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Joint and Individual Variation Explained (JIVE) is a model that decomposes

multiple datasets obtained on the same subjects into shared structure,

structure unique to each dataset, and noise. JIVE is an important tool

for multimodal data integration in neuroimaging. The two most common

algorithms are R.JIVE, an iterative approach, and AJIVE, which uses principal

angle analysis. The joint structure in JIVE is defined by shared subspaces, but

interpreting these subspaces can be challenging. In this paper, we reinterpret

AJIVE as a canonical correlation analysis of principal component scores. This

reformulation, which we call CJIVE, (1) provides an intuitive view of AJIVE;

(2) uses a permutation test for the number of joint components; (3) can

be used to predict subject scores for out-of-sample observations; and (4)

is computationally fast. We conduct simulation studies that show CJIVE and

AJIVE are accurate when the total signal ranks are correctly specified but,

generally inaccurate when the total ranks are too large. CJIVE and AJIVE can

still extract joint signal even when the joint signal variance is relatively small.

JIVE methods are applied to integrate functional connectivity (resting-state

fMRI) and structural connectivity (di�usion MRI) from the Human Connectome

Project. Surprisingly, the edges with largest loadings in the joint component in

functional connectivity do not coincide with the same edges in the structural

connectivity, indicating more complex patterns than assumed in spatial priors.

Using these loadings, we accurately predict joint subject scores in new

participants. We also find joint scores are associated with fluid intelligence,

highlighting the potential for JIVE to reveal important shared structure.

KEYWORDS

canonical correlation analysis, data integration, functional connectivity, Human

Connectome Project, joint and individual variance explained, principal component

analysis, structural connectivity

1. Introduction

Modern biomedical and scientific studies often collect multiple datasets in which the

number of variables may greatly exceed the number of participants. This is common in

neuroimaging studies, where multiple neuroimaging data types, referred to as modalities,

as well as behavioral and demographic data, are often collected (Mueller et al., 2005;

Glasser et al., 2013). The importance of suchmulti-dataset studies underscores the urgent

need for quantitative methods capable of simultaneous analysis of these datasets.
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A fundamental goal in neuroimaging is understanding the

similarities between structural connectivity (SC) and functional

connectivity (FC), where FC can be quantified by cross

correlations between brain region time series revealed through

functional magnetic resonance imaging (fMRI) and SC by

measures of anatomical connections revealed using diffusion-

weighted MRI (dMRI) (Honey et al., 2009). Studies have

reported that brain regions with strong SC demonstrate more

reliable functional connections (Honey et al., 2009; Kemmer

et al., 2018), and incorporating SC information leads to

more reproducible FC network estimation (Higgins et al.,

2018). However, additional research is needed to elucidate the

information shared between measures of connectivity and the

information unique to structural or functional connectivity.

Unsupervised methods are commonly used to reduce the

dimensionality of imaging datasets, which is often a key step

in the joint analysis of multi-modal imaging data. Principal

Components Analysis (PCA) finds components of maximum

variance. It has been used to extract eigenimages from a group

of individuals (Penny et al., 2011) and as a means of dimension

reduction prior to employing a supervised learning method

(López et al., 2011). Independent Component Analysis (ICA) is

used to find components that are as independent as possible.

It is commonly used to estimate resting-state networks, or

regions that share a high degree of functional coupling in

resting-state fMRI (Biswal et al., 2010). Non-negative matrix

factorization (NNMF) constrains components to have positive

entries. NNMF was used to decompose structural images from

dMRI into brain regions that consistently co-varied across

individuals (Sotiras et al., 2015). Auto-encoders (AEs) use neural

networks for unsupervised dimension reduction. AEs have been

used to learn latent feature representations from gray matter

volumes extracted from structural MRI images, intensities from

18-fluoro-deoxyglucose positron emissions tomography (FDG-

PET), and cerebrospinal fluid biomarkers (Suk et al., 2015).

Recently, increasing attention has been paid to data integration

and data fusion methods (Sui and Calhoun, 2016), which may

provide insight into the relationship between structural and

functional MRI without imposing a priori spatial constraints.

Statistical approaches to data integration date back to the

1930s with canonical correlation analysis (CCA) (Hotelling,

1936). Smith et al. (2015) used PCA and CCA to integrate

fMRI and behavioral data from the Human Connectome Project

(HCP). Recently, novel methods that assess the shared structure

between datasets have arisen (Li et al., 2009; Witten et al., 2009),

including several which also explore structure unique to each

dataset (Lock et al., 2013; Zhou et al., 2016; Feng et al., 2018;

Gaynanova and Li, 2019; Shu et al., 2020). A recent application

of CCA developed a novel approach to jointly analyze functional

and structural connectomes while assessing differences between

groups of participants (Zhang et al., 2021).

Joint and Individual Variation Explained (JIVE) is an

unsupervised method that has been used in neuroimaging (Yu

et al., 2017; Zhao et al., 2019), genetic data (O’Connell and

Lock, 2016; McCabe et al., 2020), and for other applications

(Lock et al., 2013). JIVE is similar to PCA in that subject scores

are extracted, but unlike PCA, JIVE estimates scores that are

shared across datasets (joint scores) and scores that are unique to

each dataset (individual scores). Common and orthogonal basis

extraction (COBE), which is closely related to JIVE (Zhou et al.,

2016), was applied to multi-subject resting-state correlation

matrices where individual structure was used in connectome

fingerprinting (Kashyap et al., 2019). Throughout the remainder

of this manuscript, we will refer to the JIVE implementation in

Lock et al. (2013) and the follow-up paper O’Connell and Lock

(2016) as R.JIVE. An alternative algorithm and rank-estimation

routine for JIVE were recently proposed in Angle-based JIVE

(AJIVE) (Feng et al., 2018). AJIVE uses matrix perturbation

theory (Wedin, 1972) to determine when two similar directions

of variation represent noisy estimates of the same direction, and

it uses a non-iterative algorithm that can decrease computational

costs.

Despite the advancement in JIVE, there are limitations that

may hinder its widespread application. JIVE is formulated as

a subspace decomposition with shared structure captured by

equivalent score subspaces, and the results can be difficult to

interpret. For instance, singular value decompositions (SVDs)

of joint matrices (called block-specific scores) result in subject

scores that differ across datasets. The relative importance

of the components of the estimated joint subspace requires

an alternative representation. If JIVE is used for biomarker

development, as in Sandri et al. (2018), researchers may want

to estimate a subject score for a new patient, which can

then be used to classify their risk. Additionally, simulation

studies examining the accuracy of the rank selection procedures

and estimated components are needed to provide guidance to

scientific applications.

Our contributions are the following.

• We provide an intuitive view of AJIVE as averaging

the canonical variables from the canonical correlation

analysis of the principal component scores. We present

a permutation test for the joint structure, and we call

this alternative perspective and permutation test Canonical

JIVE (CJIVE). The use of the phrase “interpretive JIVE”

in the title of this manuscript emphasizes how we re-

interpret the JIVE framework, and it is a play on the phrase

“interpretive dance” and the original meaning of the jive

dance from the 1930s.

• We evaluate three methods for predicting joint scores in

new subjects, and demonstrate that these methods are

effective at predicting joint scores in new subjects.

• Simulation studies show that, in AJIVE and CJIVE,

overestimating the signal ranks can generally lead to

underestimation of the joint ranks. AJIVE and CJIVE tend

to outperform R.JIVE when the joint signal is small.
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• We apply JIVE to the integration of functional and

structural connectivity using a state-of-the-art pipeline

applied to 998 subjects from the Human Connectome

Project. JIVE reveals new insights into the shared variation,

in particular revealing relationships that go beyond

conventional spatial priors. We accurately predict joint

subject scores in new subjects, and joint scores are related

to fluid intelligence.

Section 2 describes the statistical methodology employed in

AJIVE, R.JIVE, and sparse CCA (sCCA), and introduces CJIVE.

Section 3 conducts simulation studies. Section 4 analyzes the

HCP data. We discuss our findings and recommendations in

Section 5.

2. Statistical methodology

A table of the notation we will use is given in Table 1.

2.1. JIVE decomposition

Consider a collection of K data blocks/matrices, {Xk ∈
R
n×pk : k = 1, . . . ,K}, where n is the number of subjects

and pk the number of features or variables in the kth dataset.

Each data block can be written as Xk = Jk + Ak + Ek,

where Jk represents the joint signal common to both data

blocks, Ak represents the block-individual signal, which is

unique to the kth data block, and Ek represents full-rank

isotropic noise. The JIVEmodel assumes that each rank-reduced

signal matrix Xk − Ek [with rank rk < min(n, pk)] can be

decomposed into a subspace of Rn that is common across Xk

(the joint subspace) and a subspace that is unique to the kth

dataset and orthogonal to the joint subspace (the individual

subspaces) (Feng et al., 2018). In our presentation, we expand

on one of three ways to represent the joint subspace, called

the “common normalized score” representation in Feng et al.

(2018). We emphasize this representation because it results in

a correspondence between the joint components of each dataset,

whereas the other representations are arguably less interpretable.

The common basis, Z ∈ R
n×rJ , is derived from joint analysis of

all data blocks, and the other, Bk ∈ R
n×rIk from the part that

remains after joint analysis, where rIk = rk − rJ . Let Id be the

d × d identity matrix and 0 a matrix of zeros. Furthermore, let

the joint and individual signal matrices of the kth data block take

the form Jk = ZWJk and Ak = BkWIk, respectively. Then the

JIVE model corresponds to the matrix decomposition

Xk = ZWJk + BkWIk + Ek, (1)

subject to B⊤k Z = 0, Z⊤Z = IrJ , B
⊤
k Bk = IrIk .

We call Z joint subject scores and WJk joint variable loadings.

Individual subject scores are given by Bk and individual variable

TABLE 1 Notation used throughout the manuscript.

Symbol Definition or use

k Used to index the data blocks

Xk kth data block

n Sample size

pk Number of features (i.e., columns) in data block k

Jk Joint signal from kth data block

Ak Individual (block-specific) signal from kth data block

Ek Noise signal from kth data block

Id An identity matrix of dimension d

Z Joint subject scores, which form a basis for the joint signal

Bk Individual subject scores from data block k, which form a

basis for that block’s individual signal

WJk Variable loadings onto the joint signal subspace for the kth

data block

WIk Variable loadings onto the individual signal subspace for the

kth data block

rk Rank of the signal contained in data block k

rJ The rank of the joint signal, i.e., the number of components

comprising the joint signal

rIk The rank of the individual signal for data block k

Uk Left singular vectors of data block k

Dk Diagonal matrix containing the singular values of data block

k

Vk Right singular vectors of data block k

C Concatenation of left singular vectors from both data blocks

UC Left singular vectors of concatenated singular vectors

ωkj Canonical loadings, which maximize correlation of jth PCs

�k Concatenation of canonical loadings

σCj Joint singular value of UC

ρj Canonical correlation of the jth joint component

ĉ1i Predicted canonical variables

R2
Jk Proportion of total variance in data block k attributable to

joint signal

R2
Ik Proportion of total variance in data block k attributable to

individual signal

loadings by WIk. Intuitively, this decomposition is similar to a

singular value decomposition on each dataset but with part of

the basis constrained to be equal in the two decompositions.

In this representation, we do not enforce orthogonality

between Bk and Bk′ . Later, we propose a permutation test

for the joint rank, rJ , that determines when the correlation

between signal is sufficiently large to be deemed joint, but allows

insignificant correlation between individual subject scores. Our

proposed approach will also result in an intuitive ordering of

components by the strength of evidence that they are joint. Also

note that in (1), the rows of the loadings matrices WJk are not

orthogonal.
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FIGURE 1

Schematic of the CJIVE decomposition for obtaining joint subject scores and loadings. Quantities specific to X1 are shown in blue; those

specific to X2, orange. Gray boxes illustrate scores, with a green outline for joint scores. Checked and dotted boxes represent loadings. Steps are

outlined in Algorithm 1. Separately, SVD is applied to each data block (far left) to obtain low-rank PC scores (all score matrices are shown as gray

boxes). Next, CCA is applied to the PC scores with the number of components chosen using a permutation test. Joint subject scores are

equivalent to a weighted average of the resultant canonical variables. Joint loadings result from the matrix product between joint subject scores

and data blocks, i.e., regression of the data blocks onto joint subject scores.

For the HCP network data that we examine in Section 4,

we can translate each row of the score (Z,Bk) matrix into a

low-dimensional vector summary of a participant’s kth network

data (e.g., FC). The joint scores Z summarize information that

is common across modalities, while Bk comprise information

unique to an individual modality. For instance, Section 4.3

shows that CJIVE joint scores are more strongly associated

with a measure of fluid intelligence than individual scores.

The lth row of the loading matrix WJk exhibits the magnitude

with which network edges contribute to the lth column of

the summary scores in Z. In Section 4.4, we examine variable

loadings to develop insight into latent structures that are

common within both modalities and those which are unique to

each.

2.1.1. R.JIVE estimation

R.JIVE uses an iterative algorithm that simultaneously

estimates joint and individual matrices. Each dataset is column-

centered and scaled by its Frobenius norm. In our data

application, we standardize the variance of each variable prior to

scaling by the Frobenius norm. The algorithm iterates between

estimating the joint subspaces and individual subspaces; details

are in the Web Appendix A.1.1 (Supplementary material). The

ranks of the joint and individual matrices are selected using

permutation tests. In the default R.JIVE implementation, the

individual subspaces are orthogonal (O’Connell and Lock,

2016).

2.1.2. AJIVE estimation

In AJIVE, the joint rank rJ is determined using principal-

angle analysis (PAA) and requires user-specified signal ranks

r1 = rJ + rI1 and r2 = rJ + rI2. The main idea is to investigate

when basis vectors in the signal subspaces should be considered

“noisy” estimates of the same direction. This problem can be

translated into finding the singular values of the concatenated

signal bases that exceed a given threshold.

For the remainder of this paper, we standardize the columns

of X1 and X2 to have mean zero and variances equal to one, as

commonly done in PCA. Note R.JIVE performs an additional

normalization by the Frobenius norm.

First, the user specifies the ranks used in PCA of X1 and

X2. Let U1 and U2 denote the r1 and r2 left singular vectors

of X1 and X2. Define C = [U1,U2]. Let UC denote the left

singular vectors of C. Feng et al. (2018) develop two bounds

to determine whether the jth column of UC represents a joint

direction of variance. These bounds are discussed in the Web

Appendix A.1.2 (Supplementary material).

2.2. Using CCA to interpret JIVE: CJIVE

2.2.1. Equivalence of estimators

We review CCA and describe how it relates to the AJIVE

algorithm. For data matrices X1 and X2, CCA seeks vectors

ω11 and ω21 to maximize Corr(X1ω11,X2ω21). Subsequent

canonical vectors, ω1j′ ,ω2j′ , arise from a similar optimization
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FIGURE 2

Results of simulation studies: (A) p2 = 200, (B) p2 = 10, 000. Each sub-figure shows the estimated joint signal rank for each method and

combination of simulation settings. True joint rank equals 3 in all simulations. R2
J1 and R2

J2 represent the true joint variation controlled in

simulations. We held the sample size and individual variation explained constant at n = 200 and R2
I1 = R2

I2 = 0.25, respectively. Importantly,

AJIVE-rk and CJIVE-rk are not possible in practice, as the signal ranks must all be estimated.

problem with the additional constraint ω⊤
1jCov (X1)ω1j′ =

ω⊤
2jCov (X2)ω2j′ = 0 for all j < j′. IfX1 andX2 are centered and

semiorthogonal matrices, then the CCA problem can be written

as

argmax
ω1j∈Rp1 ,ω2j∈Rp2

ω⊤
1jX

⊤
1 X2ω2j, j = 1, . . . , rJ ,

subject to ||ωkj|| = 1 and ω⊤
kjωkj′ = 0, k = 1, 2, j 6= j′.

(2)

Then the solutions to (2), which we denote as ω̂1j and ω̂2j, are

given by the left and right singular vectors of X⊤
1 X2, which are

unique up to a change in sign (Mardia et al., 1979). Additionally,

ρj = 1
n ω̂⊤

1jX
⊤
1 X2ω̂2j is the jth canonical correlation.

Classic CCA can not be applied to pk > n. Sparse CCA is

one alternative (Witten et al., 2009), and it turns out JIVE is a

reduced-rank alternative. Feng et al. (2018) show that the jth

joint subject score from AJIVE is equivalent to the average of

the jth canonical variables of the CCA of the scores from the

separate PCAs, up to scaling. Our theorem, below, formalizes

their finding. A proof is provided in the Web Appendix A.3

(Supplementary material).

THEOREM 2.1 Let the columns of U1 and U2 represent

orthonormal bases for the signal matricesX1−E1 andX2−E2. Let

ẑj be the jth joint subject score from AJIVE analysis. Let ω̂1j ∈ R
r1

and ω̂2j ∈ R
r2 represent the canonical vectors from the CCA of

U1,U2. Let σCj denote the jth singular value of C = [U1,U2].
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Then

ẑj =
1√
2σCj

(U1ω̂1j + U2ω̂2j).

Additionally, the canonical correlation ρj = σ 2
Cj − 1.

In summary, the jth joint score vector from AJIVE is

equivalent to a scaled average of the jth canonical variables of

the principal component scores. This perspective is illustrated in

Figure 1, and we define CJIVE (CCA JIVE) in the next section.

2.2.2. CJIVE: Ordering, permutation test, and
unique components

The CCA perspective on the signal subspaces provides a

useful way to interpret the joint components. We view the

canonical correlations defined in Theorem 2.1 as a measure

of the strength of the corresponding joint component, which

provides an ordering.

This motivates the use of a permutation test of the canonical

correlations of the PCs. For b = 1, . . . , nperms, let U
(b)
2 represent

a copy of U2 with the rows permuted so that they no longer

represent the same ordering of participants as in U1. We then

obtain the null distribution of the canonical correlations from

the max of the singular values of U⊤
1 U

(b)
2 , b = 1, . . . , nperms.

For each component, we calculate a p-value as the proportion

of maximal null correlations which exceed that component’s

canonical correlation. By using the max across all singular

values, the family-wise error rate is controlled at the specified

α-level. Once we have estimated rJ via the permutation test,

we calculate joint scores using the results of Theorem 2.1 and

estimate the signal matrices using the same procedure in AJIVE.

Algorithm 1 describes how to conduct the CJIVE procedure.

Here, we summarize the CJIVE procedure depicted in

Figure 1.

CJIVE provides a unique decomposition of Ĵ1 and Ĵ2 (up to

sign) when the canonical correlations differ across components,

as expected to occur in data. In the JIVE model given by (1), it

is assumed that the joint subject score subspaces are equivalent.

Then, the components are not unique. As in AJIVE (Feng et al.,

2018), the joint scores represent an orthogonal basis for the joint

column space. Therefore, an orthogonal transformation of these

scores will result in the same joint column space.

2.2.3. Predicting joint scores in new participants

An important problem is how to apply the results from JIVE

analysis to a new participant. For example, if JIVE is used for

biomarker development, wemay want to estimate a subject score

for a patient, which can then be used to classify their risk.

One straightforward way of using JIVE to predict new joint

scores is to regress each new pair of observations onto the

generalized inverse of joint loadings to obtain block-specific

joint scores and then compute their average. Let ŴJk, k = 1, 2,

(1) For k = 1, 2 conduct PCA of Xk and determine

total rank rk by examining the scree plot.

Obtain PC scores Uk.

(2) Calculate canonical correlations: ρj,

j = 1, . . . , min(r1, r2), as in Theorem 2.1.

(3) Use a permutation test to determine which

canonical correlations are significant.

(4) Calculate joint scores Z as in Theorem 2.1.

(5) Project data onto the orthogonal complement

of the joint subspace to obtain individual

signal matrices Ak = BkWIk.

(6) Calculate loadings for joint structure and

visualize.

(7) Examine the scores for structure, e.g.,

associations with exogenous variables.

(8) Calculate the variance explained for

both joint and individual components, which

provides insight into the importance of joint

and individual sources of variation.

Algorithm 1. CJIVE Procedure.

represent joint loadings from applying JIVE on the data blocks

X1 and X2. Let x1i ∈ R
p1 and x2i ∈ R

p2 be data for a new

participant. Then define predicted joint scores as

ẑ
⊤
i = (x⊤i1Ŵ

−
J1 + x

⊤
i2Ŵ

−
J2)/ ‖ x

⊤
i1Ŵ

−
J1 + x

⊤
i2Ŵ

−
J2 ‖,

where Ŵ−
Jk
represents the g-inverse of ŴJk. Define this method

as “G-inverse prediction.” To our knowledge, this prediction

approach has not been evaluated.

R.JIVE-prediction (Kaplan and Lock, 2017) estimates

subject scores in new participants using an iterative process

that aims to minimize the sum of squared errors between the

new data matrices and noise-decontaminated JIVE signal by

alternatively estimating new subject scores with the loadings

from a previous JIVE analysis.

A third approach is based on the canonical variables given in

Theorem 2.1, hereafter, CJIVE-prediction. First, we predict the

PC scores for a new subject; second, we estimate the canonical

variables of the PC scores from each dataset; third, we sum

the canonical variables and normalize to length one. Let Xk =
UkDkV

⊤
k

+ Ek, for k = 1, 2, represent a rank rk SVD of

Xk. Using CCA on U1 and U2 yields matrices of canonical

vectors: �̂1 = [ω̂1j, . . . , ω̂1rJ ] and �̂2 = [ω̂2j, . . . , ω̂2rJ ]. The

predicted estimate for each canonical variable is given by ĉ1i =
x
⊤
i1V1D

−1
1 �̂1 and ĉ2i = x

⊤
i2V2D

−1
2 �̂2j. Then the jth joint score

is

ẑij =
ĉ1ij + ĉ2ij√
2(1+ ρj)

,

for j = 1, . . . , rJ .
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We apply and evaluate these three prediction methods in

both the simulation study of Section 3 and analysis of the HCP

data (Section 4).

3. Simulation study

3.1. Simulations comparing JIVE methods

We conduct simulation studies to address the following gaps

in the current understanding of the performance of R.JIVE and

AJIVE: (1) accuracy when the joint signal strength is low vs.

high; (2) rank selection when the number of joint components is

>1; and (3) the impact of the initial signal rank selection on joint

rank selection. We use a full factorial design with the following

factors:

1. The number of features in X2: with levels (a) p2 = 200 and

(b) p2 = 10000,

2. Joint Variation Explained in X1: with levels (a) R2J1 = 0.05

and (b) R2J1 = 0.5,

3. Joint Variation Explained in X2: with levels (a) R2J2 = 0.05

and (b) R2J2 = 0.5.

The joint rank was 3, individual ranks were 2, and n = 200 in

all settings. The entries of the error matrices E1 and E2 were

randomly drawn from a standard Gaussian distribution. The

number of features in X1 and the individual variation explained

for both data blocks were held constant at p1 = 200 and R2I1 =
R2I2 = 0.25, respectively.

Experimental factor 1 (i.e., p2) allows us to assess the impact

of pk on the accuracy subspace estimation and rJ estimates.

Factors 2 and 3 (i.e., R2J1 and R
2
J2) allow us to examine the impact

of the joint signal’s magnitude within each dataset.

For each simulation, the subject score matrix [Z,B1,B2]

was drawn from a Bernoulli distribution, with probability 0.2

for Z and 0.4 for Bk. The use of two values is similar to the

toy examples from Feng et al. (2018), which used ±1. Next,

we defined loading matrices WJk and WIk with entries from

independent, mean 0 multivariate Gaussian distributions with

covariance matrices diag(9, 4, 1) and diag(4, 1), respectively. The

values along the diagonals were chosen to ensure the strength

of components within each joint/individual signal diminished

from first to last. Note that this set-up results in approximately

orthogonal A1 and A2. In R.JIVE, we use the option enforcing

this orthogonality. This set-up may favor the rank-selection

procedure in AJIVE since principal angles between A1 and A2

are large and corresponding singular values are unlikely to

exceed the Wedin and random bounds described in Section

2.1.2.

In order to achieve the desired values of R2
Jk

and R2
Ik
, we

rescale the joint and individual matrices such that Xk = dkJK +
ckAk + Ek for appropriate constants ck and dk, as described in

Web Appendix B (Supplementary material).

The chordal subspace norm is a distance metric for linear

subspaces that has been generalized to matrices, say, true joint

scores Z and estimated joint scores Ẑ, of possibly different ranks

(Ye and Lim, 2014) and can be calculated as

δ(Z, Ẑ) =

√√√√
q∑

m=1

sin2 θm,

where q = mink[rank(Z), rank(Ẑk)] and θm are the principal

angles between the column space of Z and Ẑ. We use this

metric in our simulation studies to describe the accuracy of JIVE

estimates. Note when the column space of Z is contained in the

column space of Ẑ, δ(Z, Ẑ) = 0. Therefore, comparing results

from different methods requires examination of rank estimates

and subspace estimates.

We performed 100 simulations using the followingmethods:

(1) AJIVE-rk, where we used the true total number of

components rk (joint rank + individual rank) as input; (2)

AJIVE-Over, where the total number of components was chosen

to retain 95% of the variance; (3) R.JIVE-Oracle, which uses

both the true rk and rJ as input; and (4) R.JIVE-Free, with

its permutation based algorithm for choosing ranks. We also

defined (5) CJIVE-rk and (6) CJIVE-Over using the same

approach for total signal ranks and selecting the joint rank using

our permutation test with nperms = 500 and α = 0.05.

To investigate the prediction methods outlined in Section

2.2.3, the subjects for each simulation were randomly divided

into training and test subjects, both with sample sizes n/2 =
100. AJIVE, CJIVE, and R.JIVE, all with true signal ranks

used as inputs, were applied on the training datasets. Subject

scores were predicted for new subjects, represented by the

test datasets. We then assessed performance by calculating the

Pearson correlation coefficient between predicted joint scores

for the test datasets and true joint scores for the same datasets

for each of the rJ joint score components.

3.2. Simulation results

Figures 2A,B show that CJIVE-rk and AJIVE-rk chose the

correct joint rank in nearly 100% of simulations in all settings

except for the low-signal lower-dimensional case. Further

investigation indicated the joint rank selection in AJIVE tends to

be driven by the random direction bound, rather than theWedin

bound (see Web Appendix A.1.2 in Supplementary material).

AJIVE-Over and CJIVE-Over both routinely underestimated

the number of joint components in all scenarios except lower

dimensional high-signal case. When an estimate of rk is very

large, the correlation between permuted datasets can be very

large, such that zero joint components are significant. The

joint rank estimated in R.JIVE is equal to 2 in a majority of

simulations when the joint signal in both datasets is relatively
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large (bottom-right panels in Figures 2A,B: R2J1 = R2J2 = 0.5),

while it is mostly 0 or 1 in the other scenarios.

CJIVE-rk and AJIVE-rk joint score subspace errors trended

less than R.JIVE, CJIVE-Over, and AJIVE-Over in all settings,

as shown in Figure 3. Although the chordal distances for joint

loading subspaces from R.JIVE trended less than those from

AJIVE-rk, the lack of accurate joint rank estimates from R.JIVE

may indicate that estimated subspaces partially lie within true

subspaces.

To summarize, we find that CJIVE-rk and AJIVE-rk chose

the joint rank correctly in most simulations. For both CJIVE-

Over and AJIVE-Over, including too many initial signal

components generally resulted in a noise-contaminated signal

for each data matrix, which resulted in too few joint components

or none at all. Moreover, CJIVE-rk and AJIVE-rk estimates of

joint score and loading subspaces tended to be more accurate

than both R.JIVE-Free and R.JIVE-Oracle. In simulations,

AJIVE-rk is equivalent to AJIVE-Scree plot because the signal

rank is identified from the scree plots (Web Appendix Figure S2

in Supplementary material).

Out-of-sample subject score estimates were more accurate

across joint components using CJIVE-prediction compared to

G-inverse prediction (Figure 4). However, R.JIVE-prediction

results were most accurate when the joint signal in at least one

dataset was relatively strong, i.e., R2
Jk

= 0.5 for k = 1 or 2.

The Pearson correlation coefficients tend to be close to 1, on

average, for the first joint component of subject scores across all

simulation settings. The third component was predicted poorly

in all methods when the joint signal is relatively weak, i.e., R2J1 =
R2J2 = 0.05. Recall data were simulated so that the proportion of

variance attributable to the jth joint component in Xk, k = 1, 2,

j = 1, 2, 3 is given by R2
Jk

=
(
3−(j−1)

6

)
. Therefore, components

are ordered (from highest to lowest) by the proportion of joint

variation that they contribute, whichmay contribute to the trend

in poorer prediction as j increased.

4. Joint analysis of structural and
functional connectivity in the human
connectome project data

4.1. Human connectome project data
and processing

Our data application uses measures of FC and SC from

n = 998 study participants (532 females) in the young

adult Human Connectome Project (HCP). Web Appendix

Table S4 in Supplementary material provides demographics.

We applied R.JIVE, AJIVE, CJIVE, and sCCA to examine

multivariate relationships across brain networks as measured

by Fisher z-transformed correlations from rs-fMRI (FC) and

log-transformed streamline counts from dMRI (SC).

HCP rs-fMRI data comprise two left-right phase encoded

and two right-left phase encoded 15-min eyes-open rs-fMRI

runs (Glasser et al., 2013). Each run used 2-mm isotropic voxels

with 0.72 s repetition time. For each run, we calculated the

average time series for each of the 68 cortical regions of interest

(ROIs) from Desikan et al. (2006) plus the 19 subcortical gray-

matter ROIs from Glasser et al. (2013). For each participant and

pair of ROIs, the Pearson correlation was calculated, Fisher z-

transformed, and then averaged across the four runs. The lower

diagonal of each subject’s connectivity matrix was vectorized,

resulting in p1 = 3,741.

For each HCP participant, three left-right and three right-

left phase-encoded runs of dMRI from three shells of b =
1, 000, 2, 000, and 3, 000 s/mm2 with 90 directions and 6 b0

acquisitions interspersed throughout were acquired (Glasser

et al., 2013). Whole-brain tractography for each participant

was conducted using probabilistic tractography as detailed in

Zhang et al. (2018). On average, around 105 voxels occurring

along the white matter/gray matter interface were identified as

seeding regions for each participant. Sixteen streamlines were

initiated for each seeding voxel, resulting in ∼106 streamlines

for each participant. Nodes of the SC networks were defined

from the same ROIs as the rs-fMRI. Edges were represented by

the number of viable streamlines between ROIs, with viability

determined by three procedures: (1) each gray matter ROI is

dilated to include a small portion of white matter region; (2)

streamlines connecting multiple ROIs were cut into pieces such

that no streamlines pass through ROIs; and (3) apparent outliers

were removed. Finally, edges where at least 99% of subjects had

zero streamlines were removed, and the remaining streamline

counts were log transformed. There were p2 = 3,330 edges in

the resultant SC datamatrix. Plots of themean FC and SC appear

in the Web Appendix Figure S5 (Supplementary material).

4.2. Dimension selection and joint and
individual variation explained

Both AJIVE and CJIVE with the scree-plot method for

choosing total ranks estimated two joint components (Table 2),

which implies that results from these methods are equivalent.

Similarly, both AJIVE and CJIVE estimated 0 joint components

when the total ranks were chosen to result in retaining 95% of

the variation. R.JIVE with its permutation tests estimated 1 joint

component.

The canonical correlations were ρ1 = 0.31 and ρ2 = 0.21

using 1,000 permutations in CJIVE-Scree plot. n CJIVE-Scree

plot, we also examined the breakdown of the joint variances

by component: the proportion of variation attributable to joint

component 1 was 0.094 in FC and 0.017 in SC (Table 2). For

component 2, the values were 0.018 and 0.015, respectively.
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FIGURE 3

Results of simulation studies: (A,B) p2 = 200, (C,D) p2 = 10, 000. Each sub-figure exhibits boxplots of chordal norms for each of the post-JIVE

measurements described in Section 2.1. Methods with chordal norms equal to 1 result when the estimated joint rank is 0 for all replicates. R2
J1

and R2
J2 represent the true joint variation controlled in simulations. We held the sample size, joint rank, and proportions of individual variation

explained constant at n = 200, rJ = 3, and R2
I1 = R2

I2 = 0.25, respectively. The left column (A,C), show chordal norms between true and estimated

subject scores. The right column (B,D), show chordal norms between true and estimated variable loadings.

In addition to the previous analysis, we performed

an irregular grid search to examine the impact of the

signal rank selection on the estimation of the joint rank

when using CJIVE and AJIVE. Specifically, we examined

{2, 5, 7, 10, 15, 20, 25, 30, 39, 40, 50, 75, 100, 200, 225, 500, 990}
for FC, where 39 and 225 capture 80

and 95% of the variance, respectively, and

{2, 5, 7, 10, 15, 20, 25, 30, 40, 50, 75, 100, 200, 330, 500, 683, 990}
for SC, where 330 and 683 capture 80 and 95% of the

variance. The proportion of variation explained by the

corresponding number of PCs are given inWeb Appendix Table

S3 (Supplementary material). The joint rank estimates for each

pair of signal ranks are displayed in Figure 5. The joint rank in

CJIVE and AJIVE tended to increase initially. When 80% of the

variance was retained in FC and SC (rFC = 39 and rSC = 330),

CJIVE and AJIVE estimated rJ = 3 and 4, respectively. The

joint ranks were maximized at rFC = 225 and rSC = 75, with

CJIVE selecting rJ = 11 and AJIVE rJ = 12 (Figure 5). The

joint rank estimated by AJIVE and CJIVE depends on the

choice of total signal rank, but hereafter we focus on the more

parsimonious representation from Figure 5, which is easier to

interpret.
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FIGURE 4

Results of simulation studies: (A) p2 = 200, (B) p2 = 10, 000. Boxplots of absolute Pearson correlations between predicted joint scores and true

joint scores in simulation study. R2
J1 and R2

J2 represent the true joint variation controlled in simulations. We held the sample size and individual

variation explained constant at n = 200 and R2
I1 = R2

I2 = 0.25, respectively. (A) shows results for p1 = 200, p2 = 200. (B) shows results for

p1 = 200, p2 = 10, 000. Data were simulated so that the proportion of variance attributable to the jth joint component in Xk , (k = 1, 2; j = 1, . . . rJ)

is given by R2
Jk

(
rJ−(j−1)
1+···+rJ

)
.

TABLE 2 Estimated joint and total signal ranks and joint and individual variation explained in the functional connectivity (Pearson correlations) and

the dMRI (streamline counts) HCP data.

Method Chosen rank Variation explained

Joint Total Joint Total

FC

Total

SC

Joint

FC

Individual

FC

Joint

SC

Individual

SC

AJIVE Scree plot 2 7 10 0.113 0.499 0.032 0.216

95% Var. 0 225 683 0 0.950 0 0.951

CJIVE Scree plot 2 7 10 0.113 0.499 0.032 0.216

95% Var. 0 225 683 0 0.950 0 0.951

R.JIVE R.JIVE 1 54 98 0.042 0.794 0.012 0.507

FC, functional connectivity; SC, structural connectivity.
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FIGURE 5

Joint ranks chosen by (A) CJIVE and (B) AJIVE. Gray boxes show when a JIVE implementation produced an error.

4.3. Subject scores

Joint subject scores from CJIVE-Scree plot, R.JIVE (R.JIVE

using permutation tests for both joint and individual signal

ranks), and sCCA, and individual scores from CJIVE-Scree

plot and R.JIVE were examined for associations with fluid

intelligence (gF). In the HCP, gF was measured as the number

of correct responses to the Penn Progressive Matrices Test.

We selected this variable as it has previously been examined

in Finn et al. (2015), Smith et al. (2015), and our prior study

Risk and Gaynanova (2021), and no other behavioral variables

were examined. Here, AJIVE-Scree plot results are equivalent

to CJIVE-Scree plot, since both methods chose two joint

components.We used the R-package rsq to calculate the adjusted

partial R-squared from the multiple regression predicting fluid

intelligence from the joint and individual scores (Zhang, 2022),

and then take the square root to obtain the partial correlation

coefficients. We also estimated two pairs of canonical variables

with sCCA. In order to compare results from sCCA to CJIVE,

we averaged canonical variables across datasets to obtain a

single subject score vector for each joint component. In sCCA,

permutations tests resulted in sparsity parameters equal to 0.1

using the PMA R package (Witten et al., 2009).

Among the joint scores, CJIVE-Scree plot resulted in

the highest partial correlation coefficient (r = 0.251). Partial

correlation coefficients for individual scores (r = 0.248) and the

overall correlation of total scores (joint + individual, r = 0.363)

were highest in R.JIVE (Table 3). R.JIVE contained a total of 151

components while CJIVE-Scree plot included 15 components.

In all three methods, only the first joint component and no

individual components were significantly associated with fluid

intelligence after correction for multiple comparisons (CJIVE-

Scree plot: first joint component p = 10−12, Bonferroni

corrected for 15 comparisons; R.JIVE: p = 10−11 for the joint

component, corrected for 153 comparisons; sparse-CCA: p =
10−3 for the first joint component, corrected for 2 comparisons).
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TABLE 3 Multiple regression of fluid intelligence onto joint subject

scores estimated with CJIVE-Scree plot, R.JIVE, and sCCA. AJIVE and

CJIVE are equivalent as both methods selected two joint components.

Numbers in parentheses indicate the rank.

Partial Correlation Coefficients (ranks)

Joint Indiv FC Indiv SC Total

signal signal signal signal

CJIVE-Scree plot 0.251 (2) 0.091 (5) 0.080 (8) 0.278 (15)

R.JIVE 0.186 (1) 0.248 (53) 0.150 (97) 0.363 (151)

sCCA 0.200 (2) – – 0.200 (2)

4.4. Variable loadings

Since edges from FC and SC networks comprise the

features in our input data blocks, loadings are imposed onto

symmetric matrices. The sign indeterminacy of the joint

loadings for each component was chosen to result in positive

skewness. In Figure 6A, we see that there were strong positive

loadings throughout the FC. Overall, there was no clear

spatial correspondence between FC and SC, and the correlation

between loadings was −0.04. Instead, overall higher FC was

associated with higher SC in many regions, particularly frontal-

frontal and frontal-subcortical, with SC loadings in the opposite

direction in certain connections between occipital, parietal,

temporal, and subcortical. Plots of the joint loadings for the

second component and individual loadings appear in Web

Appendix Figures S3–S5 (Supplementary material).

Taking the L1 norm of each row within each loading matrix

reduces the number of features to the number of nodes, which

provides a more detailed examination of the patterns. In this

analysis, we are particularly interested in L1 norms that are

large in both the left and right hemispheres, which suggests the

loadings are capturing meaningful biological structure. In the

FC loadings, Figure 6B shows that the most prominent cortical

regions in the first joint component correspond to ROIs from the

frontal, occipital, and temporal lobes, with extensive left-right

hemispheric correspondence. In the SC loadings, we again see

left-right hemispheric correspondence, this time in the parietal

and temporal lobes, as well as regions that did not exhibit

hemispheric correspondence. L1 norms of subcortical regions

(not shown) were large in the left and right accumbens, left

caudate, and left putamen in both modalities. Additionally, the

right putamen and right caudate were prominent in FC, while

both left and right hippocampus were prominent in SC. FC

and SC loadings for the individual components are depicted

in Web Appendix Figures S4, S5 (Supplementary material).

FC individual component 2 has large loadings on cortical to

subcortical edges, and component 5 has large subcortical to

subcortical loadings. SC individual component 3 has prominent

loadings in both subcortical-subcortical and cortical-subcortical

edges.

4.5. Reproducibility and prediction of
new subjects

Subjects from the HCP data were split into two sets of equal

sample size (n = 499) to examine the reproducibility of our

results. We will refer to the first sub-sample as “sample A” and

the second as “sample B.” CJIVE-Scree plot found rJ = 1 for

both samples, while AJIVE-Scree plot found rJ = 2 for sample

A and rJ = 1 for sample B. The correlations between the joint

loadings from sample A and B were equal to 0.61 for FC and 0.65

for SC (CJIVE-Scree plot and AJIVE-Scree plot are equivalent).

When a second joint component was estimated, the correlation

of the FC loadings was 0.29 and the SC loadings was 0.38.

We evaluated the three prediction methods from Section

2.2.3. We compared the predicted joint scores (using the out-

of-sample loadings) to those from the scores extracted from a

separate analysis of sample B (Figure 7). Pearson correlations

between the G-inverse predicted subject scores and CJIVE-

Scree plot subject scores were 0.52 and 0.15 for components 1

and 2, respectively. Pearson correlations between subject scores

estimated on sample B and those predicted for sample B using

R.JIVE-predict were −0.02 and −0.03 for components 1 and 2,

respectively. Using CJIVE-prediction, Pearson correlations were

0.67 and 0.22 for components 1 and 2, respectively. Similar

results were achieved when CJIVE loadings from sample B

data were used to predict subject scores for sample A. Recall

that in simulations R.JIVE-prediction tended to outperform

other methods when the joint signal was relatively large in at

least one data set (Figure 4). Future research should explore

the conditions that may favor R.JIVE-prediction vs. CJIVE-

prediction.

4.6. Computation time

The computation time of CJIVE-Scree plot including the

rank permutation test was 99 s. AJIVE-Scree plot with its joint

rank selection took 157 s. Using pre-specified scree plot ranks

and joint rank = 2, the run time for R.JIVE was over 4 h. These

computation times mirrored those in our simulation study,

where, on average, CJIVE was twice as fast as AJIVE and ranged

from 2 to 50 times faster than R.JIVE (Web Appendix Table S1

in Supplementary material).

5. Discussion

We propose CJIVE, an adaptation to AJIVE which improves

interpretation: (1) the joint scores are an average of the canonical
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FIGURE 6

(A) Variable loadings for the first component of the joint signal space estimated by CJIVE and displayed on heatmaps. (B) Displays the top 25th

percent of L1 norms of the variable loadings related to each cortical ROI for joint component 1. CMF, caudal middle frontal; FUS, fusiform; INFP,

inferior parietal; IT, inferior temporal; INS, insula; LOCC, lateral occipital; LORB, lateral orbito-frontal; MT, middle temporal; PCUN, precuneus;

PSTS, postcentral; PC, posterior cingulate; POPE, pars opercularis; PORB, pars orbitalis; PTRI, pars triangularis; RMF, rostral middle frontal; SF,

superior frontal; SP, superior parietal.

variables of the principal component scores of each dataset;

(2) joint scores are ordered by canonical correlations; (3) p-

values from permutation tests indicate the significance of each

joint component; (4) the proportion of variance explained for

each of the joint and individual components complements this

information. The joint and individual scores estimated using

the CJIVE algorithm are equivalent to those estimated using

AJIVE when the ranks are specified, while the R.JIVE algorithm

results in different estimates of the JIVE model. CJIVE goes

beyond CCA by also estimating individual components, which

in some applications provides additional biological insight.

Our primary contributions are improved interpretation and a

faster permutation test. This provides a data-driven method to

choose the joint components when conducting PCA and CCA.

Simulation study results indicate that when total signal ranks are

correctly specified, AJIVE and CJIVE accurately estimated the

number of joint components and provided accurate estimates of

the subspaces of interest.

We applied CJIVE to obtain novel insight into the

relationship between structural and functional connectivity.

Interestingly, we did not find a correspondence between

prominent edges in FC and those in SC. However, the biological

relevance of subject scores was revealed by their association

with fluid intelligence, and reproducibility was demonstrated

through the data splitting and prediction of the joint scores.

Similarly, a recent joint analysis of FC and SC in preterm

and full-term infants identified different edges in FC vs. SC

(Zhang et al., 2021). Recent studies suggest that the correlation

between the weighted edges in FC and SC is roughly 0.20

(Liégeois et al., 2020), which is much lower than a landmark
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FIGURE 7

Joint subject scores using CJIVE-predict for sample B from sample A vs. joint subject scores estimated from the full CJIVE analysis of sample B.

Gray bands are 95% prediction interval.

study that contained just five subjects (Honey et al., 2009).

In the current analyses, calculating the correlation between

FC (averaged across subjects, as in Web Appendix Figure

S3, Supplementary material) and SC was 0.22, and canonical

correlations from CJIVE-Scree plot were 0.31 and 0.21. Note

these approaches treat the edge as the unit of observation, and

the correlations are not comparable to the variation explained

in Table 2, in which the units of observation are the subject

connectivity matrices and variance is across subjects. Some

models assume that higher SC for a given edge leads to higher FC

(Higgins et al., 2018), which we refer to as spatial priors. CJIVE

allows the extraction of patterns of covariation to provide novel

insight not assumed by spatial priors.

We found that CJIVE joint scores were more strongly

related to fluid intelligence than joint scores from R.JIVE or

sCCA. The overall correlation from R.JIVE joint and individual

components was higher than CJIVE (0.36 vs. 0.28). Note

R.JIVE used more components (151 vs. 15). When examining

fluid intelligence and all pair-wise resting-state correlations

(FC only) in the Web Explorer “HCP820-MegaTrawl,” no

edges survive corrections for multiple comparisons, and using

the elastic net, r = 0.21. Initial studies with a subsample

of the HCP rs-fMRI subjects found correlations between

predicted and observed fluid intelligence ranging from r =
0.4 to r = 0.5 (Finn et al., 2015; Smith et al., 2015).

Previous studies did not examine the relationship between

fluid intelligence, FC, and SC. Interestingly, CJIVE individual

scores were not related to fluid intelligence. This may suggest

that FC and SC are simultaneously associated with fluid

intelligence in a manner that neither is independently. This

result combined with the ability to predict out-of-sample

subject scores suggests that JIVE is a possible direction for

extracting biomarkers from multimodal neuroimaging. JIVE

decompositions may result in fewer components than ICA or

related non-Gaussian approaches. Simultaneous non-Gaussian

component analysis (SING) of working memory task maps

and functional connectivity matrices resulted in dozens of joint

components that appeared to correspond to smaller regions

with greater network specificity (Risk and Gaynanova, 2021).

A possible limitation of JIVE is that the joint components may

reflect brain connections involved in a variety of processes,

including fluid intelligence, which may have less network

specificity than ICA and non-Gaussian approaches.

In the definitions given by Chen et al. (2022), multiview

analyses align datasets by subjects, whereas linked data analyses

align datasets by features. Our application corresponds to

multiview analysis. Kashyap et al. (2019) used Common and

Orthogonal Basis Extraction (COBE), which is similar to

JIVE, in a linked data application. They derived connectome

fingerprints from the individual components extracted by

treating each individual’s FC matrix as a data block. In a single

modality study from multiple groups of subjects (e.g., two sites

with different subjects), one could explore common structure

by applying CJIVE to the features aligned across the two
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sites, and then examining whether the individual components

represent site-specific/batch effects. Recently, methods similar

to JIVE have been proposed to conduct such analyses (Lock

et al., 2022; Zhang et al., 2022). Instead of permuting subject

scores, one could consider permutation tests in the feature signal

subspace for testing joint components. Related, group ICA can

be viewed as a linked data analysis version of AJIVE treating

the space-by-time matrix from each subject as a block and

including an additional step that rotates group components.

Group ICA first conducts PCA on each subject’s space-by-time

matrix, concatenates the spatial eigenvectors, then conducts a

second PCA to arrive at group components. This procedure is

also used in the AJIVE algorithm, except that in group ICA

the PC steps are performed on aligned features rather than

aligned subjects. Group ICA then performs an additional step

in which the group components are rotated to maximize their

“independence,” which improves interpretability.

In practice, choosing the total signal rank remains a

challenge. In simulations, the total signal rank chosen for a

data block via R.JIVE permutation tests varied with the level

of joint signal and the number of features within that block

(Web Appendix Figure S1 in Supplementary material), and the

estimated number of components was relatively large in the real

data. Additionally, scree plots of simulated data provide a much

clearer distinction between eigenvalues that correspond to signal

and those lying outside the signal subspace when compared to

scree plots of real data. Most pertinent to our analyses is the

result that both the CJIVE and AJIVE methods for estimating

the joint rank are sensitive to estimates of the total signal ranks.

If rk approaches n, the maximum correlation between permuted

datasets is very high, which can lead to the estimation of zero

joint components. In fact, when rk = n, the correlation between

permuted datasets equals one, and hence zero components are

selected by CJIVE. The same issue occurs in AJIVE.

Further research is needed to explore connections between

CJIVE and AJIVE estimates for more than two datasets. Multiset

CCA (mCCA) (Li et al., 2009) extends CCA to multiple datasets

bymaximizing the sum of pairwise correlations. ACJIVE variant

on mCCA may provide novel insights into individual structure.

A related issue is that for more than two datasets, joint signal

may be shared by a subset of datasets (Gaynanova and Li, 2019).

When combiningmore than two datasets, future research should

examine optimal ways of combining the canonical variables of

the PC scores.
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