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Sleep apnea (SA) is a common chronic sleep breathing disorder, which

would cause stroke, cognitive decline, cardiovascular disease, or even death.

The SA symptoms often manifest as frequent breathing interruptions during

sleep and most individuals with sleeping disorders are not aware of the

SA events. Using a portable device with single-lead ECG signal is an

e�ective way to help an individual to monitor their sleep conditions at

home. However, the SA detection performance of ECG-based methods is

still di�cult to meet the clinical practice requirement. In this study, we

propose an end-to-end spatio-temporal learning-based SA detectionmethod,

which consists of multiple spatio-temporal blocks. Each block has the

identical architecture with a convolutional neural network (CNN) layer, a max-

pooling layer, and a bi-gated recurrent unit (BiGRU) layer. This architecture

with repeated spatio-temporal blocks can well capture the morphological

spatial feature information as well as the temporal feature information from

ECG signals. The proposed SA detection model was evaluated on the

publicly available datasets of PhysioNet Apnea-ECG dataset (Apnea-ECG)

and University College Dublin Sleep Apnea Database (UCDDB). Extensive

experimental results show that our proposed SA model on both Apnea-ECG

and UCDDB datasets achieves state-of-the-art results, which are obviously

superior to existing ECG-based SA detection methods. It means that our

proposed method has the potential to be deployed into a healthcare

system to provide a sleep monitoring service, which can screen out SA

population with high risk and help to take timely interventions to prevent

serious consequences.
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1. Introduction

Sleep apnea (SA) is a sleep disorder in which breathing is interrupted several times

during sleeping. Its typical symptoms include headache, insomnia and others, and it can

be potentially serious (Russell et al., 2014). Without prompt and appropriate treatment

measures, patients with SA would suffer from serious complications such as stroke
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(King and Cuellar, 2016), cognitive decline (Vanek et al., 2020),

cardiovascular disease (Lin et al., 2020), and even death. SA is

considered by some researchers to be a recognized independent

risk factor for stroke, such that individuals with SA have an

approximately twofold greater risk of stroke compared with

those without SA (Lyons and Ryan, 2015). This indicates that

SA is a great threat to the global physical and mental health,

with ∼936 million adults (male and female) aged 30–69 years

worldwide suffering frommild to severe obstructive sleep apnea,

and 425million adults aged 30–69 years suffering frommoderate

to severe obstructive sleep apnea (Benjafield et al., 2019). Due to

the prevalence of SA, it is very vital to screen out individuals with

SA and take timely interventions.

In clinical practice, polysomnography (PSG) is the gold

standard test to diagnose SA. However, conducting PSG is

expensive and often unavailable due to the shortage of physical

therapists and sleep monitoring units (Graco et al., 2018). PSG

with many biomedical sensors, including electroencephalogram

(EEG), electro-oculogram (EOG), electromyogram (EMG),

electrocardiogram (ECG) and pulse oximetry as well as airflow

and respiratory effort, is performed as an SA test overnight

in a sleep laboratory or specific unit in a hospital (Ali et al.,

2019). This can be quite cumbersome and uncomfortable, so the

collected signals cannot reflect the individuals’ sleep conditions.

In addition, a physical therapist must be available when the PSG

is conducted in the hospital, which significantly restricts the

screening of people with SA.

Home Sleep Test (HST) is an alternative to PSG for SA

diagnosis, which is usually conducted overnight outside of

the hospital or sleep laboratory (Rosen et al., 2017). Portable

devices, which are simple, of low-cost and easy to operate, have

been developed to enable the patients to monitor their sleep

conditions in an unattended home environment. Gaiduk et al.

(2020) have developed a system based on pressure sensors that

can work independently and via wireless connection, which is

as accurate as the current technology. However, this pressure

sensor-based approach is highly sensitive to pressure, and the

pressure signal can be easily contaminated with noise from

the external environment. ECG is considered to be one of

the most relevant physiological signals for the SA detection

because patient’s heart rate increases when SA occurs (Somers

et al., 2008; Wang T. et al., 2019). ECG contains valuable

information about the cardiorespiratory system and is therefore

of great importance for SA detection (Bahrami and Forouzanfar,

2021). Over the past twenty years, various approaches have

been proposed for the automated SA detection using HRV

and EDR signals which can be derived from ECG (Gutiérrez-

Tobal et al., 2015; Faust et al., 2016; Smruthy and Suchetha,

2017; Viswabhargav et al., 2019). In addition, ECG can be easily

recorded. Therefore, ECG-based portable devices represent a

better option. A wearable ECG acquisition system has been

developed (Weder et al., 2015), which is designed as a chest strap

that can continuously monitor ECG signals for multiple nights.

As a more comfortable option, Ankhili et al. (2018) developed

a reliable, washable ECG monitoring undergarment that can

record and send the ECG signal wirelessly to a smartphone to

analyze the ECG signal in real-time.

Using ECG signals can greatly reduce the complexity

of diagnostic SA tests and allow for better monitoring of

physiological changes in the patient (Bsoul et al., 2011). Several

algorithms have been proposed for ECG-based SA detection.

These algorithms generally include a first step of feature

extraction from the original ECG signals, and then these features

are used as the input and fed into a classification model (Baty

et al., 2020). Sharma and Sharma (2016) extracted features

from QRS complex waves using Hermite decomposition. Then,

these features were combined with time series features, and

least squares-support vector machine (LS-SVM) was used as

a classifier for SA detection. Song et al. (2015) introduced a

classifier that blends an SVM with a hidden Markov model

(HMM) to take advantage of the time-dependent nature of

SA segments. In recent years, deep neural networks (DNN)

with end-to-end training are also applied to build SA detection

models. Li et al. (2018) used HMM, ANN, and ECG signals

for the identification of SA segments. Feng et al. (2020) used

an unsupervised neural network to learn features, and they

improved the performance of the classifier by taking into

account the time-dependence and imbalance problems.

Although aforementioned models achieved promising

results, there still exists a gap between their SA detection

performance and the requirement of actual applications. Note

that spatial patterns and temporal correlations are both

important for SA detection. For example, the R-peak has salient

spatial features on the ECG signals; while the RR intervals

can be derived from the temporal dependencies. In reality, RR

intervals are frequently utilized in SA detection (Bahrami and

Forouzanfar, 2021). However, the spatio-temporal correlations

are seldom utilized in the existing SA detection models (Sharan

et al., 2020; Chen et al., 2021; Yang et al., 2022). Bahrami

and Forouzanfar (2021) has used a hybrid CNN and LSTM

network to extract spatio-temporal feature from ECG signals.

However, they only use a simple combination of CNN and

LSTM networks. To improve the performance of SA detection,

a spatio-temporal learning based DNN model is proposed in

this paper. In order to take advantage of more spatio-temporal

dependencies, multiple adjacent segments are concatenated

and used as the input of the proposed model. A spatio-

temporal learning block is designed which is composed of a

one-dimensional convolutional neural network (CNN), a max-

pooling layer, and a bidirectional gated recurrent unit (BiGRU).

Multiple spatio-temporal blocks are stacked in the proposed

model to extract long-range spatial and temporal correlations.

As a result, this model can fully utilize the multiple concatenated

ECG segments. Moreover, an attention mechanism is employed

to further utilize the global correlations by using the high-

level forward and backward spatio-temporal features. These
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FIGURE 1

Flowchart of the proposed sleep apnea detection model.

characteristics have made our model different with the other

spatio-temporal model (Bahrami and Forouzanfar, 2021). The

performance of our model has outperformed the one of Bahrami

and Forouzanfar (2021). Experimental results on two public

domain datasets of PhysioNet Apnea-ECG dataset (Apnea-

ECG) and University College Dublin Sleep Apnea Database

(UCDDB) showed that CNN-BiGRU achieved the competitive

performance to the previous state-of-the-art methods. The main

contributions of this study can be listed as follows:

• To fully extract spatio-temporal information from ECG

signals, we proposed a spatio-temporal learning-based

model called CNN-BiGRU with multiple spatio-temporal

blocks, each block of which consists of a one-dimensional

CNN layer, a max-pooling layer, and a BiGRU layer.

• We employed an attention mechanism to further exploit

the high-level forward and backward spatio-temporal

features from the last spatio-temporal block, which was

able to extract the global correlations from multiple ECG

signal segments.

• Experiment results on two public domain datasets of

Apnea-ECG and UCDDB showed that the proposed

CNN-BiGRU achieved a state-of-the-art performance,

which outperforms the previous state-of-the-art methods.

It means that the proposed CNN-BiGRU can be potentially

deployed into a medical system to provide the SA

monitoring service.

The remainder of this paper is organized as follows. Section 2

details the composition of the CNN-BiGRU model. In Sections

3 and 4 the results are presented and discussed. The conclusion

is presented in Section 5.

2. Methods

2.1. Overview

The main idea of this study is to develop a fully automated

(or end-to-end) spatio-temporal learning-based SA detection

method, which is illustrated in Figure 1. First, in the pre-

processing phase, the RR intervals and R-peak amplitudes

are extracted from combining adjacent and labeled segments.

Then, the RR intervals and R-peak amplitudes are fed into the
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FIGURE 2

Five segments schematic diagram.

proposed CNN-BiGRU model, which recycles through multiple

spatio-temporal blocks to capture high-level spatio-temporal

features. The whole method can be mathematically defined as

follows: Given the input X ∈ R
D, a mapping function f :X →

{0, 1} is learned, where D is the dimensionality of the input,

and 0 and 1 denote normal and SA, respectively. Specifically,

the spatio-temporal block consists of CNN, max-pooling and

BiGRU layers. Furthermore, the attention mechanism is used to

extract the most effective part of the spatio-temporal features

and improve the accuracy. Finally, the fully connected layer is

used to identify whether the labeled segment belongs to SA.

2.2. Preprocessing

The method in Wang T. et al. (2019) to obtain the RR

intervals and R-peak amplitudes were applied in this study

to pre-process ECG signals. Considering adjacent segment

information is useful for SA detection in each segment. As

shown in Figure 2, both the labeled segment and its surrounding

ECG signal ±2 segments (five segments total of 1 min)

were extracted and processed. Firstly, the Hamilton algorithm

(Hamilton, 2002) was used to find R-peaks and adjust the

detection peak to match the local signal maximum. Then, RR

intervals were calculated and the amplitudes were extracted

using the locations of the R-peaks, while anomalous signals were

removed. For physiologically unexplained points, median filters

were chosen to solve the extracted RR intervals (Chen et al.,

2015). The final problem of unequal time intervals between the

RR intervals and amplitudes was tackled by cubic interpolation,

which yielded 900 RR interval points and 900 amplitudes over 5

min segments.

2.3. The proposed CNN-BiGRU for SA
recognition

The proposed CNN-BiGRU consists of spatio-temporal

blocks of CNNs and BiGRUs, an attention layer and fully

connections layers. These layers are introduced in detail

as follows.

2.3.1. Convolutional neural network

Convolutional neural networks are among the most

common and efficient techniques that are widely used in various

signal and image processing applications (Fan et al., 2018, 2019;

Wang et al., 2018). A lightweight CNN model can be trained

on a mixed-scale graph in order to extract deep features for the

detection of obstructive SA (Mashrur et al., 2021). In this study,

we used a one-dimensional CNN to extract spatial dependencies

from ECG signals, which is mathematically defined as follows:

[w⊛ x](i) =
L−1
∑

u=0
wuxi+u (1)

where x,w, L are the input, filter, and filter size, respectively.

The next layer of the CNN is generally the pooling layer. The

max-pooling layer can be used to reduce mean value shift errors

caused by bad initialization of weights (Wang L. et al., 2019).

In this paper, the max-pooling layer was used to decrease the

computational effort and to mitigate the overfitting problem by

selecting the maximum value of each feature.

2.3.2. Gated recurrent unit

Gated recurrent units (GRU) (Cho et al., 2014) represent

a more advanced alternative to the simple recurrent neural

network (RNN) and are more capable of learning long-term

dependencies than vanilla RNN (Zhang et al., 2022). While both

GRU and Long Short-Term Memory (LSTM) units have gating

units that regulate the flow of information within the unit, GRUs

do not have a separate memory unit, only update and reset gates.

The j-th hidden unit of eachmentioned gate is defined as follows:

Reset gates:

rj = σ

(

[Wrx]j +
[

Urh〈t−1〉
]

j

)

(2)
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where σ and [·]j are the logistic sigmoid function and the j-th

element of a vector, respectively; t is the time step, x denotes the

input, and h〈t−1〉 represents the previous hidden state.

Update gates:

zj = σ

(

[Wzx]j +
[

Uzh〈t−1〉
]

j

)

. (3)

Output:

h
〈t〉
j = zjh

〈t−1〉
j +

(

1− zj
)

h̃
〈t〉
j (4)

The weight matrices Wr , Wz , Wx, Ur , Uz , and Ux are learned

during training. The candidate hidden state h̃〈t〉j is computed as

follows:

h̃
〈t〉
j = tanh

(

[Wxx]j + rj
[

Uxh〈t−1〉
])

(5)

The GRU can be heavily dependent on the dataset and the

corresponding task, and the Apnea-ECG dataset works better

with GRU than with LSTM, since it has fewer parameters and

faster training (Chung et al., 2014). In this work, a bidirectional

GRU was used to capture richer temporal information. By

recursively computing the hidden states Ht in the forward

and backward directions, the forward sequence F and the

backward sequence B were obtained, respectively. This can be

mathematically defined as follows:

H→t = [h〈t〉1 , h〈t〉2 . . . h
〈t〉
n ] (6)

H←t = [h
′〈t〉
1 , h

′〈t〉
2 . . . h

′〈t〉
n ] (7)

F = [H→1 ,H→2 , . . . ,H→s ]T∈ R
s×n (8)

B = [H←1 ,H←2 , . . . ,H←s ]T∈ R
s×n (9)

where n denotes the number of GRUs and s represents the total

number of the time step.

2.3.3. Attention mechanism

Dot-product attention (Luong et al., 2015) was used to

extract the global correlation information from the input

multiple ECG segments. Specifically, dot-production attention is

applied on the forward sequence F and the backward sequence

B of the BiGRU unit within the last spatio-temporal block. The

attention score is calculated as follows:

Attention (F,B,B) = softmax
(

FBT
)

B (10)

Using the attention mechanism allows the model to pay more

attention to specific high-level spatial-temporal dependency

information, improving the accuracy of the model. Note that

dot-product attention is fast and spatially efficient because

it enables a highly optimized code for matrix multiplication

(Vaswani et al., 2017).

2.3.4. Proposed CNN-BiGRU model

To better extract the spatio-temporal features of ECG

signals, we have specially designed a SA detection model, named

CNN-BiGRU. The proposed CNN-BiGRU model is mainly

composed of a CNN layer, multiple stacked spatio-temporal

learning blocks, an attention layer, and fully connected layers.

First, a convolutional layer was used to extract the base features

before using spatio-temporal blocks. A spatio-temporal learning

block consists of a one-dimensional CNN, a max-pooling layer,

and a BiGRU unit. The use of multiple spatio-temporal blocks

enables the CNN-BiGRU model to extract high-level spatio-

temporal features from the ECG signal. Specifically, our model

is able to extract local spatial features of the R-peaks, as well as

global temporal features of the heartbeat intervals. Then, the

attention score of the fused high-level forward and backward

features from the spatio-temporal blocks was calculated. This

attention mechanism is able to further utilize the global spatio-

temporal correlations from the multiple ECG segments. Finally,

three dense layers were used for classification. Additionally,

some of the layers were immediately followed by a dropout

layer to mitigate the effects of overfitting. The mathematical

expression of the wholemodel computation process is as follows:

For the CNN input X, the output C is:

C = g(f (X;W)) (11)

where g denotes the ReLU activation function g(x) = max(0, x)

andW denotes the convolution kernel.

As previously mentioned, this study uses BiGRU with the

matrices Wr , Ur , Wz , Uz , Wx, and Ux as the parameters to

be learned. After reducing the size of the feature map through

the max-pooling layer, the output C of the CNN was fed into

the BiGRU. The output of the spatio-temporal block can be

mathematically represented as follows:

F = ϕ(C;W→r ,U→r ,W→z ,U→z ,W→x ,U→x ) (12)

B = ϕ(C;W←r ,U←r ,W←z ,U←z ,W←x ,U←x ) (13)

where F and B are the stacked hidden states in the forward

and backward directions, respectively. If the next layer of the

BiGRU was a CNN, then F and B were concatenated along

the channel dimension, otherwise the attention score a was

calculated as follows:

a = softmax
(

FBT
)

B (14)

Finally, the attention score was entered into the fully connected

layer for classification, and the labeled segments were classified

to be SA or normal. Table 1 has listed the architecture details of

the proposed CNN-BiGRU model. Specifically, the architecture

contains three spatio-temporal blocks (see the layers of 2–5, 7–

10, and 12–15, respectively in Table 1). And the dropout ratios

in Table 1 have all been set to 0.2.
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Algorithm 1 CNN-BiGRU training.

Input: Given training set [X,Y] =
{(

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xn, yn
)}

and validation set
[

X̃, Ỹ
]

,

the CNN-BiGRU model f with initialized parameters θ0,

epochs T, learning rate α

Output: Trained model weight 2

1: Initialize the parameters of the Adam optimizer: the

exponential decay rates of the first and second order

moments are estimated as β1 and β2

2: m0 = 0, v0 = 0

3: for t = 1 to T do

4: Forward-propagation: ŷ = f (X; θt)
5: Compute loss error:

J(θ) = − 1

n

n
∑

i=1

[

yi ln
(

ŷi
)

+
(

1− yi
)

ln
(

1− ŷi
)]

6: Compute the gradient of the current data:

gt =
∂

∂θt
J (θt)

7: Update network parameters by Adam optimizer:

mt = β1mt−1 + (1− β1) gt

vt = β2vt−1 + (1− β2) g
2
t

θt = θt−1 − α

√

(

1−βt
2

)

mt
(

1−βt
1

)

(
√
vt+ǫ)

8: if f (X̃; θt) turns out better on the validation set than

before then

9: Save weight θt to 2

10: end if

11: end for

2.4. Experimental settings

In order to enable an enhanced performance of the

CNN-BiGRU model, the number of spatio-temporal blocks

was tuned from 1 to 5. Adam optimizer (Kingma and Ba,

2017) and binary cross-entropy loss function were applied

for parameter optimization. The learning rate and batch

size were set to 0.001 and 128, respectively. The proposed

model was trained for 40 epochs. In each training epoch,

the model parameters were evaluated using the validation

set and the best model parameters were saved to perform

classification on the test set. Detailed training methods are

described in Algorithm 1. Our model was implemented using

the Tensorflow framework with a Tesla P100-PCIE-16GB

graphics card.

Various performance metrics, such as precision, specificity,

F1 score, sensitivity, and accuracy, were used to assess the

TABLE 1 Detailed parameter settings for the CNN-BiGRU model.

Layer Type
Number of

filter/cell/unit

Kernel

size

Activation

function

1 Convolutional 128 3 ReLU

2 Convolutional 128 3 ReLU

3 Max-Pooling – 3 –

4 Dropout – – –

5 Bidirectional GRU 128 – Tanh

6 Dropout – – –

7 Convolutional 128 3 ReLU

8 Max-Pooling – 3 –

9 Dropout – – –

10 Bidirectional GRU 128 – Tanh

11 Dropout – – –

12 Convolutional 128 3 ReLU

13 Max-Pooling – 3 –

14 Dropout – – –

15 Bidirectional GRU 128 – Tanh

16 Attention – – –

17 Flatten – – –

18 Dense 64 – ReLU

19 Dropout – – –

20 Dense 64 – ReLU

21 Dense 2 – Softmax

performance of the proposed model. These metrics are defined

as follows:

Precision = TP

TP + FP
(15)

Specificity = TN

TN + FP
(16)

Recall = TP

TP + FN
(17)

F1 score =
2× Precision× Recall

Precision+ Recall
(18)

Accuracy = TP + TN

TP + TN + FP + FN
(19)

where FP, TP, FN, and TN stand for “false positive,” “true

positive,” “false negative,” and “true negative,” respectively. The

SA class is the positive class in this study, while the normal class

is the negative class.

This model was also evaluated using the receiver

operating characteristic (ROC) and the related area under

the curve (AUC).
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FIGURE 3

Datasets division methods on PhysioNet Apnea-ECG dataset.

3. Experimental results

3.1. Datasets

3.1.1. PhysioNet Apnea-ECG dataset

In this paper, we used the PhysioNet Apnea-ECG dataset

provided by Philipps University (Penzel et al., 2000) for model

evaluation. The Apnea-ECGdataset has 70 recordings, including

35 records in the released dataset (a01–a20, b01–b05, and c01–

c10) and 35 records in the withheld dataset (x01–x35). And

the release set is used to train the model with the withheld

set used to test the model. Regarding the released set, 20%

of the 35 released data were used to validate the model and

tune its hyperparameters (Figure 3). ECG recordings for this

dataset were obtained from subjects with an AHI (apnea

hypoventilation index) between 0 and 83. And these subjects

ranged in age from 27 to 63 years and their body mass indices

varied between 19.2 and 45.33kg/m2. The ECG signal was

sampled at 100 Hz over a range of 401 to 587 min. The

experts labeled each 1 min recording segments as SA or normal.

According to our pre-proccessing method, the release and

withheld set contained 17,045 and 17,302 segments, respectively.

The experimental results show that CNN-BiGRU achieves an

outstanding performance in SA detection.

3.1.2. University college Dublin sleep Apnea
database (UCDDB)

UCDDB was used as a second dataset to validate the

performance of CNN-BiGRU. This database contains 25 full

overnight polysomnograms from adult subjects suspected sleep-

disordered breathing. ECG recordings of this dataset have been

collected by a modified lead V2. We used ECG signals sampled

at 128 Hz and with the durations ranging from 355 to 462

min. Following previous studies (Mostafa et al., 2017, 2020),

we labeled a 1 min segment as SA if the segment contains

more than 5 s of SA events. Considering the class imbalance

problem of UCDDB, the data of patients without SA events

(ucddb008, ucddb011, ucddb013, and ucddb018) are not used

(John et al., 2021).

3.2. Classification performance on
Apnea-ECG dataset

The SA detection involves two stages. The first stage is to

detect whether a 1 min segment is SA. In the second stage, each

patient is assessed for sleep quality overnight based on the results

of the first stage.

3.2.1. Per-segment classification on
Apnea-ECG dataset

Test sets were used to evaluate the effectiveness of the

proposed model. First, the pre-processed 5 min ECG segments

were fed into the CNN-BiGRU network to automatically extract

the features. Then, the extracted features were fed into the fully

connected layers, and the ECG signal of the middle segment

was classified. The results of the CNN-BiGRU model with

three spatio-temporal blocks for ten runs are listed in the

Table 2. It is worth noting that the 10th experiment exceeded

the average on all evaluation metrics. In addition, the 5th

experiment reached the highest values of 91.54 and 88.82%

for the accuracy and F1 score, respectively. To evaluate the

classifier more comprehensively, Figure 4 shows the ROC curve

and AUC. It can be seen that the model proposed in this study is

stable, with an AUC value of 0.9692± 0.0013.

Table 3 lists the comparison results between the CNN-

BiGRU model and previous state-of-the-art works on the

detection of per-minute ECG signals. Notice that the compared

methods and the proposed models listed in Tables 3, 4 were all

trained on the release set and evaluated on the withheld set.
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TABLE 2 Per-minute detection performance Results on the Apnea-ECG dataset.

Accuracy (%) Recall (%) Specificity (%) Precision (%) F1 score (%)

1 91.25 85.69 94.71 90.96 88.24

2 90.80 86.84 93.26 88.88 87.85

3 91.18 88.10 93.09 88.79 88.45

4 91.14 88.37 92.86 88.49 88.43

5 91.54 87.72 93.92 89.95 88.82

6 90.95 86.38 93.79 89.62 87.97

7 91.18 84.84 95.12 91.52 88.05

8 91.36 83.78 96.07 92.97 88.13

9 91.37 86.41 94.45 90.63 88.47

10 91.41 86.64 94.38 90.53 88.54

Mean 91.22 86.48 94.16 90.23 88.30

Std 0.2098 1.360 0.9404 1.316 0.2833

FIGURE 4

ROC curves for 10 random repeated runs on PhysioNet

Apnea-ECG dataset.

The results show that the average performance of CNN-BiGRU

outperforms the previous optimal model in terms of accuracy,

specificity, and F1 metrics. It is worth noting that CNN-BiGRU

only underperforms the approach of literature (Li et al., 2018;

Yang et al., 2022) in terms of the recall metric. However, our

model achieved the F1 score of 88.3%, which is better than that

of literature (Yang et al., 2022), while literature (Li et al., 2018)

did not give F1 score.

In summary, some previous works (Song et al., 2015;

Sharma and Sharma, 2016) were based on feature engineering

techniques that attempt to improve the performance bymapping

high-dimensional training data to a low-dimensional feature

space. However, this is time-consuming and ineffective. Deep

learning methods can extract important features from ECG

signals, and the DL-based methods (Chen et al., 2021; Yang

et al., 2022) mentioned in Table 3 have all achieved good

results, but their performance was inferior to that of the

CNN-BiGRU model proposed in this paper. Our model uses

spatio-temporal blocks, which can extract spatio-temporal

features more effectively from ECG signals and provide better

performance on SA classification.

3.2.2. Per-recording classification on
Apnea-ECG dataset

In order to further assess the quality of the subjects’ sleep, an

overall SA diagnosis of the subjects’ recordings was performed.

Each of the subjects’ recordings consisted of multiple 1 min

segments. The AHI is commonly used clinically as an indicator

of whether a subject is suffering from SA. An individual is

considered to have SA if the subject’s AHI is>5 (Ruehland et al.,

2009). The formula for calculating the AHI is as follows:

AHI = 60× N

T
(20)

where T is the number of 1 min segments and N indicates the

number of 1 min SA segments.

In the per-recording detection, the accuracy, sensitivity,

specificity, and AUC of the CNN-BiGRU model were calculated

on the retention set as 97.1, 95.7, 100, and 0.996%, respectively.

The accuracy was 97.1% because the model misclassified one

from the total 35 patients. More specifically, one subject (x12)

with SA had an AHI of 6.75, whereas the proposed model

calculated an AHI of 4.00, thus classifying the patient as normal.

It is worth noting that the low precision per-segment approach

may show better per-recording performance because of the

relatively small amount of data in the test set (Wang T. et al.,

2019). Therefore, according to the previous literature (Sharma
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TABLE 3 Per-minute detection performance comparison on Apnea-ECG dataset.

References
Accuracy (%) Recall (%) Specificity (%) Precision (%) F1 score (%)

Bahrami and Forouzanfar (2021) 80.7 75.0 84.1 – 74.72

Sharma and Sharma (2016) 83.4 79.5 88.4 – –

Li et al. (2018) 84.7 88.9 88.4 – –

Feng et al. (2020) 85.1 86.2 84.4 77.2 81.4

Song et al. (2015) 86.2 82.6 88.4 – –

Wang T. et al. (2019) 87.6 83.1 90.3 – –

Sharan et al. (2020) 88.2 82.7 91.6 – –

Yang et al. (2022) 90.3 87.6 91.9 – 87.3

Chen et al. (2021) 90.6 86.0 93.5 – 87.6

This work (mean) 91.2 86.5 94.2 90.2 88.3

TABLE 4 Per-recording detection comparison on Apnea-ECG dataset.

References
Accuracy (%) Recall (%) Specificity (%) MAE Corr

Song et al. (2015) 97.1 95.8 100 – 0.860

Sharma and Sharma (2016) 97.1 95.8 100 – 0.841

Li et al. (2018) 100 100 100 9.41 –

Wang T. et al. (2019) 97.1 100 91.7 – 0.943

Feng et al. (2020) 97.1 95.7 100 5.60 –

Shen et al. (2021) 100 100 100 4.23 –

Chen et al. (2021) 100 100 100 – 0.979

Yang et al. (2022) 100 100 100 2.70 0.985

This work 97.1 95.7 100 2.49 0.984

and Sharma, 2016; Wu et al., 2021; Yang et al., 2022), the

Pearson correlation coefficient (Corr) and mean absolute error

(MAE) were also used as new evaluation indicators to ensure

the reliability of the comparison. These metrics are defined

as follows:

MAE = 1

N

N
∑

i=1

∣

∣

∣
AHIipre − AHIitrue

∣

∣

∣
(21)

Corr =
∑N

i=1

(

AHIipre − AHIpre

)

(

AHIitrue − AHItrue
)

√

∑N
i=1

(

AHIipre − AHIpre

)2
√

∑N
i=1

(

AHIitrue − AHItrue
)2

(22)

where N is the number of recordings, and AHIipre and AHIitrue
represent the predicted and true AHI values of the i-th

recording, respectively.

Table 4 lists the comparison of the per-recording

classification performance between the CNN-BiGRU model

and state-of-the-art works in recent years. As mentioned above,

traditional evaluation metrics do not provide a comprehensive

and accurate assessment of model performance, and a better

approach is to use MAE and Corr metrics. As listed in Table 4,

our model achieved 2.49 and 0.984 for the MAE and Corr

metrics, respectively. Our model achieved the best performance

in terms of MAE metrics. On the Corr metric, literature (Yang

et al., 2022) achieved the best value of 0.985, while our model

achieved 0.984, which is a comparable result. Overall, our

proposed model provides more competitive performance than

those of the works presented in Table 4.

3.3. Classification performance on
UCDDB dataset

Usually, UCDDB is utilized to evaluate the robustness of the

SA detection models (Wang T. et al., 2019; Mashrur et al., 2021;

Yang et al., 2022). Similarly, we evaluated our CNN-BiGRU
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model on UCDDB to demonstrate the model’s robustness.

Different from the Apnea-ECG dataset, UCDDBwas not divided

into the training set and test set by the original publishers. As a

result, the previous works (Wang T. et al., 2019; Mashrur et al.,

2021; Yang et al., 2022) had used their own splitting of training

and testing sets in evaluations. In this paper, we used the same

preprocessing method for the UCDDB as mentioned in Section

2.2. The difference is that the UCDDB is divided into a training

set, a validation set and a test set with a proportion of 8:1:1. Due

to the relatively small number of patients with SA at theUCDDB,

the training set was balanced by oversampling the minority class

(SA events). Meanwhile, per-recording testing is not performed

for the same reason.

We used the model trained on the Apnea-ECG dataset

to continue training on the UCDDB training set, with the

experimental settings mentioned in Section 2.4. On the UCDDB

test set, the performance of the CNN-BiGRU model on the

accuracy, recall, specificity, and AUC metrics reached 92.3, 70.5,

93.9, and 0.890%, respectively. Figure 5 shows the ROC curves

and AUC of the proposed model for per-segment detection.

FIGURE 5

ROC curves on UCDDB when positive class is apnea.

Table 5 lists the results of CNN-BiGRU on the test set and

compares them with other detection algorithms in the literature.

The results show that the CNN-BiGRU model is far superior

to the previous models, with an accuracy and specificity of

92.3 and 93.9%, respectively. In regard to recall metrics, we

obtained a comparative result to the works (Mashrur et al.,

2021). Compared to the Apnea-ECG dataset, our model has a

significant decrease in the recall metric on the UCDDB. A major

reason for this is that the ratio of pre-processed SA segments

to all segments is about 1%, indicating that the class imbalance

is intensified. Note that it is a rough comparison in Table 5, as

there is no uniform data partitioning of training set and test set

for UCDDB. In summary, our CNN-BiGRU model is useful for

SA detection.

4. Discussion

4.1. Hyperparameter tuning

In order to verify the efficacy of spatio-temporal blocks,

the number of spatio-temporal blocks was tuned from 1 to 5

on PhysioNet Apnea-ECG dataset. As shown in Figure 6 and

Table 6, one spatio-temporal block model cannot effectively

extract high-level spatio-temporal information. Meanwhile, too

many spatio-temporal blocks also fail to learn high-level feature

information due to the overfitting problem. Considering that

Apnea-ECG dataset suffers from class imbalance, the F1 score

became the main metric we considered. And the CNN-BiGRU

model using three spatio-temporal blocks reached the highest

values of 88.30% for F1 score. Therefore, we set the number of

spatio-temporal blocks for CNN-BiGRU to 3 in this study.

4.2. Ablation study

We conducted an ablation study on the Apnea-ECG dataset,

considering that there was sufficient data in the Apnea-ECG

TABLE 5 Per-minute detection performance comparison on UCDDB dataset.

References
Accuracy (%) Recall (%) Specificity (%) Precision (%) F1 score

Wang T. et al. (2019) 71.8 26.6 86.9 – –

Papini et al. (2018) 74.7 50.6 84.0 – –

Yang et al. (2022) 75.1 61.1 80.8 – –

Willemen et al. (2015) 75.9 62.3 – 41.1 –

Xie and Minn (2012) 77.7 69.8 80.3 – –

Fatimah et al. (2020) 80.4 68.9 87.6 – –

Mashrur et al. (2021) 81.9 71.6 86.1 – 69.63

This work 92.3 70.5 93.9 46.7 76.0
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dataset to fully evaluate the performance of the model. As

shown previously, the CNN-BiGRU model uses a convolutional

layer, spatio-temporal blocks, and an attention layer to extract

features. Therefore, the results of the ablation experiments

with the convolutional layer and the attention layer removed

separately are listed in Table 7. It was found that removing

either the convolutional layer or the attention layer will make

the classification performance degrade. Specifically, the accuracy

of the models with the convolutional layer removed and

the attention layer removed is decreased by 0.47 and 0.67%,

respectively. Overall, using the convolutional layer and attention

layer improved the classification performance of the CNN-

BiGRU model.

4.3. Cross-dataset evaluation

Cross-dataset evaluations are performed to demonstrate

the general performance of our proposed model, using the

Apnea-ECG and UCDDB datasets. Specifically, the model is

FIGURE 6

Hyperparameter tuning for the number of spatio-temporal

blocks.

trained on one dataset and evaluated directly on another dataset.

When CNN-BiGRU was trained on Apnea-ECG and tested

on UCDDB, an accuracy of 85.3% and an F1-score of 50.5%

were achieved. Similarly, when it was trained on UCDDB and

evaluated on Apnea-ECG, the accuracy was 53.8% and the

F1-score was 36.3%. It is found that the performances of cross-

dataset evaluation are not satisfactory. To comprehensively

understand the evaluation, we performed the same cross-dataset

evaluation using a previous state-of-the-art model (Chen et al.,

2021) listed in Table 3. The accuracy achieved was 85.9% and

the F1-score was 51.1% using the UCDDB as the testing set and

Apnea-ECG as the training set. They are very slightly better than

those of our model (85.9 vs. 85.3%; 51.1 vs. 50.5%). However,

when it was trained with UCDDB and tested on Apnea-ECG,

the accuracy and the F1-score were 45.5 and 29.2%, respectively.

Obviously, our model has outperformed this previous model

(53.8 vs. 45.5%; 36.3 vs. 29.2%). In general, CNN-BiGRU is

superior to the compared model (Chen et al., 2021), in terms

of cross-dataset evaluation.

Finally, we attribute the low performance of cross-dataset

evaluation to the following reasons: (1) the populations of

datasets are different. For example, subjects with central apnea

and periodic respiratory episodes are included in UCDDB; (2)

the different sampling rates may impact the performance (the

ECG signals are sampled at 100 Hz on Apnea-ECG while 128 Hz

on UCDDB); (3) UCDDB has a severe class imbalance problem.

In other words, the distributions of normal and SA are quite

different between the two datasets.

5. Conclusion

In this study, a novel spatio-temporal learning-based model

named CNN-BiGRU was explored to classify SA events from

ECG signals. Specifically, the proposed CNN-BiGRU is an

end-to-end deep learning model, which consists of multiple

spatio-temporal blocks. Each block has the identical architecture

with a CNN layer, a max-pooling layer, and a BiGRU layer.

This architecture with repeated spatio-temporal blocks can

well capture the morphological spatial feature information as

well as the temporal feature information from ECG signals.

TABLE 6 Comparison of per-segment detection results using di�erent numbers of spatio-temporal blocks.

# Spatio-temporal blocks Accuracy (%) Recall (%) Specificity (%) Precision (%) F1 score

1 89.40± 0.4486 84.69± 1.867 92.32± 1.135 87.30± 1.509 85.95± 0.6510

2 91.08± 0.2314 87.70± 1.449 93.19± 0.9452 88.92± 1.262 88.28± 0.3309

3 91.22± 0.2098 86.48± 1.360 94.16± 0.9404 90.23± 1.316 88.30± 0.2833

4 91.26± 0.1953 85.77± 1.588 94.67± 0.8665 90.94± 1.243 88.26± 0.3714

5 90.92± 0.1502 87.59± 1.222 92.99± 0.7195 88.60± 0.9142 88.08± 0.2603
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TABLE 7 Ablation of CNN-BiGRU.

Convolutional

layer

Attention

layer
Accuracy (%) Recall (%) Specificity (%) Precision (%) F1 score

X 90.55± 0.1128 85.28± 1.741 93.81± 1.183 89.60± 1.629 87.35± 0.2002

X 90.75± 0.2061 86.57± 2.054 93.35± 1.118 89.05± 1.468 87.76± 0.4489

X X 91.22± 0.2098 86.48± 1.360 94.16± 0.9404 90.23± 1.316 88.30± 0.2833

Experiment results on the apnea-ECG dataset showed that

the proposed CNN-BiGRU achieved an accuracy of 91.22

and 97.10% for per-minute classification and per-recording

classification, respectively. And the accuracy on the UCDDB

dataset reached 91.24%. In contrast to the previous state-of-

the-art methods, our proposed CNN-BiGRU has an obvious

advantage with a big margin. It means that the CNN-BiGRU

can be potentially deployed into a medical system to help

physicians to screen out SA patients to avoid malignant events.

In future work, we will further apply the proposed model to real

healthcare systems.
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