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High-quality brain signal data recorded by Stereoelectroencephalography

(SEEG) electrodes provide clinicians with clear guidance for presurgical

assessments for epilepsy surgeries. SEEG, however, is limited to selected

patients with epilepsy due to its invasive procedure. In this work, a brain signal

synthesis framework is presented to synthesize SEEG signals fromnon-invasive

EEG signals. First, a strategy to determine the matching relation between

EEG and SEEG channels is presented by considering both signal correlation

and spatial distance. Second, the EEG-to-SEEG generative adversarial network

(E2SGAN) is proposed to precisely synthesize SEEG data from the simultaneous

EEG data. Although the widely adopted magnitude spectra has proved to

be informative in EEG tasks, it leaves much to be desired in the setting of

signal synthesis. To this end, instantaneous frequency spectra is introduced

to further represent the alignment of the signal. Correlative spectral attention

(CSA) is proposed to enhance the discriminator of E2SGAN by capturing the

correlation between each pair of EEG and SEEG frequencies. The weighted

patch prediction (WPP) technique is devised to ensure robust temporal results.

Comparison experiments on real-patient data demonstrate that E2SGAN

outperforms baseline methods in both temporal and frequency domains. The

perturbation experiment reveals that the synthesized results have the potential

to capture abnormal discharges in epileptic patients before seizures.

KEYWORDS

EEG-SEEG mapping, GANs, epilepsy, signal synthesis, stereoelectroencephalography,

deep learning

1. Introduction

Stereoelectroencephalography (SEEG) is an intracranial recording that can pinpoint

the areas of the brain where seizures occur (Chabardes et al., 2018). SEEG signals

are acquired by depth electrodes implanted into the brain (Li et al., 2018). Its high

spatial and temporal resolution enable the recording of high-amplitude and high-

frequency intracranial discharges that are sometimes difficult to observe on scalp

electroencephalogram (EEG) (Ramantani et al., 2016). Despite its enormous benefits,

SEEG is yet to be a panacea. To implant the electrodes, an invasive surgical procedure

is required to make 10–20 small incisions in the scalp and skull. SEEG is only reserved

for selected epilepsy patients due to the potential risk of infection (Cossu et al., 2005).
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EEG, on the other hand, is an electrophysiological recording

of electrical activity on the scalp by placing electrodes in fixed

positions (Henry, 2006). EEG is non-invasive, relatively safe,

inexpensive, functionally fast, and has been widely used to

observe the spontaneous electrical activity of the brain. The

electromagnetic fields recorded by EEG represent the linear

summation of collective source activity (Plummer et al., 2008;

He et al., 2019). Nevertheless, its relatively low signal-to-noise

ratio, due to the attenuation by the layers lying around the brain,

hinders the use of EEG for accurate epilepsy diagnoses.

In order to obtain intracranial signal recordings at low risk,

a feasible solution is to recover an intracranial signal from a

low-cost non-invasive signal. Cao et al. (2022) introduce the

concept of virtual intracranial EEG (ViEEG) to reconstruct

electrocorticography (ECoG) from magnetoencephalographic

imaging (MEG). Dynamical network models are then applied to

ViEEG to probe the underlying mechanisms of complex neural

dynamics. Compared with ECoG, SEEG acts as an intracranial

signal in the same way with richer spatial resolution, and the

reconstruction is more challenging as well. As a collection

of intracranial signals in the scalp, EEG is thought to be

closely related to SEEG (Ramantani et al., 2016). Inspired

by previous work and supported by the existing medical

background, we propose a solution to synthesize intracranial

SEEG from non-invasive EEG to face the above challenge

and define this challenge as EEG-to-SEEG translation which

is shown in Figure 1. The synthesized SEEG should retain the

key features of real SEEG. In particular, the key features should

carry clinical implications that can be regarded as plausible

explanations of specific intracranial electrophysiological activity

such as abnormal epileptic discharges. By indicating under what

conditions key features are captured, clinicians can use the

synthesized results in a targetedmanner when assessing the need

for SEEG implantation and then pinpointing the location for

electrode implantation.

In recent years, the thriving of deep learning drives the

development of various fields including EEG analysis, providing

us with a new and feasible way of thinking. Antoniades et al.

(2018) made an attempt to devise an asymmetric auto-encoder

stacked with multi-layer neurons to map the temporal sequence

of EEG to SEEG and outperform the previous linear methods

such as least-squares regression (Kaur et al., 2014) and coupled

dictionary learning (Spyrou and Sanei, 2016). The stacked

architecture enhances the model’s capacity but the simple auto-

encoder architecture is still not powerful enough to achieve the

desired result. Their attempt demonstrated the possibility of

synthesizing SEEG from an input EEG and helped us recognize

the necessity of a more powerful feature extractor and a

sophisticated generation architecture. More recently, generative

adversarial networks (GANs) (Goodfellow et al., 2014) have

become amilestone in data generation and attracted our interest.

GANs are basically composed of a generator network and

a discriminator network. The process of adversarial training

forces the generator to synthesize results with more details.

As a result, the discriminator can hardly distinguish the real

and generated ones. The ability of GANs to fit input and

output distributions makes it outstanding in heterogeneous data

synthesis (Jiao et al., 2019; Selim et al., 2020). The excellence

of GANs soon inspired researchers to leverage this architecture

as a new fashion to generate EEG signals (Hartmann et al.,

2018; Luo T-j. et al., 2020; Yao et al., 2020). Furthermore, an

improvement in GAN by imposing a condition on the input has

achieved great success in image-to-image translation (Isola et al.,

2017), which makes it possible to transfer the style or texture

of the input to the output image. They utilized PatchGAN as

a new paradigm of discriminator in order to restrict GANs to

only model high-frequency structures. Their work enlightened

us to leverage conditional GANs (cGANs) (Mirza and Osindero,

2014) together with PatchGAN-based paradigm to transfer an

EEG segment to the SEEG segment.

Although the above methods are mature and proved to be

effective, most of them only consider temporal representation,

neglecting the informative features hidden behind. Numerous

studies have demonstrated that time-frequency representations

obtained from Short-Time Fourier Transform (STFT) (Li

et al., 2021) or Morlet wavelet convolutions provide richer

information and help give better predictions (Yao et al.,

2018; Wang et al., 2020). Clinically, different EEG bands

have discriminative implications (Tatum, 2014) and serve as

beneficial features in many tasks (Yao et al., 2018; Wang et al.,

2020). Therefore, in the context of EEG-to-SEEG translation,

it is necessary to explore and exploit the correlation between

two signals from a frequency domain perspective. Another

discovery that has intrigued us is that the partial derivative

of the unwrapped phase with respect to time, commonly

referred to as the instantaneous frequency (IF), has great

potential in the synthesis of phase spectra (Engel et al., 2019;

Marafioti et al., 2019). Better phase spectrum synthesis ensures

more coherent temporal results, which is one of the aims

of this work.

Furthermore, SEEG electrodes outnumber EEG electrodes

in most cases, and the placement of SEEG electrodes varies

from patient to patient. Therefore, for the set-wise translation,

it is inevitable to determine the matching relationship between

the EEG and the SEEG set. This requires us to develop

a strategy to select reasonable pairs from a large number

of candidate fragments. The selected pairs are expected to

contain clinically meaningful features. Subject to the complexity

of EEG data, we were unable to accurately capture key

signals such as potential pre-seizure micro-abnormal discharges.

However, based on the good synchronization property of

EEG and SEEG, it can be assumed that this key signal must

be hidden in pairs with a strong correlation. In general,

this correlation is affected by physical distance, and the

strength can be measured by calculations based on power

spectral density.
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FIGURE 1

Description of EEG-to-Stereoelectroencephalography (SEEG) translation. EEG and SEEG are represented with a concatenated matrix of

frequency and IF spectra. The di�erence between the real invasive SEEG and that synthesized from simultaneous non-invasive EEG is minimized.

In this work, by leveraging both the temporal and frequency

characteristics of brain signals, an EEG-SEEG matching strategy

is designed to construct an aligned dataset and an EEG-to-SEEG

generative adversarial network called E2SGAN is proposed.

First, the EEG-SEEG matching strategy explores the

nonlinear correlation between EEG and SEEG by observing how

signal similarity varies with spatial distance. An aligned dataset

is constructed with the selected pairs in the form of the time-

frequency representation obtained from the STFT transform.

Second, the E2SGAN trained on the aligned dataset is

proposed to convert the input EEG to the corresponding SEEG.

The E2SGAN architecture takes full advantage of the time-

frequency features and learns how to synthesize the magnitude

and IF spectra accurately. The generator is built with residual

blocks connecting a CNN-based encoder-decoder structure, and

the discriminator is designed according to the patch-based

paradigm. Two auxiliary modules, called correlative spectral

attention (CSA) and weighted patch prediction (WPP), are

devised to enhance the discriminator’s ability. CSA captures

the correlation between different combinations of EEG and

SEEG frequencies and prevents the discriminator from making

judgments based solely on the geometry of the spectra. WPP is

a technique that eliminates potential mode collapse that occurs

with each frequency to ensure more robust temporal results.

Extensive comparison experiments have shown

that the proposed framework is able to outperform

the baseline methods. The perturbation experiment

reveals that the synthesized results have the potential

to capture abnormal discharges in epileptic patients

before seizures.

The main contributions of this work are as follows:

• We propose E2SGAN, a practical deep-learning

algorithm to address the EEG-to-SEEG translation.

CSA and WPP are devised to capture the correlation

between EEG and SEEG spectra and ensure robust

temporal results.

• We pioneer the introduction of both magnitude and IF

spectra as a time-frequency representation in a brain signal

conversion setup.

• We develop an EEG-SEEG matching strategy to determine

the matching relation between EEG and SEEG sets.

The strategy explores the nonlinear correlation of signal

similarity with respect to spatial distance.

• Evaluation results on extensive real-patient-based

experiments demonstrate the excellent performance of

the proposed framework in both temporal and frequency

domains. A further perturbation experiment reveals the

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.971829
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnins.2022.971829

potential of the synthesized results to capture abnormal

epileptic discharges.

2. Materials and methods

2.1. Framework overview for SEEG
synthesis

A two-fold pipeline is designed for SEEG synthesis as

depicted in Figure 2, (1) to prepare aligned training data by

matching EEG and SEEG segments (see Section 2.2) and (2) to

translate EEG to SEEG (see Section 2.3 to 2.3.6).

The first stage does a preliminary job of organizing

preprocessed EEG and SEEG signals in pairs to form a

temporally aligned dataset. Raw EEG and SEEG signals are

filtered and segmented using a synchronized sliding window.

Then, segments from two sources are matched into pairs with

the proposed matching strategy (see Section 2.2) based on the

correlation between signal similarity and physical distance. The

paired segments are processed with STFT to obtain magnitude

spectra and IF spectra. The aligned dataset is constructed with

the processed pairs.

At the second stage, E2SGAN is trained on the aligned

dataset. The generator transforms the input EEG spectra to the

target SEEG spectra while the discriminator makes an effort

to distinguish real and fake targets conditioned by the input

EEG. CSA (see Section 2.3.4) and WPP (see Section 2.3.5)

are two auxiliary modules devised to give a further boost

to the discriminator. Specifically, CSA is a mutual attention

sub-network that captures the correlation between EEG and

SEEG frequencies. The captured correlation can be considered

as an extra supervision signal which ensures the correct

frequency correlation of the synthesized target with respect

to the input. WPP is a customized technique to disturb the

monotonous distribution of patch prediction. The variation

within patch-based prediction alleviates the mode collapse

caused by low variance in IF spectra. The optimization of the

whole network is described in Section 2.3.6. In the end, the

synthesized SEEG spectra are transformed back to temporal

representation via inverse STFT. The implementation of the

proposed framework is available at https://anonymous.4open.

science/r/E2SGAN-180B/.

2.2. EEG-SEEG matching strategy

As is discussed in Section 1, a matching strategy aims to

address two challenges. First, it has to make a compromise on

the difficulty of directly translating the whole set of EEG to

SEEG. Second, it should single out the potential pairs carrying

implicit clinical features, which can be measured by the strength

of correlation within a pair. Therefore, we settle for the second

best to focus on one-to-one mapping within pairwise EEG and

SEEG channels. Based on this setting, the set-wise translation

is decomposed to sub-tasks where the pairwise translation will

be performed. Such a strategy has to guarantee the existence

of a correlation between EEG and SEEG segments within a

pair. Specifically, a qualified solution should obey the following

procedure:

1. Map the set of EEG channels to the set of SEEG channels

via any form of bipartite graph matching to obtain a sea of

candidate EEG-SEEG pairs

2. Search for the optimal pairs while ensuring the correlation

3. Generalize the solution so as to be applied to upcoming

subjects

For this strategy, such correlation is defined as signal

similarity based on a given similarity metric. The correlation

does not vary with distance in a linear trend as is habitually

deemed, but rather a non-linear fashion. To demonstrate this

counterintuitive relation, the Hellinger Distance (Chen et al.,

2020) from two SEEG channels and the target EEG channel are

compared as shown in Figure 3. The leftmost column gives an

example of what a matching strategy is expected to solve. When

matching the EEG Cz (yellow-dotted at the top of Figure 3A),

the strategy is making a decision between the choice of SEEG

A14 and H14 (red-/green-circled at the bottom of Figure 3A).

Despite the closer physical distance of the SEEG channel A14 to

EEG Cz as is shown in the topological map (top of Figure 3B)

and the 3-D location (bottom of Figure 3B), the farther HD is

observed in A14 rather than H14 in Figure 3C. Hence, H14 is

considered to be an appropriate match to Cz. Potential reasons

can be the influence of brain geometry or brain functional

connectivity on signal propagation (Frauscher et al., 2018).

To guarantee a meaningful pairwise translation, a matching

strategy has to take into account the complex correlation within

a pair.

Here, one of the implementations following the

proposed procedure is presented in Algorithm 1 which

deals with the complex correlation in a simple but

efficient way. Regarding the EEG and SEEG channels

as two non-overlapped sets, the problem is initiated as

bipartite graph matching. To fulfill Procedure 1, all the

SEEG channels are first matched to a given EEG channel

to obtain candidate EEG-SEEG pairs. In Algorithm 1,

Euclidean distance is adopted as d(·) to sort the pairs.

Considering the non-linear trend, the set of C is divided into

subsets, leaving each subset corresponding with a distance

interval itv.

For each subset, linear regression is used as f to explore

the correlation between physical distance and signal similarity.

Here, Hellinger Distance is adopted as s(·) and the first-

order derivative ∇f is calculated, of which the positive value

indicates that the similarity between the EEG channel and SEEG

channels decreases as the physical distance becomes farther. The
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FIGURE 2

Proposed framework for EEG-to-SEEG translation. (A) Raw EEG and SEEG signals are filtered and segmented using a synchronized sliding

window. Then, segments from two sources are matched into pairs with the proposed strategy. Short-Time Fourier Transform (STFT) is

performed to obtain magnitude and IF spectra. The aligned dataset is constructed with the processed pairs. (B) EEG-to-SEEG generative

adversarial network (E2SGAN) is trained on the aligned dataset to synthesize SEEG from simultaneous EEG. Correlative Spectral Attention (CSA)

and Weighted Patch Prediction (WPP) are devised to give a further boost to the discriminator.

FIGURE 3

Demonstration of the counterintuitive relation between signal correlation and physical distance. (A) Illustrates that the matching strategy needs

to match the EEG channel (Cz, yellow-doted at the top) to one of the candidate SEEG channels (A14/H14, red-/green-circled at the bottom).

Despite the closer physical distance of SEEG A14 to EEG Cz which is shown in the topological map (top of B) and the 3-D location (bottom of B),

the farther HD is observed in A14 rather than H14 (C). H14 is considered to be an appropriate match to Cz.
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Input: EEG channel o and SEEG channels C = {c1, c2, ..., cN }
Function: physical distance metric d(·), signal

similarity metric s(·), regression function f, and

correlation operator ∇
Output: distance interval itv∗

1: Sort elements ci ∈ C by d(o, ci) in ascending order

2: Split C into subsets so that each subset Csub

corresponds with a distance interval itv

3: for Csub of subsets do

4: Obtain the correlation ∇f where f : d(o, cj) → s(o, cj),

cj ∈ Csub

5: end for

6: Repeat 1 to 5 on all segments and subjects

7: return interval itv∗ where the most frequent

correlation appears

Algorithm 1. EEG-SEEG Matching Strategy

proportion of positive ∇f is counted on each subset. The steps

mentioned above are carried out on all segments and subjects.

After that, the interval itv∗ where the most positive derivatives

appear, ranging from a to b mm, i.e., itv∗ = [a, b], is chosen.

SEEG channel approximately a mm away from the investigated

EEG is considered a match.

Within itv∗, the similarity between EEG and SEEG segments

prominently declines as the physical distance increases. Latent

correlations between SEEG and EEG signals have been shown

within this interval, even not necessarily stronger than the

others, thus satisfying Procedure 2. Other off-the-shelf methods

for finding optimal EEG-SEEG similarity can be directly applied

to the proposed strategy by replacing the metric s(·) in

Algorithm 1.

In the following experiments, EEGCz is chosen to obtain the

output interval itv∗, and the conclusion is extended to all other

EEG channels as is required by Procedure 3.

2.3. E2SGAN method

In the second stage, we center on the EEG to SEEG

translation. In this section, some rudiments of instantaneous

frequency and conditional GAN are provided as preliminary.

Then, the details about the generative model are provided,

including two auxiliary modules and the objectives.

2.3.1. Brain signal representation with
instantaneous frequency

To better characterize brain signals, we employ STFT, which

transforms the original signal into the frequency domain for

the generation task. Different from the previous classification

tasks, in addition to considering the energy distribution of the

brain signal in the frequency domain, the phase distribution

of the signal needs to be taken into consideration. Otherwise,

the time domain representation of the signal cannot be

restored. In practice, frame-based techniques used in signal

process/generation such as deconvolutions will cause the initial

phase of the segment intercepted by the frame to change over

time when the stride of frames does not equal the signal’s

periodicity. This phenomenon renders the generation of phase

spectra a tricky task as covering all the necessary frequencies and

all possible phase alignments to preserve the phase coherence is

impractical (Engel et al., 2019).

The partial derivative of the unwrapped phase with respect

to time, commonly referred to as instantaneous frequency (IF),

is a time varying measure of the true signal oscillation. For

example, given a function of phase with respect to time

ϕ(t) = ωt + θ (1)

where ω is the frequency and θ is the initial phase or phase

offset. The instantaneous frequency is defined as

ω(t) = dϕ(t)

dt
(2)

where ϕ(t) has to be in unwrapped form (Sejdic et al., 2008).

In this case, a time-independent constant θ is derived. It has

been proved that the instantaneous frequency of phase is a more

promising modeling target than the phase itself when generating

signals or phase spectra (Marafioti et al., 2019). The assumption

of instantaneous frequency alleviates this risk since it remains

constant on each frequency and is feasible to be learned by

neural networks.

2.3.2. Conditional GANs for EEG-to-SEEG
translation

The Generative Adversarial Network proposed by

Goodfellow et al. (2014) has been proved to have strong

data generation ability, which benefits from its unique

network architecture: a pair of generator network and

discriminator network competing with each other to generate

indistinguishable data. The generator network is usually

composed of an encoder-decoder structure, which takes noise

sampled from a known prior distribution as input and aims

to fit the target data distribution as precisely as possible. The

discriminator network focuses on determining whether the

input data comes from the target data distribution or is forged

by the generator. Analogous to the game process, the two

networks optimize their own parameters through the feedback

given by each other and finally produce an output that is

indistinguishable from real and fake.

To control the modes of the data being generated, Mirza

and Osindero (2014) proposed the conditional version of GANs.
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FIGURE 4

Proposed discriminator with the pre-positioned CSA module capturing the frequency correlation of EEG and SEEG, and the post-positioned

WPP module ensuring robust temporal results.

Given a generator networkG and a discriminator networkD, the

optimization objective of cGANs can be formulated as follows:

LcGAN = Ex∼pdata(x)
[logD(x|y)]+Ez∼pz(z)[log(1−D(G(z|y)))]

(3)

where x is a sample from the target distribution, y is the

condition, and z is sampled from a prior distribution. The

core idea of cGANs is to concatenate an extra condition to the

inputs of both G and D, imposing the networks to determine

whether the generated data matches the given condition. If y

also conforms to a known distribution, we are able to realize

the conversion between the two different data distributions. To

ensure a one-to-one mapping, the addition of noise needs to be

removed.

The basic idea of cGANs is adopted to achieve the goal of

translating EEG to SEEG. Overall, the generator G establishes

a mapping from an EEG segment e to an SEEG segment s

where e, s ∈ R
2×m×n. The first dimension represents the

concatenated magnitude and IF spectra. m and n are the

numbers of frequencies and time steps after the STFT operation.

Subsequently, D takes the (e, s) pair as input where s is either a

real SEEG segment or generated and outputs a scalar to indicate

the difference between the distributions of real and fake pairs.

PatchGAN (Isola et al., 2017) is adopted as D, which is a fully

convolutional neural network that penalizes structure at the

scale of patches based on the Markov chain assumption. Noise

added to the input is omitted since the task is a determinate

one-to-one mapping.

Furthermore, CSA and WPP are devised to give a further

boost to the discriminator as is shown in Figure 4. CSA is

a mutual attention sub-network that captures the correlation

between each combination of EEG and SEEG frequencies. The

captured correlation can be considered an extra supervision

signal which ensures the correct frequency correlation of

the synthesized target with respect to the input. WPP is a

customized technique to disturb the monotonous distribution of

patch predictions. The variation within patch-based prediction

alleviates the mode collapse caused by low variance in IF spectra

and ensures robust temporal results.

2.3.3. Architecture of generator and
discriminator networks

The architectures of the generator and discriminator

networks are shown in Table 1. The generator is basically a

three-layer CNN autoencoder with two residual blocks as the

bottleneck. 2D convolution filters are used for feature extraction

since the input is similar to an image. It is worthmentioning that

we use upsampling function followed by the same convolution

instead of a deconvolution filter to avoid checkerboard artifacts

(Odena et al., 2016). The discriminator is a PatchGAN, namely a

fully-convolutional structure. Equalized learning rate layer and

pixel-wise norm layer are applied to improve the stability of

training (Karras et al., 2018). Leaky ReLU (Maas et al., 2013) is

applied as the activation function.

2.3.4. Correlative spectral attention

To capture the latent correlation between the input EEG

segment and the target SEEG segment, the CSA is proposed.

It adopts a mutual attention module to model the correlation

from a perspective of magnitude spectra. The mutual attention

module serves as an observer that learns to express to what

extent the correlation between EEG and SEEG segments is

preserved and then passes the message to the discriminator as

a supply.

Specifically, given an input pair (e, s), only the magnitude

Emag and Smag ∈ R
m×n are extracted. The magnitude is defined

as a sequence of frequency vectors (f1, f2, ..., fm) where each

frequency vector fi ∈ R
n is a time series (t1, t2, ..., tn). To map
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TABLE 1 Architectures of the proposed generator and discriminator.

Layers Output shape Norm./Act.

Generator

Input 2× 128× 128 –

Padding 2× 128× 128 ELR/LReLU/PN

Conv2d 32× 64× 64 ELR/LReLU/PN

Conv2d 64× 32× 32 ELR/LReLU/PN

ResBlock*2 64× 32× 32 ELR/LReLU/PN

Upsample 64× 64× 64 –

Conv2d 32× 64× 64 ELR/LReLU/PN

Upsample 32× 128× 128 –

Conv2d 16× 128× 128 ELR/LReLU/PN

Padding 16× 134× 134 –

Conv2d 2× 128× 128 Tanh

Discriminator

Input 4× 128× 128 –

Conv2d 16× 64× 64 ELR/LReLU

Conv2d 32× 32× 32 ELR/LReLU

Conv2d 64× 16× 16 ELR/LReLU

Conv2d 128× 15× 15 ELR/LReLU

Conv2d 1× 14× 14 –

Emag and Smag to a proper space, learned affine transformations

A1 and A2 are applied. A(·,w, b) is defined as

A(X,w, b) = X · w+ b (4)

where X is the input matrix, w ∈ R
n×n and b ∈ R

n are

learnable affine parameters. To further obtain the correlative

expressions, mutual attention is calculated between Emag and

Smag . The attention score α is defined as

α = softmax(
A1(Emag ,w1, b1) · A2(Smag ,w2, b2)

T

√
n

) (5)

where each scalar in α ∈ R
m can be considered as the level of

correlations between different combinations of EEG and SEEG

frequencies. Emag is multiplied by α to obtain the output of CSA

CSA(e, s) = α · Emag (6)

and concatenate it with the original pair (e, s) as the final

input to D. Here, the output of CSA acts as an auxiliary

supervision signal which suggests the principal components of

input correlated to the target. CSA reinforces the temporal-

frequency representation to be better utilized by the downstream

PatchGAN.

2.3.5. Weighted patch prediction

The patch-based technique described in Isola et al. (2017) is

not powerful enough to discriminate the features of an image in

low variance situations since a little change in features provides

many similar sub-images of monotonous mode and therefore

leads to mode collapse. In practice, the low variance in IF along

each frequency is observed, which leads to mode collapse in

both generated magnitude and IF spectra. The collapsed spectra

have a salient characteristic of repetitive stripes along with

each frequency. To eliminate the undesirable results, a patch-

weighting technique is adopted by applying a learnable weight

to the prediction of a patch. The weighted patch predictions are

then conforming to a distorted distribution distinguishable from

each other. In addition, the averaged representation of all patch

predictions is weighted to provide a global view of the input to

adjust the final prediction.

Specifically, the original PatchGAND outputs a one-channel

matrix P ∈ R
1×k×k, of which the element represents the

prediction of a patch. k is the number of rows in the output

matrix. P is flattened to obtain vector p ∈ R
k2 . The global

representation pglobal is calculated by averaging the predictions

in p and applying a non-linear transformation:

pglobal = LReLU(
1

k2

k2∑

i=1

pi) (7)

We choose leaky rectified activation (LReLU) (Maas et al.,

2013) as the non-linear function because it has been proved

to work well for training GAN models (Radford et al., 2015).

LReLU helps to ensure the gradient can flow through the entire

architecture. Then, pglobal and p are concatenated in preparation

for the weighted prediction ŷ, which is defined as

q = cat(pglobal, p), q ∈ R
k2+1 (8)

ŷ =
k2+1∑

i=1

βiqi (9)

In Equation (9), βi denotes the learnable weight assigned

to the global view and the patch predictions. The behavior

of weighting disturbs the original monotonous distribution

among patches. The global representation pglobal plays a role in

providing the complete insight into the input since it collects

views from all patches.

2.3.6. Objectives

WGAN-GP (Gulrajani et al., 2017) is adopted to stabilize

the training of cGAN. The objective with the proposed auxiliary

modules are formulated as follows:

LGAN =Ee,s∼pr(e,s)[D(e, s,CSA(e, s))]−

Ee∼pr(e)[D(e,G(e),CSA(e,G(e)))]+

λgpEê,ŝ∼pi(ê,ŝ)[(‖∇(ê,ŝ)D(ê, ŝ,CSA(ê, ŝ))‖2 − 1)2]

(10)
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where pr(e, s) is the joint distribution of real pairs and pr(e)

is the distribution of EEG. pi(ê, ŝ) is the joint distribution defined

on the interpolated space derived from real and synthesized

pairs. WGAN-GP uses the interpolated space derived from the

real and synthesized samples to represent the input space of D

in order to compute gradients. λgp is used to scale the gradient

penalty.

L1 loss is adopted in the generator for it contributes to

capturing the low-frequency components of a image (Isola et al.,

2017), which in this work corresponds to the slow-changing

regions of spectra:

LL1 = Ee,s∼pr(e,s)[‖s− G(e)‖1] (11)

As a result, the final min-max optimization objective is

G
∗
E2SGAN = argmin

G
max
D

LGAN + λL1LL1 (12)

where λL1 is a hyper-parameter adjusting the L1 loss.

3. Results

3.1. Subjects and data recording

Seven subjects participated in the study. Subjects were

patients with intractable epilepsy who had implanted SEEG

electrodes for pre-surgical assessment of their seizure focus. All

implant parameters were determined solely by clinical needs

rather than those of this research. SEEG signals were acquired

using a clinical recording system (EEG-1200C, Nihon Kohden,

Irvine, CA) and sampled at 2,000 Hz. We also recorded scalp

EEG simultaneously. All subjects gave informed consent to this

study, which was approved by the Ethics Committee of Huashan

Hospital (Shanghai, China).

3.2. Preprocessing

Both EEG and SEEG signals are vulnerable to noise

interference. Slow signal drifts mask genuine cortical activity in

the low frequency range (de Cheveigné and Arzounian, 2018).

Electrical line noise causes unwanted effects on a fixed frequency

of 50 or 60 Hz and their harmonics. To remove these unwanted

components from the signal, EEG signal at 1 Hz and SEEG at

0.5 Hz is high-pass filtered to remove slow signal drifts (Li et al.,

2018), and the signal at 50 Hz and their harmonics are notch

filtered to remove line noise. SEEG electrodes located in the

cortex are filtered out for the reason that they contributed little to

the scalp signal. For the convenience of computation, the filtered

signal is down-sampled to 64 Hz where the majority of power

is distributed. Segmentation was performed on the continuous

brain signals. A sliding window with a size of 1,016 sampling

points (15.875 s) and a stride of a quarter of the window size is

performed on the filtered signal. STFT with the window size of

256 and the hop length of 8 was performed to transform each

segment to magnitude and phase spectra matrix with the same

shape of (128, 128). IF spectra matrix from phase spectra is then

derived. The final representation of each segment was a (2, 128,

and 128) tensor.

We used pre-ictal EEG and SEEG recorded simultaneously

from seven epileptic rest-state patients. The placement of EEG

electrodes conformed to the 10–20 system. After segmentation

and pairing, each subject had 8,000 EEG-SEEG pairs as the

training set, 200 as the validation set, and 200 as the test set.

3.3. Evaluation metrics

The quality of results is evaluated by calculating the distance

between real and generated SEEG segments from both temporal

and frequency perspectives. From a temporal perspective,

dynamic time warping (DTW) is used which matches two-

time series through a dynamic programming strategy. From a

frequency perspective, the Hellinger Distance and root mean

square errors (RMSE) of the power spectral density (PSD)

are adopted. The Hellinger Distance reflects the similarity of

the power distribution of different frequencies. MSE of PSD

reflects to what degree the dominant components of power

are recovered. Inception score (Salimans et al., 2016) and

Frechet Inception Distance (Heusel et al., 2017) are no longer

considered in this work which is a determined mapping instead

of generation from noise.

For evaluation, the leave-one-patient-out cross-validation

strategy is employed. The averaged results are computed only on

the test sets. Evaluation of the input EEG was used as a baseline.

The evaluations are post-processed according to Equation (13)

by dividing them by the baseline evaluation. A binary logarithm

was taken as the final result. For each experiment, the baseline

evaluation is shown on the header of the tables. For all metrics,

a smaller value indicates a better result.

Evallog (Sfake, Sreal) = log2
Eval(Sfake, Sreal)

Eval(Ereal, Sreal)
(13)

3.4. Baselines

The proposed architecture is compared with different

approaches using mainstream generative models. ASAE and

AE adopt an encoder-decoder architecture while EEGGAN,

GANSynth, and Pix2pix are based on GANs.

3.4.1. ASAE

Asymmetric-Symmetric Autoencoder uses an asymmetric

autoencoder to map scalp signal to intracranial signal, followed

by a symmetric autoencoder to enhance the generated results.
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3.4.2. AE

This baseline has the same architecture as the generator in

our method (see Table 1).

3.4.3. EEGGAN

EEGGAN uses an improved WGAN-GP by gradually

relaxing the gradient constraint to map a noise distribution to

the EEG distribution. In the experiments, the input noise is

replaced with EEG segments to generate SEEG.

3.4.4. uTSGAN

uTSGAN uses two WGAN-GP sub-models to interactively

learn the time- and frequency-domain generation of time series

from a noise distribution. The input noise is replaced with

reshaped EEG segments. It has to be mentioned that since the

authors of uTSGAN did not open-source their code, we only

reproduce their work in a simple way as efficiently as possible.

We use 2D Conv for the spectral WGAN and 1D Conv for the

temporal WGAN. The loss function and optimizers follow as

described in the original work (Smith and Smith, 2020, 2021).

3.4.5. Pix2pix

Pix2pix is a generic image-to-image translation approach

based on cGANs. In the experiments, we implement the

generator with the same architecture as the AE method and

adopt PatchGAN which was originally used in the work (Isola

et al., 2017).

3.4.6. GANSynth

GANSynth is a GAN-based method used in audio synthesis

which takes the magnitude and IF spectra as input to generate

the audio segments in a progressive way. The input noise is also

replaced with EEG segments.

For the baselines that are originally applied to signal

generation such as ASAE, EEGGAN, and GANSynth, we follow

the setting specified in the paper. In other words, STFT will

not be performed to preserve the temporal representation

for ASAE and EEGAN while magnitude and IF spectra are

used for GANSynth. For the rest, magnitude and phase

(instead of IF) spectra are used as a two-channel image

to be compatible with the CNN-based architectures. For

uTSGAN, we use both the temporal representation and the

magnitude matrix.

3.5. Experiment settings

λgp and λL1 are set to 10. The learning rate of G and D

is set to 1e-5 and 2e-5, respectively. In the training phase, the

model is first trained by 80 epochs without the CSA module

and then jointly trained by another 40 epochs. We adopted

Adam optimizer to perform gradient descent optimization

(Kingma and Ba, 2014) and implemented our framework with

Pytorch. Preprocessing is done with the help of the MNE toolkit

(Gramfort et al., 2013).

3.6. Performance of di�erent methods

3.6.1. Comparison with baseline methods

The results of the proposed method trained on the aligned

dataset guided by the proposed matching strategy introduced in

Section 2.2 are denoted as E2SGAN-S. The comparison results

are shown in Table 2. The full visual results are provided in

Supplementary Figures 1, 2. ASAE performs poorly in DTW and

HD because its encoder-decoder architecture simply based on

stacks of fully-connected layers is not powerful enough to learn

the complicated mapping between EEG and SEEG. Although it

seems to perform well on PSD, the fact is that the model only

has learned low-frequency pulses that dominate the magnitude

of the power spectrum. AE is able to capture the majority

of low-frequency features but underfits the high frequency.

This reflects on the temporal result as slow fluctuations with

simple ripples. Both the autoencoder-based methods overfit the

low frequencies because of no extra regularization on high-

frequency features. EEGGAN learns the mapping directly from

the temporal domain and captures the general distribution of the

target power spectrum, but it fails to learn the exact features of

the waveform, which leads to a competitive performance only

on HD. uTSGAN is inferior to the proposed E2SGAN and other

baselines. Pix2pix has a slightly better performance compared

to AE on PSD and HD. The patch-based discriminator enables

it to learn more complicated patterns but also makes it hard

to generate them accurately, resulting in poor performance on

DTW. GANSynth achieves the most competitive performance

among baselines because it utilizes IF spectra which contributes

to the accuracy in phase recovery. The progressive approach

enables it to capture the general power distribution and thus

perform well on HD metrics. The proposed method achieves

the best results on all metrics. The DTW result far superior

to the others demonstrates the effectiveness of adopting IF

spectra and the WPP technique. In addition, the lowest MSE of

PSD and HD results suggest that the CSA module successfully

captures not only the general power distribution of the target but

also the exact magnitude of different frequencies by imposing

regularization on the correlations between input and target

frequencies.

3.6.2. Influence of matching strategies

Furthermore, the performance of the proposed model on

datasets constructed under the guidance of different matching
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TABLE 2 Performance comparison with baselines.

Method DTW/1.636e-3 PSD/1.128e-9 HD/2.886e-6

ASAE (Antoniades et al., 2018) 2.867± 0.126 −1.384± 1.794 0.490± 0.800

AE(∗) −0.059± 0.815 −1.357± 1.659 0.337± 0.756

EEGGAN (Hartmann et al., 2018) −0.019± 0.624 −0.821± 1.457 0.068± 0.734

uTSGAN (Smith and Smith, 2021) 3.867± 0.012 3.424± 0.134 3.127± 0.050

Pix2pix (Isola et al., 2017) 0.133± 0.829 −1.396± 1.754 0.316± 0.834

GANSynth (Engel et al., 2019) −0.107± 0.740 −0.929± 1.453 0.191± 0.763

E2SGAN-N −0.424 ± 0.400 0.185± 0.298 0.572± 0.565

E2SGAN-S −0.414± 0.764 −1.480 ± 1.609 −0.221 ± 0.843

AE(∗) is implemented with the same architecture as the generator of the proposed method. The bold values indicate the baseline values of evaluation.

TABLE 3 Ablation study.

Method DTW/1.636e-3 PSD/1.128e-9 HD/2.886e-6

w/o CSA &WPP −0.318± 0.723 −1.633± 1.732 −0.393± 0.948

w/o WPP −0.325± 0.729 −1.681 ± 1.734 −0.425 ± 0.953

w/o CSA −0.346± 0.770 −1.385± 1.615 −0.112± 0.851

E2SGAN −0.414 ± 0.764 −1.480± 1.609 −0.221± 0.843

The bold values indicate the baseline values of evaluation.

strategies is investigated. A variant E2SGAN-N is proposed

to be trained on the dataset guided by the nearest neighbor

matching strategy. We adopt a most intuitive and practical

strategy, that is to match the EEG and SEEG channels with

the closest physical distance, and ensure the selection is not

repeated. The results are shown at the bottom of Table 2.

E2SGAN-N and E2SGAN-S have similar performance in the

time domain, but E2SGAN-N is inferior to most baselines in

the frequency domain. The main reason is that our proposed

matching strategy explicitly guarantees the correlation between

EEG-SEEG. This finding confirms the point mentioned in the

previous Section 2.2, that the signals recorded by channels with

closer distance do not necessarily have obvious correlations

in the frequency domain. This can be mainly attributed to

the irregular topology of gyri and sulci in the brain so that

the propagation direction of intracranial signals does not

necessarily follow the direction closest to the scalp. Assuming

that the proposed model is sensitive to EEG-SEEG correlation,

a paired dataset with a stronger correlation should achieve

better performance. This experiment demonstrates the ability

of E2SGAN to implicitly capture the correlation between

EEG and SEEG.

3.7. Ablation study

In order to verify how CSA and WPP are beneficial to

the whole model, three variants are compared to E2SGAN.

For the “w/o WPP” variant, the WPP module is removed

and the original PatchGAN prediction is used as output. For

“w/o CSA” variant, we do not concatenate the CSA output

to the input of PatchGAN. For “w/o CSA & WPP” variant,

both of the aforementioned changes are adopted. As shown in

Table 3, the removal of “WPP” degrades the performance in the

temporal domain (DTW) and the removal of “CSA” degrades the

performance in the frequency domain (PSD & HD). Although

the two variants without “WPP” seem to perform better in

the frequency domain, they actually suffer from mode collapse,

leading to poor temporal robustness.

3.7.1. Temporal robustness study

We further compare the proposed method to w/o CSA

and w/o CSA & WPP in the temporal domain to verify the

temporal robustness by calculating the standard deviation (STD)

distribution of the RMSE between the real and synthesized

SEEG. Specifically, each SEEG segment is equally divided into

sub-segments, the width of which is traversed from 2 to half

of the whole length. RMSE is calculated gradually on sub-

segments, and the STD distribution of it on different scales

of width is plotted in Figure 5. The horizontal axis is STD

and the vertical axis is density. It can be clearly observed

that the majority of STD of both methods with WPP are

centrally distributed in low-value regions. The high STD in w/o

CSA and WPP method implies some kind of spur occurring

in the generated segments, which is actually observed in

visual results.

3.8. Input-signal perturbation

To determine what key features in the input signal play a

significant role in relating EEG to the simultaneous SEEG, input-

signal perturbation is performed as is described in Gemein et al.

(2020) and Schirrmeister et al. (2017). Specifically, random noise

z ∼ N(0, σ 2) drawn from Gaussian distribution (with mean

0 and standard deviation σ identical with that of the original

input) was added to the magnitude spectra of input EEG e while
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FIGURE 5

Temporal robustness study by comparing the standard deviation (SD) distribution of RMSE. Dotted vertical lines are the means of SD.

the phase was kept unperturbed. RMSE of PSD is computed

with the perturbed EEG ê as input. Changes compared to the

unperturbed result were computed to indicate the effect 1effect

of perturbation.

1effect =

√√√√ 1

m

m∑

i=1

(PSD(G(ê))(i) − PSD(s)(i))2−

√√√√ 1

m

m∑

j=1

(PSD(G(e))(j) − PSD(s)(j))2

(14)

1mag denoting the changes in the magnitude of the input

EEG was obtained by averaging the added noise z. Such

perturbation was done on every EEG-SEEG pair and repeated

50 times on each investigated feature, including four frequency

bands: δ (0–4 Hz), θ (4–7 Hz), α (8–15 Hz), β (16–31 Hz).

For each feature, 1effect is correlated with 1mag by computing

the correlation coefficient. It could be determined whether the

increase or decrease in themagnitude of the investigated features

contributed to a better or worse SEEG synthesis.

The perturbation operation is carried out individually on

each patient. We selected three patients as representatives, who

showed three kinds of responses to the proposed model to

perturbation: (1) the captured perturbation-sensitive area is

consistent with the epileptic focus; (2) the captured sensitive

area is close to the focus; (3) being unable to capture sensitive

areas near the focus due to data missing. The three cases are

displayed in Figure 6 by visualizing the topological map of the

correlation coefficients. EEG electrodes are partly missing due to

the restriction in the collection and the proposed pairing strategy

(which causes the unmatched channels to be discarded). We

pay attention to the sensitivity of signals at different electrode

locations to perturbation in different frequency bands. In patient

1, a dramatic effect is found in the parietal and temporal zones

(P3 and T5) of all bands and is most significant in the δ band.

In patient 2, the most affected areas are the left frontal and

central zones (F3, C3). In patient 3, the left temporal zone

(T3, T5) is more sensitive. The added perturbation can be seen

as a simulation of the underlying micro-abnormal discharges

that occur before seizures. To verify that the sensitive channels

we find are clinically significant, the seizure location provided

by the clinician is marked with yellow-edged dots. Patient 1

shows that the seizure location (P3) coincides with the sensitive

zone. For patient 2, the seizure location (T3, F7) is close to the

sensitive zone we have found despite the missing of channels. An

exceptional case is patient 3, where the real epileptic focus (T4) is

in the right temporal zone, far away from the available channels

in the training dataset. The cases of patients 1 and 2 demonstrate

that the proposed model is able to capture the abnormal signal

before seizures and is preserved in the synthesized SEEG. If the

seizure location is too far away from the electrodes available in

the dataset, our model will perform poorly. We provide the rest

of the patients with Supplementary materials.

It has been verified that the δ power is associated with sleep

and shows abnormal changes prior to seizures (Minecan et al.,

2002; Long et al., 2021). The perturbation results in the δ band

confirm the expected conclusion.

3.9. Case study of visual results

A visual case study is conducted by comparing the spectral

and temporal results synthesized by the proposed method to

the groundtruth. As is shown in the top rows of Figure 7, the

proposed method produces clear results in both frequency and

IF spectra, which indicates it has captured the details of how

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.971829
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnins.2022.971829

FIGURE 6

The topological map of correlation coe�cient from input-signal perturbation where red indicates a high correlation and blue indicates a low

correlation. Four bands (δ, θ , α, and β) are investigated on each patient, and three of them are displayed as representatives. The names of

available EEG channels for each patient are listed, and the channels nearby a seizure focus are marked with yellow-edged dots. Patients 1 and 2

are good examples that the sensitive zone (left parietal and temporal zone for Patient 1, left frontal and temporal for Patient 2) coincides with

the seizure location, while Patient 3 is an exceptional case due to the missing of T4 channel in the dataset.

the power and phase are distributed along with time. From the

bottom rows, it can be seen that the proposed method is able to

produce the general morphology highly close to the groundtruth

although the details of ripples are still far from satisfactory.

4. Discussion

In this paper, a GAN-based framework is introduced

for the task of EEG-to-SEEG translation. First, a matching

strategy is developed to select EEG-SEEG pairs. Second,

E2SGAN is proposed to learn from the magnitude and

IF spectra to synthesize the simultaneous SEEG segment

given an input EEG segment. CSA and WPP technique

are proposed to give a further boost to the discriminator.

Extensive comparison experiments have demonstrated the

capability of the proposed framework to transform EEG

segments into SEEG segments. To find out whether the

model has captured clinically significant features, a perturbation

experiment is conducted. The final result shows that the

synthesized SEEG signal retains the abnormal discharges

before seizures.

4.1. Why not directly model the physical
distance between EEG and SEEG?

Intuitively, it is more reasonable to generate the nearest

EEG-SEEG pairs. We favor the impact of physical distance on

SEEG generation, but it is not the only factor. In this work,

we have tried to match EEG-SEEG pairs using a strategy based

on the nearest physical distance. However, we found that EEG-

SEEG pairs based solely on the physical distance were not

necessarily strongly correlated (see Section 2.2 and Figure 3).

This observation has also been confirmed in relevant clinical

studies, where the geometry of the brain and its complex

interconnections affect signal propagation (Frauscher et al.,

2018). In the comparison experiment, we also experimented

with the nearest physical distance matching strategy, but the

results were not satisfactory. Therefore, we incorporated the

HD distance into the matching strategy to limit the correlation

between an EEG-SEEG pair. In this way, we avoid the influence

of some unrelated pairs in the training process, even if they have

a relatively close physical distance.

We agree that modeling the physical distance into the model

is a worthwhile and practical consideration, and there have been
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FIGURE 7

Case study of spectral results (top) and temporal results (bottom) synthesized by the proposed method compared to the groundtruth.
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many related works to spatially model the fixed position of

EEG (Fang et al., 2020; Jia et al., 2021). However, for SEEG

electrodes, this can be a huge challenge. SEEG positions are

not fixed and cannot be uniformly modeled for all patients.

Additionally, due to the very limited number of patients with

simultaneous SEEG data we have access to, it is difficult to learn

location representation with such large variance across different

patients from a data-driven perspective. Another approach is

to learn a fixed position representation and train a model per

patient. Although this is feasible, the next problem we cannot

avoid is that the position space of SEEG is continuous. For

the generation task, we cannot achieve the goal of generating

the accurate SEEG segment given an arbitrary position in the

continuous space. To this end, the proposed matching strategy

can essentially be viewed as discretizing the continuous position

space (by dividing the physical distance into intervals) and

selecting the “nearest” electrode pair that guarantees EEG-SEEG

correlation. In other words, we incorporate physical distance

as a prior knowledge into the data preprocessing process. In

future work, we aim to collect a larger dataset and try to

model the electrode position, distance, direction, and other

information in a unified way through the deep-learning network

to explore whether the existing technology can fully capture the

rich clinical information.

4.2. Trade-o� between extracted features
and raw signal

When analyzing EEG signals, clinicians can judge whether

there are signs of seizures through either the raw waveform and

spectrum or the meaningful features computed by mathematical

methods. Different input types affect the difficulty of generation

tasks.

If the extracted features are used for the generation, the

generated results can be directly applied to specific downstream

tasks (Luo Y. et al., 2020). Traditional signal features such as

Differential Entropy (DE) and PSD are highly informative and

discriminative for specific tasks such as emotion recognition.

They can be easily learned by neural networks and generate

accurate results that are suitable for downstream tasks. However,

the high compatibility with downstream tasks also limits the

applicability of the generated results. For each feature or task,

a neural network needs to be trained separately, which is not

feasible in clinical use.

If the raw signal is directly used as the target, the generated

results are applicable to a wider range of scenarios. Ideally, the

generated results would approximate the real signal distribution,

on which clinicians can perform any posterior analysis of

interest. However, this type of generation is tricky because the

informative signal components are often sparse and difficult for

the network to fit.

There is a trade-off between using the extracted features

or the raw signal as the generation target. Hence, large-scale

simultaneously recorded EEG-SEEG datasets are necessary,

which can improve the performance of end-to-end generation

tasks to a certain extent. In addition, appending a downstream

task to the generation stage that recognizes specific features

can further improve the generation results, while ensuring good

adaptability to specific tasks at the same time.

4.3. Challenges of di�erent channel
mapping assumptions

So far, only the one-to-one channel mapping has been

considered in this work. Guided by this assumption, the

proposed method can theoretically capture arbitrary EEG-SEEG

correlations as long as the available dataset covers adequate

EEG-SEEG combinations and achieve the brain-wide generative

capability. In practice, this mapping assumption is not always

plausible due to complex electrode arrangements. There are

situations where it is impossible to find electrodes that fit

the distance required by the proposed strategy, such as those

positioned nearby wounds. Moreover, the scarcity of patients

with synchronized EEG recordings is still a hindrance.

A more realistic assumption than one-to-one modeling

is multiple-to-one/multiple-to-multiple mapping. EEG, as the

collection of SEEG on the scalp, is actually the superposition

of multiple intracranial discharge sources. However, multiple-

to-one/multiple-to-multiple mapping is a more intractable

problem that requires elaborate modeling techniques to

extract the universal relations among multiple heterogeneous

channels. For clinical research based on EEG signals, the

study of multiple-to-multiple mapping is of great significance

because the interpretive work based on it can reveal how

intracranial signals propagate, thereby assisting clinicians to

solve the problem of source localization. In the future,

graph modeling using GCN may be more suitable for tasks

based on this assumption, and graph-based interpretation

algorithms will reveal richer principles of intracranial EEG

signal propagation.

For future work, our proposed method can serve as a

baseline for solutions developed on massive datasets or as

a benchmark for formulating the multiple-to-one/multiple-to-

multiple assumptions.

4.4. Unsupervised learning in SEEG
generation

In this research, the adopted GANs framework is an

unsupervised learning paradigm. Unsupervised learning

eliminates the stage of labeling sample categories by experts
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and gets rid of the constraints of limited data sets. This

property is particularly valuable because clinical data is

often massive and unlabeled, and qualified clinicians rarely

have the chance to withdraw from clinical work. With the

advent of unsupervised learning, a new paradigm of pre-

training has also emerged and has been applied in EEG

research (Kostas et al., 2021; Yue et al., 2022; Zhang et al.,

2022). This new paradigm inspired us to see if pre-trained

models trained on large-scale EEG datasets can be used

to generate SEEG signals after a fine-tuning stage. This

is also one of the ideal solutions for the research topic in

this paper.
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