Output values: Correlates of lightness J, chroma c, hue

compositionH, hue angle h, colorfulnessM, saturation s, and

brightness Q.

– Uses a new chromatic adaptation transform as CAT16 and a

new color appearance model named CAM16.

– To simplify and exclude computational errors, luminous and

color adaptation are performed in the same space. Previously,

CIECAM02 performed each transformation in its own space.

– CAM16 performed better in hue and chroma, lightness is

similar to CIECAM02.

– Adding final transforms for uniform color space, CAM16-

UCS, for Euclidian distances.

We selected IPT, based on the advantages that it originated

from a newer dataset compared to CIELAB, improved hue

linearity, especially in the bluish region (Moroney, 2003), and

a simple formula approach. But since perceptual adaption

effects are not included, we chose also CAM16 as a color

appearance model, which gives us the possibility to compare the

performance of both.

Indoor illumination for user
preference

Current investigated illumination models for general indoor

lighting preferences are primarily derived by a triplet based

on correlated color temperature (CCT), vertical illuminance

(Ev), and saturation enhancement (1C∗; Trinh et al., 2019)

or without intensity dependency in a linear relation between

color gamut (CDI) and color fidelity (Qa; Huang et al., 2021).

Further, combinations with non-visual parameters such as

Circadian Stimulus (CS) were successfully established (Khanh

et al., 2020). Also, preference models focusing on chroma found

valid enhancements under dim light settings (Kawashima and

Ohno, 2019). Chroma and color fidelity (Teunissen et al., 2017)

or just gamut indices (Bao and Minchen, 2019) were combined

in preferencemodels and validated for different brightness areas.

As identified, primary color metrics were applied for a high

correlation between illumination settings and the observer’s

preferences. As a reference, one model was evaluated in a

different context, applied in a museum environment, with a high

correlation of 0.997 (Wang et al., 2020).

User preferences for illumination settings can be detailed

in several psychological aspects as firstly identified by Flynn in

the 1970’s (Flynn et al., 1973). He varied brightness, luminaire

position, and light distribution in an office-like environment

to identify primary three different factors named as a general

evaluative impression, perceptual clarity, and spaciousness.

Similar attributes in the field of evaluative were named as relaxed

or pleasant with perceptual clarity, spaciousness, and privacy

(Durak et al., 2007). Also, psychological attributes in the same

field of evaluative as attractive and perceptual quality with

illumination were found (de Vries et al., 2018) or divided into

coziness, liveliness, tenseness, and detachment, all out of the

category of evaluative (Stokkermans et al., 2018).

So far, we were able to identify illumination preference

models, which are primarily based on color metrics. These

preferences can also be further divided into psychological

aspects. Next, we will transfer these findings to the

vehicle context.

Transfer to human-centric in-vehicle
lighting

In our investigated articles about color preferences and their

psychological attributes for office lighting, there were primarily

four blocking points identified preventing to project of these

findings directly in the context of in-vehicle lighting: First,

preference rating was performed on common-colored objects

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.969125
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Weirich et al. 10.3389/fnins.2022.969125

TABLE 1 Comparison of indoor lighting with in-vehicle lighting divided in luminaire recommendations and scene boundaries.

Indoor lighting In-vehicle lighting

Luminaire recommendation:

Task-lighting, Ev 500–625 l× 1–100 l× depends on the function

Psychological glare, UGR ≤ 19 No–less glare, not specified

White light color preference 4,000K < CCT < 5,800K Neutral white

CIE CRI Ra > 80 > 80

Spatial illumination Indirect part > 60% No shadow, homogeneous illumination

PWM Frequency Min. 400Hz, better > 1,000Hz 488Hz for RGB LEDs

Scenery boundaries:

1. Evaluation Rate common-colored objects. Split: internal/external scene.

2. Location/surrounding More static. More dynamic.

3. People involved Primary task: Connected to

illumination, like reading.

Secondary task: Not available.

Primary task: Driving/passenger

transportation. Secondary task:

Connected to illumination, like reading.

4. Box-setup More closed box, large. More open box, small.

in a static office-like environment. Second, all ratings including

semantic psychological differentials were performed in a static

indoor environment without background changes. Third, the

primary task for people in a vehicle is either driving or as a

passenger to be transported from location A to B. Only in a

second task, people will use in-vehicle lighting for their own

doings like reading, listening to music, or relaxing by enjoying

the outer scenery. For indoor lighting, light is directly connected

to the primary task of people, which is to illuminate the scenery.

Finally, vehicles are described more like smaller open boxes

and dynamically change based on time and vehicle location,

compared to the large wide office areas with fixed settings. In

the following Table 1, these differences are summarized between

indoor illumination and in-vehicle lighting (Wördenweber et al.,

2007), based on extracts from indoor human-centric lighting

recommendations (Khanh et al., 2022).

Obviously, a simple transfer from indoor lighting to

in-vehicle lighting is not possible. Hence, we focus on a

new illumination preference modeling approach, away from

colorimetric definitions like TM-30-20 (IES, 2020), which are

defined and motivated by office-like sceneries by comparing

light to a preset of defined color sample plates, as reviewed

in Section Indoor illumination for user preference. Meaning,

we will use tristimulus-based correlations of lightness, hue,

and chroma, from the IPT or CAM16 color appearance space,

compared in Section Opponent-color theory and perceptual

attributes, to answer the following research question in the

context of vehicle passengers and their psychological white-

light associations, as reviewed in Section Indoor illumination for

user preference:

q1: How many dimensions are necessary to describe in-

vehicle lighting?

q2: In which ratio can psychological illumination-associated

attributes be explained by these identified dimensions?

q3: How can in-vehicle lighting preferences be modeled based on

tristimulus correlations in accordance with the change of the

outer driving scenery?

Materials and methods

To answer the research questions given in Section Transfer

to human-centric in-vehicle lighting for the in-vehicle driving

context, we conducted an online study, using VR-like pre-

rendered images with dark-mode responsive web design

techniques. The study was published on our self-hosted system

and was globally free available. From the middle of April until

the middle of June 2022, people were able to participate using

their tablets, smartphone, or notebooks. Primary, we advertised

our study using social media systems like Facebook, WhatsApp,

and We-Chat. Participants could choose Chinese or English as

their operating language. The study was divided into nine parts.

First, a short study-introduction movie was presented.

Second, basic subject information was collected, which was

similar to our first part (Weirich et al., 2022):

– Personal: Living region, gender, age class.

– Surrounding: Time of the day, weather conditions.

– Driving experience (without considering the COVID-19

pandemic): Time spent inside a vehicle during a normal week

or if a subject drove a vehicle before.

– Social status: Acceptable price for buying a new vehicle and

age of the subject’s own vehicle.

– Visual performance: Contrast- and Ishihara test.
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TABLE 2 VR-prerendered images for arbitrary paired comparisons with illumination L1–L8.

(1) (2)

Setting 1, L1: Spot light, 3,000K. Setting 2, L2: Spot light, 4,500K.

(3) (4)

Setting 3, L3: Spot light, 6,000K. Setting 4, L4: Spherical light, 6,000K.

(5) (6)

Setting 5, L5: Spherical light, 3,000K. Setting 6, L6: Spherical light, 3,000K+ Spot light, 6,000K.

(7) (8)

Setting 7, L7: Spherical light, 6,000K+ Spot light, 3,000K. Setting 8, L8: No white light illumination.

• Ishihara test: Prove that all participants have no

color blindness.

• Contrast test: Prove that displayed text was readable, no

external verification.

Bypassing all user information questions, the subject was

forwarded to the device tracking page. Since we asked about

white-light illumination settings, it is essential for the results of

the study that each subject similarly views the lighting scenes.

For that, we asked users to select their current device based on a

drop-down list or type the brand andmodel properties manually

if the device name was missing in our list. Next, a reminder was

displayed to deactivate screen protection functions, like Apple’s

or Google’s blueish eye protections, which are standard activated

during evening time to block blueish light. Further, the user had

to define their current screen brightness level by moving a slider

to a similar position as the current system settings and finally a

prompt appears not to change the current environment during

the complete study. All this information can be used to measure

photometric display properties like absolute screen brightness

or color metrics. In addition, conclusions about the current

surrounding of participants could be made, since the display

brightness will change according to the current environmental

brightness level, especially for mobile devices like smartphones

or tablets.

In the fourth part, participants had to select absolute

differences between 28 paired images, in an arbitrary

combination of eight different in-vehicle illumination settings,

as shown in Table 2. Here we varied CCT from cooler to warmer

white 3,000, 4,500, and 6,000K, similar to proposed for indoor

illumination shown in Table 1, or combinations in two different

spatial arrangements, called spot- or spherical illumination. In

total, there were eight illumination settings, L1–L8, created.

L1–L3 had a focused spotlight distribution, which changed

from L5–L7 by adding more room-filling luminaire settings.

L8 was defined as the baseline condition without in-vehicle
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lighting. The displayed modern in-vehicle scenery had in the

first step no background scenery, shown as black windows,

common-colored objects, like different fruits, a blueish shirt, a

colorful magazine, and a neutral white interior with a blueish

constant glass roof frame illumination for orientation.

To reset the visual system, we added after this comparison

a short movie clip with white background. First, only a central

black point was displayed. After several seconds, eight different

graphical symbols were shown in a sequenced order, realized

as the same movie clip for all participants. Each symbol was

displayed for half a second, resulting in the left-right circulating

pattern. To follow the symbols, eye saccades were stimulated,

which were shown to be an efficient tool to reset and adapt

the eye to the shown white background as new references

(Paradiso et al., 2012). The complete reset clip took 16 s and a

control question was added finally about the pattern of the last

displayed symbol.

The sixth part of our online survey was focusing on

associating psychological semantic differentials with the eight

different illumination settings, as shown in Table 2. As reviewed

in Section Indoor illumination for user preference, primary

evaluative psychological effects were studied focusing on

likeness, attractiveness, pleasantness, or coziness. On the other

side, out of five investigated groups, Flynn et al. (1973) defined

three which were correlated with luminaire settings named

as evaluative impression, perceptual clarity, and spaciousness.

Hence, we decided to investigate these three groups and selected

one psychological attribute out of each group defined as interest,

brightness, and spatiality. Further, we added additional three

attributes matching more to the vehicle context named as

modernity, value, and satisfaction. All six groups, including

their three levels of semantic adjectives for differentiation,

are added below, starting from agonist to antagonist

order, which was presented as a drop-down menu during

our study.

– Evaluative 1: Brightness

• Bright–Moderately Bright–Slightly Bright–Slightly Dark–

Moderately Dark–Dark

– Evaluative 2: Spatial

• Large–Moderately Large–Slightly Large–Slightly Small–

Moderately Small–Small

– Evaluative 3: Interest

• Interesting–Moderately Interesting–Slightly Interesting–

Slightly Monotonous–Moderately Monotonous–

Monotonous

– In-Vehicle 1: Modernity

• Modern–Moderately Modern–Slightly Modern–Slightly

Old-Fashioned–Moderately Old-Fashioned–Old-

Fashioned

– In-Vehicle 2: Value

• Valuable–Moderately Valuable–Slightly Valuable–Slightly

Worthless–Moderately Worthless–Worthless

– In-Vehicle 3: Satisfaction

• Satisfied–Moderately Satisfied–Slightly Satisfied–Slightly

Unsatisfied–Moderately Unsatisfied–Unsatisfied

The seventh part of our online survey had another round

of resetting the vision system. A second movie clip was added

based on different orders of shown symbols but following the

same concept as written before.

In the eighth part, we created a higher immersive experience,

illustrated in Table 3. By adding the external environment

including the possibility to change the viewing perspective

manually within the vehicle using pre-rendered 360◦ high-

density images. Further, the user interaction level was also

extended.We implemented the possibility that participants were

able to select their preferred brightness setting by choosing

five different levels. To illustrate these settings, Table 3 SPO.1–

5 summarized the pre-rendered images as references for spot-

light condition, L1, of 3,000K and spatial lighting is shown in

Table 3 SPA.1–5, L4, with 6,000K. Here we varied intensities

for spotlights between 5, 11, 25, 50, and 100% and spatial

light between 10, 20, 30, 70, and 100%. The level of 100% was

for both luminaires different to confirm that there will be no

overexposure effect on the screen visible. We also skipped the

single 4,500K condition, L2, to just rate the outer boundaries

of mixed CCTs and light distribution to minimize in a way the

effort for study participants.

In addition, we varied the external driving scene. Four

different settings were chosen according to different light,

color, and content settings, resulting in 124 pre-rendered

images. The first scene showed a bright interesting sunny day

driving through an inner-city area. The second one presented a

darker monotonous forest scenery with very dim monotonous

surrounding colors. The third scene presented a monotonous

bright countryside scene with a blue sky and green grass views.

Finally, we added a typical interesting colorful night scenery in

Shanghai. As references, all four sceneries are shown in Table 3

SC.1–4 without interior lighting.

Illumination scenery rating was performed from a fixed

defined view, which was set automatically after the preferred

brightness level was activated. Here we asked about the

user’s preference on a 7-point scale named as excellent–very

good–good–moderate–poor–bad–very bad, presented in a drop-

down menu.

In the last part of our comprehensive survey,

we asked subject to answer two qualitative

optional questions.

i. Question 1, q1: Would you like to have interior lighting

systems, which are changing according to the driving
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TABLE 3 Rating view of immersive 360◦ pre-rendered vehicle sceneries with spot light (SPO.1–5) and spherical lighting (SPA.1–5) including CCTs

and applied brightness options in percentage values.

SPO.1 SPO.2

City-Scene: Spot light, 3,000K, 5%. City-Scene: Spot light, 3,000K, 11%.

SPO.3 SPO.4

City-Scene: Spot light, 3,000K, 25%. City-Scene: Spot light, 3,000K, 50%.

SPO.5 SPA.1

City-Scene: Spot light, 3,000K, 100%. City-Scene: Spatial light, 6,000K, 10%.

SPA.2 SPA.3

City-Scene: Spatial light, 6,000K, 20%. City-Scene: Spatial light, 6,000K, 30%.

SPA.4 SPA.5

City-Scene: Spatial light, 6,000K, 70%. City-Scene: Spatial light, 6,000K, 100%.

SC.1 SC.2

Sun-City-Scene: Bright, interesting. No in-vehicle lighting, setting L8. Forest-Scene: Dark, monotonous. No in-vehicle lighting, setting L8.

(Continued)
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TABLE 3 (Continued)

SC.3 SC.4

Country-Scene: Bright, monotonous. No in-vehicle lighting, setting L8. Night-Scene: Dark, interesting. No in-vehicle lighting, setting L8.

As reference for spot light, L1 and spherical light L4 settings are shown (SC.1–4). Overview of the four applied lighting sceneries, each without any white in-vehicle illumination and

displayed during the survey in increased order.

context? If yes, which lighting system do you want to have

in your future vehicle?

ii. Question 2, q2: If you have some additional comments, please

write down your opinions.

Results

Demographics

We collected 164 answers from 120 male and 44 female

participants. Since our target is a qualitative comparison

between Chinese people from China with European people

or ex-pats, which are living in China, we separated them

accordingly to China and Europe. Out of the Europe group,

63% were directly located in Europe, and 37% were in China.

The mean participated study time was t̄ = 23min 48 s with

a deviation of s = 14min 31 s. Results about their participant

age, time, and current weather conditions are shown in

Figures 2A–C.

Since we performed our study anonymously, only age

classes could be collected. Participants in the Europe group

are on average 10 years older than people from China, as

shown in Figure 2A. The average time of over 20min is quite

long compared to common online surveys and represents the

comprehensive study scope within the nine survey parts. It

might be also an indicator that participants really tried to

answer all questions conscientiously as well. The participation

attendance time was nearly balanced between both groups with

36% of participants from China participating from 6–0 PM, and

in Europe around 25%. Comparing the day-night settings, for

China, the separation was around 70:30 between day and night

time andmost of the people from Europe participated during the

day as 80:20. The weather conditions were quite similar as well

with the clearest or cloudy conditions during day and night time.

Next, we identified the driving and vehicle habit of participants.

Results are displayed in Figures 2D,E. It is shown that nearly all

global participants drove a vehicle before by themselves. 70% of

participants from group China drove up to one hour per week

out of group Europe, there is 49% equivalent, showing a longer

spend time per week in the vehicle in the Europe group.

Illumination part I—Absolut di�erences

Statistical calculations within this study use the Wilcoxon

signed rank test for dependent groups, since our data are

ordinally scaled and there was no calculation comparing

independent groups like Chinese and European participants.

The null hypothesis H0 was formulated as an equal sample

distribution, or concluded as an equal median, between two

statistically compared groups. We calculated the asymptotic p

and set the significance level α = 0.05. If the test result leads to

α < p,H0 was rejected and the opposite hypothesisH1 would be

valid, meaning the opposite of H0. The statistical effect size was

calculated using Cohen’s r (Cohen, 1988) including its semantic

meaning for a weak, starting at r= 0.10, medium, starting at r=

0.25, or strong, starting at r = 0.40 (Fritz et al., 2012).

In this first survey part about white-light illumination

preferences, we asked about absolute illumination differences,

rated from 0 as no difference to 10 as maximum deviation,

without any kind of participant’s biasing. This means that

we did not introduce or mentioned any kind of white-light

scenery aspects, which should be compared. We just presented

an arbitrary paired comparison out of eight in-vehicle lighting

settings, L1–L8, as shown in Table 2, to find out the similarity

level between L1 and L8. The results are presented in Figure 3.

As expected, the highest difference was observed comparing

any illuminated setting with the no light baseline condition,

L8. For China, the closest similarity to this index could be

found at illumination index 4, representing 6,000K spatial light

distribution, L4. Calculated statistics z = −3.497, p = 4.69 ×

10−4, and Cohen’s coefficient r = 0.287, resulting in medium

effect size between pairs L4–L8 and L3–L8.

With these results, we performed a non-metric

multidimensional scaling (nMDS) to identify how many

different dimensions are necessary to describe the similarity

of the L1–L8 settings. For a comparison judgment, only

the Chinese participants were investigated based on the
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FIGURE 2

(A) Age, (B) time, and (C) weather settings of participants from China and Europe. (D) Driving habit of participants showing actual driving

experience; (E) the amount of time spent in a vehicle per week.

FIGURE 3

Twenty-eight paired comparisons from China (A) and Europe (B) rated from 0 as no di�erence to 10 as maximum deviation. Paired numbers can

be referred out of Table 2. Ninety-five percent confidence interval shows an error of one step size in the Chinese group. Significantly closest

relation to L8 is L4, spatial cool white, marked with * (p < 0.05) and as reference with a dashed line.
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FIGURE 4

(A) By setting three dimensions, resulted stress value of nMDS equals zero, which can be confirmed by a Scree-plot as well, marked with a red

circle. (B) Three identified dimensions roughly labeled by illumination characteristics. Numbers 1–8 are representing lighting sceneries L1–L8.

Plane projects are added: Red circles for the red plane, blue circles for the blue plane, and black circles for the yellow plane.

smaller confidence intervals, shown in Figure 3A. Since our

data scale is ordinal, only rank comparisons could be used.

Principal component analysis is using Euclidian distances,

which require an absolute zero. So we used the Bray–Curtis

dissimilarity matrix, which actually does not calculate distances

but dissimilarities because of using rank comparisons leading

to robust distance results (Faith et al., 1987). By applying three

dimensions, the resulting stress value is zero, meaning that three

dimensions are necessary to describe the paired-comparison

dataset. For reference only, a Scree-Diagram is added to get

a more comprehensive overview of the number of necessary

dimensions, to extend the interpretation of the stress value. By

using three principal components around 76% of all differences

could be explained. Figure 4 shows the Scree diagram and

the resulting non-metric multidimensional scaling, plotted in

three dimensions.

Out of the nMDS analysis, the following dimensions were

preliminarily named based on identified groups and their

optical properties.

– Warm-Cool-Dimension, marked with red circles: Separated

luminaire groups had indices L1, L5, L6, L7, and (L8)

characterized by primary warmer white or mixed CCT

conditions vs. L2, L3, and L4 with primary cooler or neutral

white settings.

– Single-Multi-Dimension, marked with blue circles: Separated

luminaire groups had indices L1, L3, L4, and L5 characterized

by primary single luminaire or single CCT conditions

versus L2, L6, L7, and (L8) with primary multiple CCT or

luminaire settings.

– Bright-Dim-Dimension, marked with

black circles: Separated luminaire groups had indices L4, L8

characterized by primary darker conditions versus L1, L2,

L3, L5, L6, and L7 with primary brighter luminaire settings.

Illumination part II—Psychological
attributes

To investigate previously roughly defined dimensions, we

added six psychological attributes presented in a semantic

differential way. Three of these named brightness, spatial, and

interest were extracted out of the previous overview, and

compared in Section Indoor illumination for user preference.

The last three attributes were set as modernity, value, and

satisfaction, to define a closer connection to the driving or the

in-vehicle context.

As shown in Figure 5, from 3 as highly supporting to−3

as high contradiction, within all six categories mixed CCT

and spatial luminaire settings, L6 and L7, so a mixture of

spatial- and spot light with warmer and cooler CCT, performed

extraordinarily with a very high level of agreeing in all categories.

One reason for this might be that both luminaires combine

advantages of (a) a focused bright illumination to closer objects

which are interesting, like the shown fruits or magazines and

(b) also consider the complete vehicle interior as a room filling

setting as well. Combining these two aspects might be led to a

new level of vehicle perception. For the category of brightness,
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FIGURE 5

Six psychological attributes rated on a semantic scale from 3 as highly supporting to −3 as highly contradiction associated with eight

illumination settings L1–L8, compare Table 2, evaluated in the Chinese (A) and European (B) group.

L4 as spatial 6,000K, and L8, as the no light condition, were

darker rated, matching our nMDS analysis before. A spatial

increment in room perception was similar within different

CCTs, spatial- or spot-light systems rated as slightly large. But

also, for the no-light baseline condition in which just the blue

roof frame illumination was visible, the room had still an

impression of being only slightly small. For the attribute of

interest, warmer white light had a higher level of interest and

only L8 resulted in a monotonous impression. For the vehicle

attributes, single CCTs were able to create only an impression

of slightly modern, which was also close to the interpretation of

the baseline condition as well. A similar relation was associated

with the psychological attribute of value and satisfaction. In this

group, warmer CCTs performed better compared to cooler ones.

Illumination part III—Modeling
preference with opponent colors

In this part, we added four external driving sceneries as

introduced in Table 3. Also, participants were able to select their

preferred illumination brightness out of five different levels. To

bring a higher level of experience, maybe the highest possibility

within this open-access study design, we pre-rendered the seven

mentioned luminaire conditions L1 + L3-L8 since L2 was

decided to skip to save answering effort, with five different

brightness and four different external sceneries, created a

dataset of 124 images rendered in a 360◦ style in 1,024 ×

512-pixel resolution. Normally, these renderings need a high

computational environment with several dedicated graphics

processing units. To overcome this challenge, we found a

possibility to accelerate the rendering progress by using the web

graphics library (WebGL) for web browsers. For the scenery

design, we used professional rendering software named 3ds Max

2022
R©
. The rendering itself was then performed using WebGL

techniques, resulting in a dramatically decreased rendering time

to nearly real-time.

In Figure 6 the results are displayed of the selected brightness

values and their preference over seven light settings and four

different driving sceneries. Primary, we will evaluate results

from the bigger sampled group out of China. Starting with a

comparison of the selected brightness values, a high correlation

between brighter and darker external sceneries was found, as

shown in Figures 6A,D. The ratings of sun city with countryside

were combined and compared with combinations of forest

and night scenery to perform a non-parametrical combined

sample test for dependent groups, here the Wilcoxon signed-

rank test. We calculated z = 2.417 and p = 1.566 × 10−3.

The effect size was calculated with Cohen’s coefficient r =

0.198 (Cohen, 1988), resulting in weak effect size (Fritz et al.,

2012). For the preference rating, presented in Figures 6B,C,

the highest effect was found between L6 and L8, with no in-

vehicle light condition, in the sun city scenery, calculated as

z = 8.352, p = 0.000 and r = 0.687, resulting in a strong effect

size for the Chinese group. Further, for the countryside and

forest scenery, luminaire groups were identified with similar

performance (p < 0.05), meaning that within the good ranking

for lighting settings L1–L7, warmer white colors are suggested

to be preferred like L1, L5 with the mixed CCT favorites of L6

and L7. Only during the night condition, L8 was able to achieve
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FIGURE 6

Luminaire brightness selections between four di�erent external sceneries (A,D), its preference rating (B,E) and statistics of it (C,F) separated

between Europe and China. Significances for p < 0.05 are marked with * or p < 0.08 as (*).

a moderate–good acceptance level. Further points are analyzed

in the next paragraphs. Complete statistical tables are added in

the Supplementary Tables 1–10.

So far, we were able to primarily identify a high correlation

between in-vehicle brightness and outside brightness levels,

Figures 6A,D. To investigate this further, we performed a

transformation between the displayed sRGB images to IPT

and CAM16 color appearance space. The advantages of these

perceptional color spaces are explained in Section Indoor

illumination for user preference. IPT is based on tristimulus

values out of the LMS space. To investigate the suitability of the

LMS space, we transformed the worst and best rated VR 360◦

scenery from its rating perspective, an 86◦ field of view, both to

LMS space. For that, we divided the image with a resolution of

1,024× 512 pixels into 32× 32 pixel-blocks per square resulting

in 512 fields. Out of each field, we calculated mean LMS values,

which are displayed in Figure 7.

It is shown that there is an in-vehicle LMS activation in a

good rated lighting condition, like L7, shown in blue dashed lines

in Figure 7B. Within the L8 condition, Figure 7D, the activation

is primarily achieved based on external sceneries only, since

inside the vehicle light is totally missing. We marked areas

describing the external scenery, from its rating perspective, in

orange and kept other squared pixels blank leading to a ratio

of 25% external illumination and 75% in-vehicle illumination.

Further, purple dashed lines divide the external and the internal

scenery roughly for orientation.

Next, we transformed the images in IPT-space and calculated

lightness, chroma, and hue according to equation published

by Ebner (1998). But since our vision system is triggered by

contrasts instead of absolute values, we calculated contrast

values of previous dimensions according to Equation 1 where sc

stands for external scenery, which are the orange marked areas

in Figure 7, and il for in-vehicle scenery, which describes all

other pixel-boxes.

Contrast J,c,h =
abs (sc) − abs

(

il
)

abs (sc) + abs
(

il
) • 100 [%] (1)

Based on this equation, we were able to calculate

contrast spaces of lightness, chroma and hue for all lighting

settings including all brightness, CCT, and luminaire spatial

distributions or three basic illumination categories. Following,

we were able to identify first, all possible lightness, chroma,

and hue settings, shown in Figures 8A,D. Further, we were able

to shrink this area to preference levels, following ratings from

Figures 6C,F, which are displayed in Figures 8B,C in the chroma

and lightness space and in Figures 8E,F for the hue space. This

means that we are able to define perceptional working areas

based on each external scenery. Here we resorted to the sceneries
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FIGURE 7

(B,D) Primary boundary line, dashed purple, between exterior and interior. Highest LMS activation for exterior and interior marked in dashed blue.

(A,B) Mixed CCT condition, L7, rated as good illumination in sun-city scenery and its LMS activation profile. (C,D) No in-vehicle lighting, which

was worse rated. Primary LMS activation area is marked in blue for exterior and interior. Orange pixel blocks represent the outside scenery.

FIGURE 8

(A–C) 3D plots of lightness shift 1J, (A–C) chroma shift 1c and (D–F) hue shift 1h. (A–F) Plots are rotated only to show single dimensions.

Maximum possible lightness and chroma shift within all displayed luminaire and brightness settings (A) and hue ranges (D). Selected preferences

(B,C) according to best and worst ratings as displayed in Figures 6B,C. Hue di�erences between best and worst (E,F). All separated between the

Europe and China group.
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FIGURE 9

Based on China in IPT, for (A) lightness J = −26.5 and (B) chroma c = −31.8, slopes are significantly di�erent from zero, resulting in a tendency

from worst to best illumination. For (C) hue h = 21.8, the slope is not di�erent. Tendency lines are added for sun city, a-marking in green and

night, d-marking in brown. For reference (D–F), IPT dimensions from Europe.

according to external brightness settings. Meaning from external

brighter to darker settings.

To investigate this identified scenery relation further,

regressions are calculated and modeled using polynomic

functions for the IPT space, as shown in Figure 9. Here, the

scenes are labeled with sun city a, countryside b, forest c and

night d following the new grouping for bright–dark sceneries out

of Figures 6A,D. Further, we compared investigated correlations

by applying CAM16 transformations in parallel. Results for that

are displayed in Figure 10.

Out of that, we conclude the following rules for in-vehicle

lighting scenery:

– The brightness inside the vehicle has to be adaptive to the

outside scenery, in such a way that the visual perception

for outside and inside should be closed to the average

of both by super sampling external light and internal

originated from both natural and artificial sources, compare

Figures 9A,D, 10A,D.

– Best chroma settings are achieved by adjusting in-vehicle

lighting so that the external saturation is primary higher if it

is outside dark and interesting, like the Shanghai night scene

d, compared to a brighter interesting day-time city scene a, in

which chroma should be similar for both (pc < 0.07), shown

in Figures 9B,E, 10B,E.

– Between outside and inside there should be no hue

change (p > 0.05) within all different external or

internal illumination settings, date and time of the day,

weather, and illuminated road settings, displayed in

Figures 9C,F, 10C,F.

To compare the performance of the simple IPT space

compared to the enhanced color appearance model CAM16,

correlations are calculated using the dataset from the

larger Chinese participants and displayed in the following

Figure 11.

The highest correlation with R²adj = 0.9862 and a slope

of 0.90 was investigated within the lightness dimension J,

leading to the conclusion that for the lightness calculation

with IPT and CAM16, in relative comparison, there

might be fewer differences. Within the color properties

of chroma c and hue angle h calculated correlation slopes

are comparably small, 0.32–0.36 with R²adj = 0.5543–

0.8075, which means that absolute numbers for both

dimensions are different but still transferable between both

perceptional spaces.

Finally, we evaluated the last two qualitative optional

questions and compared them in Section 5i−5ii. Answers

to both questions are, only evaluated from the Chinese

group, since there were nearly no written comments from

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2022.969125
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Weirich et al. 10.3389/fnins.2022.969125

FIGURE 10

Based on China in CAM16, for (A) lightness J = −31.8, slope is significantly di�erent from zero. For (B) chroma c and (C) hue h, the slopes are

not di�erent. Tendency lines like Figure 9. Chroma significantly varied (pc < 0.07) between brighter and darker external scenery a and d (B). For

reference (D–F), CAM dimensions from Europe.

FIGURE 11

Correlation analysis between IPT and CAM16 space, separated in lightness J (A), chroma c (B), and hue angle h (C). All three dimensions

significantly correlate with each other (p < 0.05). Highest correlation is observed in J dimension with R²adj = 0.9862.

the European group. Submitted expressions showed that

our study scope was highly accepted resulting in a high

wish for “surrounding-matching” or “adaptations” in other

dimensions by modern in-vehicle lighting. Also, there

was an ambivalence highlighted between “learn-a-lot”

and “too-much” representing the participants’ impression

about a comprehensive study design with a valuable field

of investigations.

Discussion

Compared to our first online survey (Weirich et al., 2022)

the average participating time increased by around 4min. With

around 23min on average, the survey can be classified as

comprehensive and close to the reasonable limit, which was

also shown in expressions as “too-much.” On the other side,

“learn-a-lot” was mentioned in the same way. Common online

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2022.969125
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Weirich et al. 10.3389/fnins.2022.969125

marketing studies can be completed in several minutes and for

an optimal study time as a trade-off between high attention level

and annoying, a good range of 10–15min until 20–28min as

a maximum could be identified, which rated our study time

to the nearly possible limit (Revilla and Höhne, 2020). They

concluded that the survey time was primarily influenced by

socio-demographics, personality, and the survey difficulty.

We were able to collect 164 full completed answers with 120

male and 44 female participants, primarily operating the survey

using the Chinese language and located in China. Out of the

first question part, we collected an age class difference of 1.56,

meaning that the European group was on average more than 10

years older than the group of China, similar to in our first part

(Weirich et al., 2022). Also, with the background of the global

demographic change of our society, we kept this separation by

knowing that its statistical power will be lower compared to

the Chinese group based on the smaller sample size. Nearly all

participants drove a vehicle before, as shown in Figure 2D with a

longer driving time in Europe compared to China. To conclude,

we were able to find a target group of people by spreading our

online survey invitation primarily via social media platforms,

which are self-driving, so highly connected to the vehicle field.

We didn’t use any commercial way to collect answers.

The first part about illumination for in-vehicle lighting was

designed to answer the research question q1, compare the end of

Section 4, about how many dimensions are needed to describe

the in-vehicle illumination. Three dimensions were found by

non-metrical multidimensional analysis, which is matching to

the study from Flynn (Flynn et al., 1973). Similar to their

study, we couldn’t express a clear definition of the identified

dimensions. So, we named them according to our intention

as bright–dim, single–multi, and warm–cool, compared in

Figure 4. Possibilities of similar attributes like a uniform–non-

uniform or peripheral–overhead are other valid expressions.

Besides the definition, the dissimilarity calculation based on

nMDS resulted in four separated groups out of the eight different

luminaire settings displayed in a 28 paired-comparison way.

Since, we didn’t express any kind of explanation about how

the participants should judge the similarity and still create

such meaningful groupings, leading to the conclusion that

our three investigated dimensions are highly connected with

visual attributes.

The second part applied psychological attributes, to

answer research question q2. First, we selected three semantic

differentials out of the three primary identified categories

by Flynn et al. named evaluative, perceptual clarity, and

spaciousness as summarized in Section Indoor illumination

for user preference. In this field, we used the general

evaluative impression, interest, perceptual clarity, brightness,

and spaciousness we used spatial attributes, listed in Section

Materials and methods. As displayed in Figure 5, mixed

CCTs and mixed spot and ambient light settings achieved

an outperformance in both investigated groups. Since natural

daylight alone isn’t able to achieve such a mixed white color

and spatial light distribution, we argue here that to achieve the

best psychological effect, artificial in-vehicle lighting should be

also applied during day-time periods and not only as a primary

orientational light during night time sessions (Wördenweber

et al., 2007).

In addition, for the spatial luminaire arrangement between

cooler, L4, and warmer light, L3, a higher brightness association

was perceived with warmer spatial light, applying the same

intensity settings for both in the pre-rendered images. For

spot luminaire arrangements, brightness association was similar

within all CCTs with 3,000, 4,500, and 6,000K. In addition,

L4 was significantly closer associated with L8, with no light

condition resulting from the nMDS, compared in Figure 3.

This result is in a first way contradictory to the common

understanding of lower and higher CCTs to brightness

perception. As investigated in previous studies, lower CCTs

were associated primarily with brighter brightness perception

(Harrington, 1954; Fotios and Levermore, 1997; Ju et al., 2012).

But all studies in common, they had primary a spot light

distribution, meaning, luminaires positioned at the roof and

shining downside only. A wall or a complete room-filling

indirect light, as we applied in our study, was missing there. So,

we concluded that the commonly accepted and scientific proven

rule about CCT and brightness association should be evaluated

again by comparing spot and spatial luminaire arrangements

as a third dimension and not only by light color and intensity

settings, since we know a two-dimensional arrangement to

describe psychological attributes is not enough (Flynn et al.,

1973).

To evaluate the effect of external driving sceneries, which

were skipped in the first two parts, four different external

sceneries named sun city, countryside, forest, and night were

implemented. In 124 pre-rendered images, participants were

able to change the intensity of the luminaire arrangements

L1, L3–L8, compared in Table 2, in five steps. First, a higher

brightness selection was associated with higher brightness

external sceneries (p < 0.05), as shown in Figures 6A,C,D,F.

Within the ratings of the group China, all luminaire settings,

besides L8, resulted in a good rating. For the group Europe,

a moderate ranking was calculated with the cold white L3 in

the forest scenery, shown in Figure 6F. Other in-vehicle lighting

arrangements were similarly good rated. This means that no

excellent illumination setting was found, which is our target in

part three of this miniseries.

To investigate the correlation between illumination

preferences and external sceneries deeper and try to model

these based on tristimulus correlations in accordance with the

change of the outer driving scenery, in research question q3, we

transformed the displayed sRGB images to perceptional spaces

IPT and CAM16. By applying contrasts between external and

internal illumination in the dimension of lightness J, chroma

c, and hue angle h, we were able to define applied luminaire
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working areas for the dimension of lightness and chroma,

shown in Figures 8B,C and for hue in Figures 8E,F. Compared

to overall possible areas, which were created within all luminaire

and brightness settings, Figures 8A,B preferred areas were

centrally scaled down resulting in a slightly- or non-overlapping

area. To investigate these working areas further, we compared

the three perceptual dimensions in the IPT and CAM16

space for the no-light condition, L8, the best in-vehicle, and

worst in-vehicle lighting condition according to the absolute

ranking in Figures 6C,F. It was clearly found, that for the

lightness dimension J, the external and internal brightness

should be similar and not like it is common today that external

sceneries are much brighter than in-vehicle lighting settings

with only up to 10–100 l× for a reading light function as

highest luminaire (Wördenweber et al., 2007). Second, for the

chroma dimension, we found partly evidence for the commonly

accepted Hunt-Effect, which describes by decreasing intensity

only, colors will be perceived as less saturated (Hunt, 1977).

To compensate for this effect, under low-intensity settings,

enhanced chroma settings should be applied, which was the

latest proven (Kawashima and Ohno, 2019). By comparing

scene a in the Chinese group, the interesting bright sun city

scenery, with since d, an interesting dark city location, relatively

spoken, external higher chroma settings should be applied

for the darker scenery to compensate for the low-intensity

level, following Hunt. For the brighter outside scenery, this

compensation is not necessary (pc < 0.07), compare Figure 10B.

We assume that both sceneries are similar interesting to observe,

since both showing a high detailed interesting city scenery with

several colorful visual stimuli. Also, in the preference rating,

L6 and L7 were significantly higher rated (p < 0.05) than

other luminaire settings in the Chinese group, as shown in

Figure 6C. In the sun city scene, L6, ambient warm-white,

was higher rated compared to L7, ambient cold-white, for

the night scenery d, both with r = 0.177–0.189, indicating

a weak effect size. Anyway, the correlation between outside

and inside hue contrasts could so far not fully investigated,

represented also by not significant slop differences to zero (p >

0.05) in Figures 9C–F,10C–F. We are aiming to evaluate them

in part 3 of our miniseries. Further, these guidelines took into

account, that our target group is acting as passengers, so not

primary driving.

Last, we compared the correlation between the simpler

IPT and the enhanced CAM16 color appearance space

in each of the three dimensions, displayed in Figure 11.

For lightness J, both model approaches can be judged as

nearly equal, represented in R2
adj

= 0.9862. The correlation

between hue angle was identified as the second-best and

chroma with R2
adj

= 0.5543 as the worst. We didn’t use

the uniform color space CAM16-UCS, since we explicitly

aimed to compare the three basic visual attributes like

lightness, chroma and hue separately and not a comparison

between Euclidian distances. Since hue angle h’ = h, defined

in CAM16-UCS, there will be also no differences in this

dimension at all (Li et al., 2017). By comparing CAM16-UCS

with IPT, studies also confirmed our results by evaluating

data in the Munsell Color system that there was a high

similarity in value, as lightness, a strong similarity in hue,

and the weakest correlation in chroma (Safdar et al., 2017).

Coming to modern high-definition image applications, IPT also

outperformed CAM16-UCS in regards to hue linearity especially

in the blueish area (Zhao and Luo, 2020), concluding that

taking all aspects into account including computational effort,

depending on the application, the IPT space is still useful for

perceptual evaluations.

Finally, we will add some study limitations. First, from

the decision to conduct an external free-access online survey,

participant observation was not possible. Hence, actual

perceived brightness and color values were varying between

participants. We tried to compensate for this effect by a large

separation in three domains of brightness, color, and spatial

distribution of our applied luminaire settings. Although, we

collected detailed device settings, like brand, model, and actual

screen brightness settings, based on the lockdown policy

applied in China, a photometric measurement of the top 10

used mobile devices was until now not possible. But we are

aiming to add these extensions in part 3. Within the complete

study, our sample size collected by the European group was

smaller compared to the Chinese group. So, we did not perform

any comparison of both groups, just presented their results

individually. Latest, a comparison between the presented model

study and a real object study is necessary to evaluate these

new findings.

Conclusion

In this second part of our miniseries about modern in-

vehicle lighting, we performed a comprehensive online survey

about applied lighting for vehicle passengers, not drivers. Out of

164 collected answers from China and Europe, we were able to

investigate three primary luminaire dimensions, named warm–

cool, dim–dark, and multi–single. Within our six psychological

attributes, mixed CCT settings of cooler and warmer white

combined with mixed spatial luminaire settings outperformed

all single illumination settings. Suggesting that for the most

enhanced illumination experience inside a modern vehicle,

daylight has to be combined with artificial luminaires day- and

night-time. No light in the vehicle performed worse under all

settings. Finally, through differentiation between day, night,

interesting, and monotonous external sceneries with internal

lighting settings, three major guidelines were concluded based

on three basic perceptional attributes lighting, chroma and hue:

– External and internal brightness levels should be on average

closer or equal to each other.
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– If the outside scenery is dark or dim but interesting,

the external chroma is primary higher than the internal,

following Hunt. If the outside scenery is brighter and more

interesting, chroma should be similar for both, the internal

and external scenery.

– No hue shift should be observed between outside and

inside lighting.

With these three basic connections between external and

internal luminaire settings, we achieved a new step on the

way to illumination modeling for modern in-vehicle lighting,

which can be stated as the first guideline for in-vehicle light

engineers. In our next controlled laboratory study, part 3,

we aim at confirming mentioned conditional findings by a

combination with results out of our first and this second

part by adding also an investigation of adaptational effects

during night and day-time, which might be an explanation

for different ratings between these two time zones, which we

currently found.
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