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Background: Textural features of the hippocampus in structural magnetic

resonance imaging (sMRI) images can serve as potential diagnostic biomarkers

for Alzheimer’s disease (AD), while exhibiting a relatively poor discriminant

performance in detecting early AD, such as amnestic mild cognitive

impairment (aMCI). In contrast to sMRI, functional magnetic resonance

imaging (fMRI) can identify brain functional abnormalities in the early stages

of cerebral disorders. However, whether the textural features reflecting

local functional activity in the hippocampus can improve the diagnostic

performance for AD and aMCI remains unclear. In this study, we combined

the textural features of the amplitude of low frequency fluctuation (ALFF)

in the slow-5 frequency band and structural images in the hippocampus to

investigate their diagnostic performance for AD and aMCI using multimodal

radiomics technique.

Methods: Totally, 84 AD, 50 aMCI, and 44 normal controls (NCs) were

included in the current study. After feature extraction and feature selection,

the radiomics models incorporating sMRI images, ALFF values and their

combinations in the bilateral hippocampus were established for the diagnosis
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of AD and aMCI. The effectiveness of these models was evaluated by receiver

operating characteristic (ROC) analysis. The radiomics models were further

validated using the external data from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database.

Results: The results of ROC analysis showed that the radiomics models based

on structural images in the hippocampus had a better diagnostic performance

for AD compared with the models using ALFF, while the ALFF-based model

exhibited better discriminant performance for aMCI than the models with

structural images. The radiomics models based on the combinations of

structural images and ALFF were found to exhibit the highest accuracy for

distinguishing AD from NCs and aMCI from NCs.

Conclusion: In this study, we found that the textural features reflecting local

functional activity could improve the diagnostic performance of traditional

structural models for both AD and aMCI. These findings may deepen

our understanding of the pathogenesis of AD, contributing to the early

diagnosis of AD.

KEYWORDS

Alzheimer’s disease, amnestic mild cognitive impairment, resting-state functional
magnetic resonance imaging, the amplitude of low frequency fluctuation, radiomics

Introduction

Alzheimer’s disease (AD) is an aging-related central nervous
system disease characterized by impaired memory function,
which severely affects the quality of life of the elderly (Masters
et al., 2015; Soria Lopez et al., 2019). Recent projection data
suggests that, by 2050, the prevalence of dementia will double
in Europe and triple globally, and the estimated number of
new dementia cases would be three times higher based on
the biological rather than clinical definition of Alzheimer’s
disease (Knopman et al., 2021; Scheltens et al., 2021). AD is
still incurable due to incomplete understanding of its etiology
and underlying neurological mechanisms (Sun et al., 2018).
However, recent studies have indicated that certain necessary
interventions such as statins in the early stages of the disease
may slow the progression of AD, prolonging the lifespan of
patients (Sperling et al., 2011; McDade and Bateman, 2017).
Amnestic Mild Cognitive Impairment (aMCI), characterized by
some degree of cognitive decline and memory impairment, is
generally considered an early AD (Bradfield et al., 2018). Dietary
intervention and alleviation of neuropsychiatric symptoms may
reduce the risk of conversion to dementia (Cooper et al., 2015).
However, the medical diagnosis of aMCI, which mainly relies
on neuropsychological tests, remains challenging due to the
lack of objective biological approaches (Murayama et al., 2013;
Alves et al., 2021). Therefore, our current research focused on
the identification of brain-imaging surrogate markers sensitive

to early disease that could distinguish AD from normal
cognition in the elderly, thus enabling an efficient effective
diagnosis of aMCI.

The hippocampus plays a crucial role in human cognition,
especially memory, and it is considered to be the most
vulnerable region during AD pathogenesis (Braak and Braak,
1997). Both amyloid-β and Tau proteins have been noted to
be selectively deposited in the hippocampal cortical layers of
AD patients (Braak and Braak, 1997). In addition, hippocampal
gray matter atrophy is an important indicator for assessing the
severity of dementia (Pini et al., 2016). Using structural MRI, a
previous study showed that a reduction in bilateral hippocampal
gray matter volume was associated with cognitive decline in
AD and aMCI patients (Feng F. et al., 2021). However, the
volumetric measures may overlook some specific morphological
features, such as the textural features of the hippocampus
(Dachena et al., 2019; Curado et al., 2020).

Radiomics, originally developed for tumor diagnosis, is a
computer-aided diagnostic approach used to mine and analyze
quantitative image characteristics such as intensity and textural
features (Feng Q. et al., 2021; Iancu et al., 2021). Radiomics have
been well-validated in the classification of AD and NC based
on textural features of the structural hippocampus in previous
studies (Rajeesh et al., 2017; Zhao et al., 2020). For example, a
previous study has indicated that the accuracy of discrimination
of Alzheimer’s disease patients is 93.6% using textural features
of the structural hippocampus (Rajeesh et al., 2017). In addition,
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the hippocampal texture was superior to volume reduction as a
predictor of MCI-to-AD conversion (Sørensen et al., 2016; Zhao
et al., 2020), though it has been reported that textural features
of the structural hippocampus are unsatisfactory in diagnosing
aMCI (Feng et al., 2019; Park et al., 2021). This may be because
the structural images could not capture all the changes in the
hippocampus in aMCI (Cai et al., 2017).

As an advanced non-invasive neuroimaging technique,
resting-state functional magnetic resonance imaging
(fMRI) is an important imaging modality to understand
the neurodegenerative course of aMCI and early AD (Wu
et al., 2022), because the memory dysfunction may occur
before the structural degeneration (Jin et al., 2012). The
amplitude of low frequency fluctuation (ALFF) is proposed
to characterize the local properties of rs-fMRI signals (Zang
et al., 2007), showing frequency-dependent pattern (Zuo
et al., 2010) and temporal variability (dynamics) (Liao et al.,
2019), and thus has been widely used to detect functional
abnormalities in brain disorders (Li et al., 2020; Wang et al.,
2021). As for AD and aMCI patients, previous studies have
consistently observed the alterations of ALFF value in the
hippocampus (Liu et al., 2014; Cha et al., 2015; Yang et al.,
2018; Yuan et al., 2021). For example, Liu and colleagues
have demonstrated increased ALFF values in the bilateral
hippocampus of AD patients compared with healthy controls
(Liu et al., 2014). Meta-analyses have also shown significant
alterations of ALFF in the left hippocampus/parahippocampal
gyrus in AD and aMCI patients (Cha et al., 2015; Yuan et al.,
2021). More importantly, these ALFF changes were found
to exhibit a frequency-dependent pattern (Han et al., 2011;
Liu et al., 2014). In our previous study, we observed the
difference in ALFF in the slow-5 frequency band between
groups, mainly corresponding to the bilateral hippocampus
as well as regions within the default mode network, with the
highest accuracy in discriminating the three groups (Wang
et al., 2021). Our findings indicated that ALFF in the slow-5
frequency band might serve as a promising functional indicator
to aid the diagnosis of AD and aMCI (Wang et al., 2021).
Recently, ALFF combined with structural features has been
investigated for the diagnosis of AD and aMCI (Khatri and
Kwon, 2022; Liu et al., 2022). Yet ALFF has not been used in the
analysis of radiomics and it is unclear whether incorporating
functional measures into radiomics analysis can improve the
effectiveness of traditional hippocampal structural models for
the diagnosis of AD and aMCI.

In this study, we combined the ALFF textural feature of the
hippocampus in the slow-5 frequency band with structural MRI
images to investigate their discriminative performance for AD
and aMCI using radiomics analysis. We hypothesized that the
inclusion of hippocampal functional metrics in radiomics could
improve the effectiveness of traditional hippocampal structural
models in distinguishing AD and aMCI patients from healthy
elderly, especially for the diagnosis of aMCI.

Materials and methods

Participants

From September 2016 to August 2020, 98 AD and
53 aMCI patients at Zhejiang Provincial Hospital and 50
normal controls (NCs) at the hospital’s health promotion
center were recruited. All participants signed the written
informed consent. This study was approved by the local
Ethics Committee of Zhejiang Provincial People’s Hospital (No.
2012KY002) and was conducted according to the Declaration
of Helsinki. The inclusion and exclusion criteria have been
described at our previous study (Wang et al., 2021). All
participants underwent medical history collection, physical
examinations, laboratory examinations, routine brain magnetic
resonance scans and the Mini-Mental State Test (MMSE).
AD patients were diagnosed based on the criteria of the
revised NINCDS-ADRDA (National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association) and the DSM-IV-R
(revised Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition) with MMSE score ≤ 24. The aMCI patients
were selected according to the following criteria: (1) complaint
of memory impairment; (2) normal clinical manifestations; (3)
24 < MMSE score ≤ 27; and (4) failure to meet the criteria
for dementia according to DSM-IV-R. The inclusion criteria for
NCs was as follows: (1) absence of neurological impairment,
such as visual loss or hearing and (2) MMSE score≥ 28. Patients
and participants with stroke, brain trauma, epilepsy, Parkinson’s
disease, hypertension, serious anemia, diabetes, brain tumor,
history of mental illness and signal alterations in the medial
temporal cortex caused by infectious or vascular factors on MRI
FLAIR and T2-weighted images were excluded. The summary
of subjects was illustrated in Table 1 and the flow chart of the
radiomic analysis was shown in Figure 1.

Image acquisition

MRI data were obtained using a 3.0T magnetic resonance
scanner (Discovery MR750; GE Healthcare, Waukesha,
WI, United States) at Zhejiang People’s Hospital and an
8-channel phased array coil was used for all the subjects.
Raw structural images were acquired using a high-resolution
3D T1-weighted magnetization-prepared rapid gradient
echo (MPRAGE) sagittal sequence with predefined direct
MR acquisition parameters [repetition time (TR) = 6.7 ms,
echo time (TE) = 2.9 ms, slice thickness = 1 mm, field
of view (FOV) = 256 × 256 mm2, flip angle = 12◦,
resolution = 256 × 256, and 192 slices]. Rs-fMRI images
were acquired using an echo-planar imaging sequence
(TR = 2,000 ms, TE = 30 ms, slice thickness = 3.2 mm,
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TABLE 1 Demographic data and clinical characteristics of the participants.

Sample size AD (N = 84) aMCI (N = 50) NC (N = 44) Statistic P-value

Gender (male: female) 37:47 27:23 21:23 1.244 0.537a

Age (years, mean± SD) 69.226± 9.303 65.840± 11.171 65.477± 9.690 2.847 0.061b

Education (years, mean± SD) 7.167± 4.412 7.120± 4.059 7.114± 3.356 0.003 0.997b

MMSE 17.512± 5.084 26.200± 0.881 29.023± 0.902 182.686 <0.001b

ap-values for sex distribution obtained by the chi-square test; bp-value obtained by analysis of variance. AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; NCs,
normal controls.

FIGURE 1

The flow chart of radiomic analysis. ALFF, the amplitude of low frequency fluctuation; LASSO, the least absolute shrinkage and selection
operator; ROC, receiver operating characteristic.

FOV = 220 × 220 mm2, flip angle = 90◦, resolution = 64 × 64,
and 210 volumes and 44 slices).

Amplitude of low frequency
fluctuation calculation

Rs-fMRI data were mainly processed using SPM1 (Penny
et al., 2011) and DPABI (Yan et al., 2016) in the following
steps: (1) Due to the magnetic field inhomogeneity of the
MR machine during the initial scan, the first 10 time points
which recommended in DPABI (Chao-Gan and Yu-Feng, 2010)
were discarded to reduce the impact on data quality. (2)
A temporal layer correction was performed to rectify the

1 http://fil.ion.ucl.ac.uk/spm

differences in interlayer acquisition time using the middle
slice as the reference slice. The correction was performed
by lagging (shifting forward) the time series on each slice
using sinc interpolation. (3) A head motion correction was
performed to reduce the effect of the subject’s head motion
on data quality (Friston et al., 1995; Whitfield-Gabrieli and
Nieto-Castanon, 2012). (4) Linear trend of the time series was
regressed. (5) Regression of covariates including white matter,
cerebrospinal fluid and Friston 24 parameters was performed
(Friston et al., 1996). (6) According to our previous studies
(Wang et al., 2021), the ALFF in the slow-5 frequency band
(0.01–0.027 Hz) was calculated for each participant. The flow
chart for calculating the ALFF in the slow-5 frequency band was
shown in Supplementary Figure 1.

In this study, we first excluded patients with the criteria
of displacement > 3 mm and rotation > 3◦. To improve the
reliability of fMRI-based radiomics, we further removed the
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patients with FD > 0.5 (Power et al., 2015). A 25 subjects were
excluded, leaving 84 AD patients, 50 aMCI patients and 44 NCs
healthy controls in the follow-up analysis.

Hippocampus segment

To improve the segmentation efficiency while ensuring
the stability of the results, a deep learning-based hippocampal
segmentation toolkit hippodeep2 was used to automatically
segment the bilateral hippocampus (Thyreau et al., 2018).
Structural MRI was performed on all patients to obtain
bilateral structural image masks of the hippocampus. We
randomly selected five cases to compare the segmentation
mask of the algorithm and that of a highly qualified head
and neck radiologist using the dice coefficient. The mean dice
coefficient of the left hippocampus is 0.935 and that of the right
hippocampus is 0.967. The results showed the good consistency
and validity of the automatic segmentation adopted in our
study. Then the bilateral hippocampal masks for assessment of
ALFF were obtained by aligning the structural images with the
functional images.

Features extraction

Based on the segmentation results, radiomics features
of bilateral hippocampus extracted from two modalities
(sMRI and ALFF images) were compared to quantify tissue
spatial heterogeneity. The features were analyzed using
an open-source radiomics analysis package3 based on the
radiomics toolbox4, conforming to the Imaging Biomarker
Standardization Initiative (IBSI) (Xu et al., 2020; Zwanenburg
et al., 2020). In the current study, 101 features were extracted
from sMRI or ALFF images within each region of the bilateral
hippocampus, including 13 intensity features and 88 textural
features for each modality (Xu et al., 2020). The names of the
101 radiomic features were shown in Supplementary Table 1.

Feature selection and radiomic
signature building

Before data processing, the createDataPartition function
from the caret package was used to randomly split the data of 84
AD patients and 44 NCs, of which 70% of the data were classified
as the training set and 30% of the data were classified as the test
set and make the ratio of positive samples to negative samples
the same between the training and test set. To avoid sample bias

2 https://github.com/bthyreau/hippodeep_pytorch

3 https://github.com/WenbingLv/Subregional-Radiomics

4 https://github.com/mvallieres/radiomics

of grouping and get a steady result, 10 times repetition of the
validation in the present study was adopted. To remove the unit
limit of each feature before applying it to the machine learning
model for classification, z-normalization was performed on the
training set and applied to the test set and the external validation
set. Due to sample imbalance, the synthetic minority over-
sampling (SMOTE) algorithm (Chawla et al., 2002) was used to
balance the minority group in the training set.

Two feature selection methods, including the minimum
redundancy maximum relevance (mRMR) (Ding and Peng,
2005) and the least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 2011), were used to select the most
valuable predictive features in the training cohort. Firstly,
using the mRMR method, the features were ranked by their
relevance-redundancy index, and the top 20 features with the
highest relevance were selected (Ding and Peng, 2005). Then,
LASSO regression was conducted on the training cohort using
10-fold cross-validation to choose the optimized subset of
features and build a radiomic signature (Tibshirani, 2011). The
corresponding coeficients were evaluated. As a simple score
developed to classify the patients and NCs using radiomics, the
radiomics score (radscore) was calculated by summing selected
textural features weighted by their respective coeficients (plus
a constant term) (Zheng et al., 2018). All rad-scores between
the AD and NCs groups were compared on the training and
validation sets, respectively.

The above process was carried out six times in total.
Using the same train-test split, six radiomics signatures were
created based on sMRI and ALFF in the slow-5 band
and their combination in the left and right hippocampus,
respectively. Then images from 50 aMCI patients and 44
NCs were similarly processed. The following 12 radiomics
signatures were constructed: AD diagnosis model based on
left hippocampal structural image, AD diagnosis model based
on left hippocampal ALFF, AD diagnosis model based on left
hippocampal structural and ALFF image, AD diagnosis model
based on right hippocampal structural image, AD diagnosis
model based on right hippocampal ALFF, AD diagnosis model
based on right hippocampal structural and ALFF images,
aMCI diagnosis model based on left hippocampal structural
image, aMCI diagnosis model based on left hippocampal ALFF,
aMCI diagnosis model based on left hippocampal structural
and ALFF images, aMCI diagnosis model based on right
hippocampal structural image, aMCI diagnosis model based on
right hippocampal ALFF, and aMCI diagnosis model based on
right hippocampal structural and ALFF images.

Statistical analysis

Wilcoxon test was performed on the rad-score for detecting
AD and aMCI in the train and test sets, respectively. As
recommended in previous study (Ge et al., 2022), P < 0.05
was considered to be statistically significant in accordance with
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statistical conventions. The area under the curve (AUC) of
the training and test set was used to assess the discriminative
accuracy of the Rad-score. This process was repeated 10 times
and the average AUC value was obtained as the final metric for
this study. Receiver operating characteristic (ROC) curves were
analyzed and visualized using the Matlab-based classification
model effectiveness analysis tool ROCA.5 To further assess the
classification effects of different models, this study used the
Delong test (DeLong et al., 1988) to compare the differences in
the AUCs of each classification model.

Correlation analyses were performed on the features
retained for AD and aMCI diagnosis. The textural features
selected in unimodality and retained in the combined model
were correlated with MMSE by the Spearman correlation
coefficient, and an α level of less than 0.05 was considered
statistically significant. The correlation coefficient was
calculated using the following formula:

ρ =

∑
i (R(xi)− R(x))

(
R(yi)− R(y)

)√∑
i(R(xi)−R(x))2

√∑
i(R(yi)−R(y))

2

Where, R(x) and R(y) are the rank order of x and
y, respectively.

External validation

The external validation dataset including 33 AD, 34 MCI
patients and 38 NCs was downloaded from the ADNI database.6

The searching criteria were as follows: (1) data containing
3.0 T Philips MRI scans; (2) scan sequences containing
high-definition T1 structural images; (3) scan sequences
containing resting-state functional MRI data (TR = 3.0 s,
layer thickness = 3.3 mm, resolution = 64 × 64, and 140
time points); and (4) the baseline data were collected from
the initial visit. ADNI was reviewed and approved by the
institutional review boards of all participating institutions7, and
written informed consent was obtained from all participants or
their guardians in accordance with the Declaration of Helsinki
(Petersen et al., 2010; Trojanowski et al., 2010; Weiner et al.,
2010). A total of 6 subjects with a maximum head movement
displacement > 3 mm, a rotation > 3◦ and an FD > 0.5 during
resting-state functional MRI scanning were excluded, and 32
AD, 32 MCI, and 35 NCs subjects were finally included in the
validation analyses. The summary of ADNI subjects were shown
in Supplementary Table 2.

The radiomics models obtained from the train set of our
data were applied to the ADNI dataset to validate the robustness
of the models in clinical practice. In addition, to further
validate our results, we performed a classification analysis with
a combination of the bilateral hippocampus.

5 https://github.com/Luoyu-Wang/ROCA

6 https://adni.loni.usc.edu

7 http://www.adni-info.org

Results

Demographic data and
neuropsychological tests

No significant differences in demographic information (i.e.,
sex, age, education) were noted (P > 0.05). A significant
difference in MMSE score was shown among the three groups.
Post hoc analyses were performed and the results indicated that
the NCs had the highest neuropsychological performance, aMCI
patients had intermediate performance, AD patients had the
worst performance (P< 0.001). Table 1 summarizes the detailed
demographic characteristics and MMSE scores of all subjects.

Receiver operating characteristic
analysis and delong tests

The processes of feature selection and rad-score calculation
for all 12 models are shown in Supplementary Figures 2–7.
The results of the ROC analyses are shown in Figure 2 and
Tables 2, 3.

When differentiating the AD from NCs, the AUC of the
left hippocampal structural model was 0.864, while that of the
model based on left hippocampal ALFF in the slow-5 frequency
band was 0.828. Delong test reflected the significant difference
in AUC between these two models (z = 3.087, P = 0.002). The
combined model based on the left hippocampal structural and
ALFF images exhibited the highest accuracy (AUC = 0.873). And
the AUC of the combined model was significantly higher than
that of the structural image model (z = 3.003, P = 0.003). In
addition, similar results were obtained for assessing the right
hippocampus. The AUC of the right hippocampal structural
model was 0.818, while that of the model based on right
hippocampal ALFF in the slow-5 frequency band was 0.780.
Delong test reflected the significant AUC difference between
these two models (z = 2.898, P = 0.004). The combined model
based on the right hippocampal structural and ALFF images
exhibited the highest accuracy (AUC = 0.830). Additionally, the
AUC of the combined model was significantly higher than that
of the structural image model (z = 2.361, P = 0.018).

Unlike AD, the model based on left hippocampal ALFF
in the slow-5 frequency (AUC = 0.764) showed better
discriminative performance than the left hippocampal structural
model (AUC = 0.729) when distinguishing aMCI from NCs.
There was a marginally significant difference in AUC between
these two models (z = 1.805, P < 0.071). The combined
model based on the left hippocampal structural and ALFF
image (AUC = 0.804) had better performance than the left
hippocampal structural model (z = 6.629, P < 0.001). The
combined model based on the right hippocampal structural
and ALFF images (AUC = 0.810) also had better performance
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FIGURE 2

The ROC curve of the hippocampal structural image, hippocampal ALFF in slow-5 frequency band and their combined model. (A) ROC curves
for AD and NCs in the training set based on left hippocampal images. (B) ROC curves for aMCI and NCs in the training set based on left
hippocampal images. (C) ROC curves for AD and NCs in the training set based on right hippocampal images. (D) ROC curves for aMCI and NCs
in the training set based on right hippocampal images. (E) ROC curves for AD and NCs in the test set based on left hippocampal images. (F) ROC
curves for aMCI and NCs in the test set based on left hippocampal images. (G) ROC curves for AD and NCs in the test set based on right
hippocampal images. (H) ROC curves for aMCI and NCs in the test set based on right hippocampal images. TPR, true positive rate; FPR, false
positive rate; AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; NCs, normal controls; ROC, receiver operating characteristic;
ALFF, the amplitude of low frequency fluctuation.

(z = 1.763, P = 0.078) than the right hippocampal structural
model (AUC = 0.790).

The results of external validation suggested a consistent
trend between the validation and the train sets, as shown in
Table 4. In addition, we performed a classification analysis
with a combination of the bilateral hippocampus. The results
were consistent with the findings based on the unilateral
hippocampus and were shown in the Supplementary Table 3.

TABLE 2 The ROC curve of left hippocampal structural images, ALFF
in slow-5 frequency band and their combined model.

Classifier Model Data set AUC 95% CI Accuracy

AD vs. NCs T1 Training 0.864 0.841–0.887 0.778

Test 0.818 0.767–0.858 0.790

ALFF Training 0.828 0.801–0.853 0.767

Test 0.809 0.758–0.856 0.816

T1+ALFF Training 0.873 0.849–0.895 0.789

Test 0.837 0.792–0.872 0.763

aMCI vs. NCs T1 Training 0.729 0.689–0.766 0.682

Test 0.713 0.650–0.772 0.786

ALFF Training 0.764 0.725–0.800 0.788

Test 0.738 0.678–0.796 0.714

T1+ALFF Training 0.804 0.763–0.834 0.788

Test 0.718 0.657–0.774 0.714

AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; NCs, normal
controls; ROC, area under the curve; ALFF, the amplitude of low frequency fluctuation.

Correlation analysis

The features subjected to unimodal selection and retained
in the combined model were correlated with the MMSE scores
in AD and aMCI diagnostic models, respectively, and the
results were shown in Figure 3. In the diagnostic model
for AD, the features significantly associated with MMSE
score were T1-w_GLRLM (gray-level run-length matrix) _RLN

TABLE 3 The ROC curve of right hippocampal structural images, ALFF
in slow-5 frequency band and their combined model.

Classifier Model Data set AUC 95% CI Accuracy

AD vs. NCs T1 Training 0.818 0.789–0.844 0.788

Test 0.797 0.750–0.838 0.710

ALFF Training 0.780 0.746–0.806 0.756

Test 0.763 0.708–0.816 0.789

T1+ALFF Training 0.830 0.802–0.856 0.778

Test 0.822 0.772–0.857 0.684

aMCI vs. NCs T1 Train 0.790 0.756–0.825 0.712

Test 0.708 0.643–0.772 0.714

ALFF Training 0.798 0757–0.830 0.803

Test 0.723 0.659–0.780 0.714

T1+ALFF Training 0.810 0.778–0.840 0.722

Test 0.733 0.666–0.793 0.714

AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; NCs, normal
controls; ROC, area under the curve; ALFF, the amplitude of low frequency fluctuation.
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TABLE 4 External validation.

Classifier Model Hippocampus AUC 95% CI Accuracy

AD vs. NCs T1 left 0.829 0.794–0.859 0.791

right 0.738 0.700–0.773 0.731

ALFF left 0.757 0.719–0.790 0.731

right 0.678 0.638–0.717 0.657

T1+ALFF left 0.830 0.795–0.862 0.791

right 0.746 0.706–0.781 0.701

MCI vs. NCs T1 left 0.554 0.511–0.600 0.627

right 0.529 0.487–0.574 0.582

ALFF left 0.598 0.552–0.639 0.642

right 0.563 0.520–0.611 0.597

T1+ALFF left 0.634 0.589–0.676 0.642

right 0.558 0.512–0.603 0.582

AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; NCs, normal
controls; ROC, area under the curve; ALFF, the amplitude of low frequency fluctuation.

(run-length non-uniformity) (r = 0.381, P < 0.001), T1-
w_GLRLM_RLV (run-length variance) (r = −0.281, P = 0.012),
ALFF_GLCM (gray level concurrence matrix)_Correlation
(r = 0.305, P = 0.005) from the left hippocampus and T1-
w_GLCM_Entropy (r = 0.245, P < 0.025), and ALFF_GLSZM
(gray-level size zone matrix)_GLN (gray-level non-uniformity)
from the right hippocampus (r = 0.274, P = 0.010). In
the diagnostic model for aMCI, significant MMSE-correlated
features included ALFF_GLCM_Correlation from the left
hippocampus (r = 0.445, P = 0.001).

Discussion

To the best of our knowledge, this was the first study to
explore the functional indicator ALFF calculated from rs-fMRI
as textural features. In the present study, the textural features
of the hippocampus in both ALFF map in the slow-5 frequency
band and structural MRI image were combined in the radiomics
model to explore their discriminant performance for detecting
AD and aMCI. We found that the radiomics model based
on hippocampal structural image had a better performance
than that based on ALFF in the slow-5 frequency band when
distinguishing AD from NCs. When differentiating the aMCI
from NCs, the model based on hippocampal ALFF in the slow-
5 frequency band showed better diagnostic ability than that
based on hippocampal structural images. More importantly,
the combined model exhibited the best performance for the
diagnosis of both AD and aMCI, which meant that the
multimodal radiomics models based on hippocampal structural
images and ALFF in the slow-5 frequency band had the potential
to become a new diagnostic tool for AD.

Using the radiomics approach, we found that the model
based on hippocampus structural images performed well in
diagnosing AD. This was consistent with the results of previous

radiomics studies on hippocampal structural MRI (Zhang et al.,
2012; Rajeesh et al., 2017). Moreover, the above model showed
better performance than the model based on hippocampal
ALFF in the slow-5 frequency band. On the contrary, the
model based on hippocampal ALFF in the slow-5 frequency
band instead had better performance than the radiomics model
based on radiomics studies of hippocampal structural MRI in
diagnosing aMCI. The structural image may not fully reflect
the changes in the hippocampus of aMCI patients, and ALFF
is generally considered to represent the local activity of the brain
(Zang et al., 2007). In the early stages of AD when structural
damage is not yet evident, local brain functional changes may
precede structural changes. The model based on hippocampal
structural images and ALFF in the slow-5 frequency band
showed better performance on AD (z = 3.003, P = 0.003, for
left hippocampus; z = 2.361, P = 0.018, for right hippocampus)
and aMCI (z = 6.629, P< 0.001, for left hippocampus; z = 1.763,
P = 0.078, for right hippocampus) than the classical model based
on structural images. The textural features of ALFF may provide
additional spatial textural information about the local activity of
the brain. In addition, consistent results were also obtained in
the external validation set. These results together suggest that
the textural features of hippocampal ALFF could improve the
diagnosis of traditional structural hippocampus models for AD
and aMCI. In contrast, the diagnostic power for aMCI in the
validation set was relatively lower than in our data. There are
differences in the inclusion criteria such as MMSE scores and
symptoms8 between the two datasets. In our data, the MMSE
score for aMCI patients is between 24 and 27, while in the
ADNI database, the MMSE score for aMCI is between 24 and 30.
Moreover, aMCI patients from our dataset have a complaint of
memory impairment and normal clinical manifestations, while
aMCI patients in ADNI suffer a subjective memory concern,
informant, or clinician and absence of significant levels of
impairment in other cognitive domains. Thus, we speculate that
the lower diagnostic power for aMCI in the validation set may
be due to the differences in the inclusion criteria. Future studies
to recruit the aMCI patients with the same inclusion criteria
as our data could be attained to test the radiomics models in
the current study.

The features retained in the combined model were
correlated with the MMSE score. Our results were consistent
with previous studies which showed significant correlations
between the run-length non-uniformity (RLN) based on
hippocampal structural images and MMSE score (Zhao et al.,
2020). In addition, correlation analysis further revealed that
the features that were significantly correlated with MMSE
scores were T1-w_GLRLM_RLN from the left hippocampus,
T1-w_GLRLM_RLV, ALFF_GLCM_Correlation and T1-
w_GLCM_Entropy and ALFF_GLSZM_GLN from the right

8 https://adni.loni.usc.edu/methods/documents/
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FIGURE 3

Correlation analysis between MMSE scales and textural features. (A) Correlation of T1-w_GLRLM_RLN in the left hippocampus with MMSE
scores of AD patients. (B) Correlation of T1-w_GLRLM_RLV in the left hippocampus with MMSE scores of AD patients. (C) Correlation of
ALFF_GLCM_Correlation in the left hippocampus with MMSE scores of AD patients. (D) Correlation between T1-w_GLCM_Entropy in the right
hippocampus and MMSE scores of AD patients. (E) Correlation of ALFF_GLSZM_GLN in the right hippocampus with MMSE scores of AD
patients. (F) Correlation of ALFF_GLCM_Correlation in the left hippocampus with MMSE scores of aMCI patients. MMSE, Mini Mental State Test;
ALFF, the amplitude of low frequency fluctuation.

hippocampus in diagnosing AD. Moreover, the feature
ALFF_GLCM_Correlation was significantly correlated with
MMSE score in detecting aMCI. The features mentioned
above may be associated with the cognitive decline of
AD or aMCI patients. Among the textural features,
ALFF_GLCM_Correlation preserved by feature selection
in both diagnosing AD and aMCI was positively correlated
with MMSE score (Figure 3). GLCM is generally defined
as the joint probability occurrence of pixel or voxel pairs,
and GLCM_Correlation is usually considered to reflect the
consistency of the image texture (Haralick et al., 1973). The
correlation is high if all matrix element values are consistent
and low if the values of matrix elements are not consistent.
The results of this study were obtained using the grayscale
distribution in all 13 directions, reflecting the joint probability
information of the image grayscale in the adjacent 26 voxels.
GLCM_Correlation may reflect the local texture consistency in
the image space (Haralick et al., 1973), and ALFF is generally
considered to represent the local activity of the brain (Zang
et al., 2007). Therefore, ALFF_GLCM_Correlation may reflect
the local coherence of the brain’s activity. This finding suggests
that AD and aMCI patients may show cognitive decline as the
local coherence decreases. The underlying mechanism is still

currently unclear, probably because Tau protein and amyloid-β
are selectively deposited in the hippocampal cortex of patients
during early onset of AD (Braak and Braak, 1997), resulting in a
coherent alteration in the local activity of brain function, which
is consistent with previous Regional Homogeneity (ReHo)
findings in AD and aMCI patients (Zang et al., 2004; Cha et al.,
2015; Wang et al., 2015).

This study had certain shortcomings and limitations.
First and foremost, we only used hippocampal ALFF in the
slow-5 frequency band, ignoring the consistency within the
hippocampus and the connectivity within the whole brain.
Future studies should make full use of the advantages of multiple
indicators from fMRI such as ALFF, Regional Homogeneity
and degree centrality for a comprehensive analysis. Second,
the patients with AD and aMCI suffered from cognitive
impairments in multiple domains (Stogmann et al., 2016), which
could not be fully evaluated by MMSE. However, we failed
to collect other cognitive scales and behavior data. Future
studies employing different cognitive and behavioral tests in
AD patients can aid the validation of the results. Third, the
altered hippocampal function may not be the most significant
alteration in AD. In future studies, texture features of other brain
regions with functional changes, such as the default network,
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should be employed to further explore their diagnostic effect.
Finally, recent studies which adopted a 3-class classification
model and exhibited better discriminative performance usually
included thousands of data samples (Elola et al., 2021; Katz et al.,
2021). We only have 178 MRI data and failed to build a 3-class
classification model in the current study. In future study, more
data should be acquired to classify AD and MCI simultaneously
by building a 3-class classification model.

Conclusion

In this study, we used the hippocampal radiomics technique
to establish predictive models incorporating structural image,
ALFF in slow-5 frequency band and their combinations for
diagnosis of AD and aMCI. We found that the radiomics
model based on hippocampal structural image had a better
diagnostic power for detecting AD compared with the model
using hippocampal ALFF in the slow-5 frequency band; while
the model based on ALFF in the slow-5 frequency band
had a higher diagnostic power for aMCI than that based on
the hippocampal structural image. The textural features of
hippocampal ALFF can improve the diagnostic accuracy of
traditional structural image models for detecting AD and aMCI,
which meant that multimodal radiomics models based on the
hippocampal structural images and the ALFF in the slow-5
frequency band can better diagnose AD and aMCI compared
with the traditional structural image model, having the potential
to become a new AD diagnostic tool. In future studies, we would
make full use of the advantages of multiple indicators from fMRI
such as ALFF and functional connectivity, to further examine
their diagnostic effect.
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