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Naturalistic reading paradigms and stimuli consisting of long continuous

texts are essential for characterizing the cortical basis of reading. Due

to the highly dynamic nature of the reading process, electrophysiological

brain imaging methods with high spatial and temporal resolution, such as

magnetoencephalography (MEG), are ideal for tracking them. However, as

electrophysiological recordings are sensitive to electromagnetic artifacts, data

recorded during naturalistic reading is confounded by ocular artifacts. In

this study, we evaluate two different pipelines for removing ocular artifacts

from MEG data collected during continuous, naturalistic reading, with the

focus on saccades and blinks. Both pipeline alternatives are based on blind

source separation methods but differ fundamentally in their approach. The

first alternative is a multi-part process, in which saccades are first extracted by

applying Second-Order Blind Identification (SOBI) and, subsequently, FastICA

is used to extract blinks. The other alternative uses a single powerful method,

Adaptive Mixture ICA (AMICA), to remove all artifact types at once. The

pipelines were tested, and their effects compared on MEG data recorded from

13 subjects in a naturalistic reading task where the subjects read texts with

the length of multiple pages. Both pipelines performed well, extracting the

artifacts in a single component per artifact type in most subjects. Signal power

was reduced across the whole cortex in all studied frequency bands from 1

to 90 Hz, but especially in the frontal cortex and temporal pole. The results

were largely similar for the two pipelines, with the exception that SOBI-FastICA

reduced signal in the right frontal cortex in all studied frequency bands more

than AMICA. However, there was considerable interindividual variation in the

effects of the pipelines. As a holistic conclusion, we choose to recommend

AMICA for removing artifacts from MEG data on naturalistic reading but note

that the SOBI-FastICA pipeline has also various favorable characteristics.
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1 Introduction

Reading is one of the most important forms of human
communication. A thorough understanding of its neural basis
cannot be achieved by using very tightly controlled stimuli, such
as isolated words, and constraining eye movements. Instead,
it requires the use of some forms of naturalistic paradigms,
where the test subjects read continuous text passages, moving
their eyes freely. Thus far, the length of the stimulus texts in
the majority of neuroimaging studies on naturalistic reading
has been limited to the level of single sentences (e.g., Dimigen
et al., 2011; Kretzschmar et al., 2015; Metzner et al., 2015, 2017;
Vignali et al., 2016; Pfeiffer et al., 2020). In order to study how
the reading process unwinds over longer stretches of continuous
text, studies with stimuli consisting of several sentences, lines or
even pages are required.

The study of the naturalistic reading process greatly benefits
from using an imaging method that affords dynamic tracking
of brain activity with combined high temporal and spatial
resolution, such as magnetoencephalography (MEG). This poses
a critical challenge, since electrophysiological methods are
sensitive to various electromagnetic artifacts. As eye movements
are an integral part of naturalistic reading (Rayner, 1998;
Dimigen et al., 2011; Dambacher et al., 2012; Schotter et al.,
2014; Kornrumpf et al., 2016; Metzner et al., 2017), ocular
artifacts are especially problematic in reading studies.

Eye movements lead to disturbances in the measured signals
as a result of several current sources forming a corneo-retinal
potential, which can be approximated as a single dipole with
a positive pole on the corneal end and a negative pole on the
retinal end (Lins et al., 1993). This dipole is approximately
parallel to the axis of the eye, and therefore closely follows the
direction of the gaze. The most notable type of eye movements
are the saccades, which shift the gaze from one location of
interest to another. In the case of reading, saccades move the
gaze mainly horizontally along the text. During fixations other
types of eye movements occur, such as microsaccades, tremor,
and drift. However, the size of these movements and the size
of the artifacts caused by them is much smaller than that of
the saccades (Rolfs, 2009). Furthermore, since the duration of
fixations in reading is typically relatively short (Rayner, 2009),
the effects of tremor and drift are diminished even further and
the temporal intervals become very narrow for microsaccades
to occur [general occurrence rate of microsaccades is ca. 1–
2 per second (Martinez-Conde et al., 2004; Rucci and Poletti,
2015)]. Blinks, in turn, cause measurement artifacts unrelated
to the direction of the gaze. They appear in the measurements
as solitary spikes which result mainly from the eyelid sliding
over the eyeball and short-circuiting the ocular dipole (Barry
and Jones, 1965; Matsuo et al., 1975; Antervo et al., 1985;
Lins et al., 1993). Additionally, saccadic spike fields manifest
as low-amplitude spikes appearing immediately before saccades
and often overlapping with the saccades. Saccadic spike fields

originate at the extraocular muscles which rotate the eyeball
during a saccade (see e.g., Carl et al., 2012). Saccadic spike fields
are particularly problematic when the focus is on induced event-
related activity and the task causes very minor eye movements
to occur at a task-dependent rate (Yuval-Greenberg et al., 2008).
However, in studies concentrating on continuous data instead
of isolated events, the effect of saccadic spike fields on analysis
results is minimal due to their small size.

Accordingly, saccades and blinks are presumably the key
ocular artifacts that need to be explicitly removed from MEG
data collected during continuous reading. While the literature
on the exact nature of saccade and blink artifacts in MEG
recordings is very limited, they have been studied extensively
with EEG, and the general EEG observations apply also to MEG.
In EEG, the saccade artifact appears as a change of the signal
offset, with the size depending roughly linearly on the size of the
saccade (Lins et al., 1993; Plöchl et al., 2012). Since the saccade
artifact originates at the eyeball, it affects mostly the frontal and
fronto-temporal field patterns. The dipolar origin of the saccade
signal leads to an increase of amplitude in the electrodes on the
same side with the target of the saccade, whereas the electrodes
on the opposite side show a decrease (Lins et al., 1993; Plöchl
et al., 2012). Spectrally, saccades lie mainly in the frequency
range of 4–20 Hz (Keren et al., 2010). The way eyes are moved
while reading varies greatly between readers and according to
text properties (Rayner, 2009). However, as each reader moves
her/his eyes in an individually characteristic pattern, the within-
subject variance in saccade length and fixation duration is
considerably smaller. As a result, when the saccade artifacts
are observed as a continuous signal, the signal is moderately
periodic. During reading most saccades are targeted so that they
move the gaze forward in the text in the direction of reading.
Regressions, which are saccades that move the gaze backward
in the text, constitute 10–15% of saccades for skilled readers
(Rayner, 2009). Return sweeps are long saccades that occur at
the end of one line and take the gaze to the beginning of the next
one.

Blinks appear in MEG recordings as sharp peaks lasting
usually for some hundreds of milliseconds. The effect of blinks
is strongest on the most frontal sensors bilaterally. Contrary to
saccades, the spatial distribution of blinks does not vary between
different types of blinks. The power spectrum of blinks is mostly
concentrated below 5 Hz (Keren et al., 2010).

The saccade and blink artifacts overlap with the cerebral
activity of interest both temporally and spectrally. This is
especially true for saccades which, during continuous reading,
occur at a high rate and cover a wide spectral range. Thus, the
effect of the artifacts cannot be avoided by concentrating solely
on artifact-free time periods nor by attenuating activity within
specific frequency bands. Since these simple techniques are
insufficient for coping with ocular artifacts, more sophisticated
methods are required.
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One possible method is linear regression. It is based on
selecting one or several reference channels which accurately
represent the artifacts and forming a weighted combination of
these channels that is subtracted from the measured data. In
the case of ocular artifacts, the reference channels are usually
formed by a combination of electro-oculographic signals (EOG)
recorded horizontally and vertically. The often-noted drawback
of regression methods is that EOG recordings inevitably contain
also frontal cerebral activity, which will be erased from the
recordings along with the ocular activity. In the context of an
MEG study, using regression methods with EOG as a reference
is problematic also because EOG measures variations in electric
field, whereas MEG measures variations in magnetic field. Thus,
although the ocular signals picked up by EOG and MEG are
generated by the same processes, they cannot be assumed to
be identical enough for a direct subtraction. This problem is
partially fixed in adaptive filtering (He et al., 2007). However,
even though adaptive filtering offers an improvement to linear
regression methods, it is not completely free of the general
problems stemming from the use of EOG as a reference and is
also confounded by the spectral overlap of ocular artifacts and
cortical activity (He et al., 2007).

Another alternative for removing ocular artifacts is to use
wavelet transform either as the only method (e.g., Zikov et al.,
2002; Krishnaveni et al., 2006a,b) or as an additional processing
step in combination with other methods (e.g., Castellanos and
Makarov, 2006; Akhtar et al., 2012; Mammone et al., 2012;
Mowla et al., 2015). However, although the wavelet transform
does not rely on sinusoids and thus its signal decomposition
capabilities are not explicitly tied to the frequency spectra
of the analyzed signal, it has still been observed to have
problems in differentiating ocular artifacts from cerebral activity
(Krishnaveni et al., 2006a).

Currently, perhaps the most popular family of methods in
artifact removal are blind source separation (BSS) methods.
BSS methods (Jutten and Herault, 1991) are based on the
assumption that the processed data is a mixture of individual
signals, and the goal of BSS methods is to unmix the data into
these original components. In artifact removal, these methods
are used by first performing the unmixing and then identifying
and removing the signals corresponding to artifacts. Among
the most notable subfamilies of BSS methods are methods that
unmix the signals based on features of their temporal structure,
and independent component analysis (ICA) methods, which
assume the component signals to be statistically independent.

In the context of ocular artifact removal, BSS methods
have several advantages. Firstly, in the unmixing process, each
separated signal receives a factor matrix, in which each MEG
sensor is assigned a weight corresponding to the strength of the
signal on that sensor, essentially enabling BSS methods to take
advantage of the characteristic sensor topographies of different
ocular artifacts. Secondly, BSS methods can separate signals

with similarities in their power spectra, meaning that they are
not restricted by an overlap in the spectra of ocular artifacts
and cerebral signals. Thirdly, BSS methods can perform the
unmixing without the aid of any external reference signal which
may not completely correspond to the artifacts. Due to these
factors, we consider BSS methods to be inherently superior to
the previously introduced alternatives in ocular artifact removal.

In continuous reading, saccades are roughly periodically
occurring minor changes of amplitude whereas blinks appear
sporadically as prominent spikes. These artifacts are thus
characterized by very different traits, and it is questionable
whether both types of artifacts can be efficiently extracted with
just a single method. In this study, we address this question,
with the aim to formulate an efficient scheme for erasing
saccades and blinks, by evaluating two alternative ways for
ocular artifact removal: (i) a two-stage pipeline where saccades
and blinks are removed consecutively by two different signal
processing methods that are tuned to the characteristic features
of each artifact type, and (ii) a one-stage pipeline where the
artifacts are removed simultaneously using a single purportedly
powerful method. In the two-stage approach, we remove the
saccades using Second-Order Blind Identification (SOBI), a
method that is suitable for the task as it segregates the measured
data into separate component signals based on differences in
their temporally periodic structures. Our choice for removing
blinks is FastICA, a method that separates the measured data
into statistically independent components by maximizing their
negentropy, which we believe to be a suitable objective for
identifying the blinks that appear in the MEG recordings as
highly random events. As the one-stage method we apply
Adaptive Mixture ICA (AMICA) which decomposes the data
into independent components by estimating their probability
density functions with generalized Gaussian distributions.
AMICA has proven promising in a number of tests (e.g.,
Delorme et al., 2012) and was chosen because of its good
test performance and the seeming versatility of its operating
principle in estimating different types of components.

The methods are tested using MEG data from a naturalistic
continuous reading experiment where the participants read
various text passages with the length of multiple pages. The
experiment also included a scanning task with similar stimuli
as a control condition. Data from both the reading and control
tasks were used in the artifact removal process, but the results of
the method comparison are derived solely from the reading data.

2 Materials and methods

The following sections describe the data set that was used for
testing the artifact removal pipelines, the details of the applied
methods, the approach for identifying the blink and saccade
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components, and the methodology for evaluating the effects of
the artifact removal.

2.1 Data

The data used in this study was originally collected as a
part of a naturalistic continuous reading experiment designed to
investigate reading-related brain activity (unpublished data) but
is used here for examining reading-related ocular artifacts due
to the data’s suitability for this purpose. In the experiment, the
subjects read connected text, instructed to do so in their own
usual way. The stimuli were extracted from various novels or
essays in Finnish and used in their original or slightly edited
form. The texts were presented as excerpts of three pages, with
each page consisting of eight lines of black text on a white
background, projected on a screen approximately 1 m in front
of the participant. The visual angle formed by each page full of
text was 15.4◦ horizontally and 7.7◦ vertically. The experiment
also included a scanning task in which the subjects searched for
inverted letters from texts similar to the ones used in the reading
task. The subjects were instructed to move their eyes during this
task as if they were reading. The scanning task data was used
in the BSS component estimation, but the final effect of artifact
removal was evaluated only on the reading task data. All data of
each subject were measured in a single session.

The data of 13 right-handed Finnish-speaking subjects (7
male, 6 female, age 20–50 years, mean 25.4 years) with normal
or corrected-to-normal vision was used in the study. None of
the subjects reported a history of neurological abnormalities or
psychiatric disorders. Informed consent was obtained from all
subjects, in agreement with the prior approval of the Helsinki
and Uusimaa Ethics Committee. The subjects’ cortical activity
was measured using a 306-channel MEGIN Vectorview device
(MEGIN Oy; Helsinki, Finland) in the Aalto University MEG
Core. The device records electromagnetic field at 102 locations,
with two planar gradiometers and one magnetometer at each
site; only the data recorded by the gradiometers was used in
this study. The recordings were bandpass filtered at 0.03–200 Hz
and sampled at 600 Hz. The signals were further preprocessed
with the MEGIN MaxFilter 2.2 software (MEGIN Oy; Helsinki,
Finland) to remove the effect of external magnetic fields on
the data via spatiotemporal signal space separation (Taulu and
Simola, 2006). EOG was recorded with electrodes placed on
the left side of the left eye and on the right side of the right
eye (horizontal EOG), and above and below of the left eye
(vertical EOG). Eye movements were further monitored with an
Eye Link 1000 eye tracker (SR Research Ltd.; Mississauga, ON,
Canada) using a sampling rate of 1,000 Hz. Structural magnetic
resonance images (MRI) of the subjects were obtained in the
Aalto University Advanced Magnetic Imaging Centre with a 3 T
Signa EXCITE scanner (GE Healthcare; Helsinki, Finland). The
MEG and MRI coordinate systems were aligned with the help of

head position coils and their measured locations with respect to
anatomical landmarks.

The amount of reading task data used in this study varied
between 8.6 and 18.1 min per subject (mean 11.8 min). In the
scanning task the amount of data varied from 5.7 to 19.2 min
per subject (mean 10.2 min). When feeding the data to the
artifact removal pipelines, the data corresponding to each read
page were concatenated to form a single continuous recording.
Before the concatenation, each channel in the single page units
was normalized to have zero mean. Data from the scanning task
was also included in the concatenated recording. After the BSS
estimations, the scanning data was discarded from the rest of the
study and the results were derived using only the reading data.
Since FastICA and AMICA cannot directly process numbers
which are as small as those normally in MEG measurements,
the data was multiplied by a factor of 1e10 for FastICA and
1e8 for AMICA when fed to the methods; after the components
had been estimated, they were rescaled to the same scale as
the original data.

For one subject FastICA did not extract blinks successfully
when using the normal data input scheme. This problem
was a result of the subject making only very few blinks. To
increase their concentration in the data, only one-page units
containing blinks (based on eye tracker data) were included
in the data which was fed to FastICA. After estimating
the ICA decomposition with this limited data, the estimated
demixing matrix was used to calculate the ICA components
for all page units. This differing data input scheme was not
needed with AMICA.

2.2 Blind source separation

BSS methods are based on the assumption that the observed
signals x(t) are a linear mixture of unobserved source signals s(t)

x(t) = As(t)+ n(t), (1)

where x(t) is an m-dimensional random variable denoting an
observed signal at time t, A the linear mixing matrix, size mxn,
s(t) the values of the n source signals at time t and n(t) a noise or
a bias term. Some methods omit n(t). Since the mixing is linear,
the original source signals can be obtained by determining
an nxm demixing matrix W [and omitting n(t)], yielding the
transformation

s(t) = Wx(t) (2)

A, s(t), and W are all unknown and the goal of the BSS
methods is to obtain s(t) by determining W. W cannot be
calculated directly and is therefore estimated such that it yields
a demixing that possesses some desired property which differs
from method to method. Most methods, like SOBI and FastICA,
assume that the observed signals x(t) are statistically stationary
processes. However, some methods, such as AMICA, do not
make this assumption.
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2.3 Second-Order Blind Identification

Second-Order Blind Identification (SOBI) approaches the
BSS problem by decorrelating the observed signals x(t) at
various time lags, which is done by diagonalizing a set of
covariance matrices estimated from the data with various time
differences. Since the different covariance matrices effectively
capture the temporal dynamics of cross-dependencies between
the observed signals, this approach makes SOBI especially useful
for extracting source signals with a distinct temporal structure.
The first version of the method was presented by Belouchrani
et al. (1997). We used a version of the method written by
Belouchrani and Cichocki (2000) and modified by Delorme et al.
(2007). This version does not have a version number, but can
be found as a part of both EEGLAB (Delorme and Makeig,
2004) and FieldTrip (Oostenveld et al., 2011) toolboxes and
from various codesharing services1 (Oostenveld, 2010).

The key parameter in the use of SOBI is the set of time
lags to be used, since they determine the covariance matrices
to be diagonalized and thus the only data that the method
truly uses to solve the BSS problem. Since we were foremost
interested in using SOBI to extract saccades, we utilized EOG
in selecting the time lags. We calculated the autocorrelation of
the horizontal EOG recordings to see how the periodicity of
saccades manifests with different delays. Most saccades during
reading are directed sideways, and the corresponding artifacts
thus appear most saliently in the horizontal EOG. This analysis
showed that the autocorrelation decreases steadily as the lag
increases but in some subjects it may increase again at very
high lags, presumably as the result of moving the gaze from one
row to the next. Consequently, we chose all time lags from the
interval of {0, 1, 2..., 150} corresponding to the delays from 0 to
150 samples and additionally time lags for which the horizontal
EOG of the studied individual had an autocorrelation of 0.3 or
higher. In order to enable this completely free selection of time
lags instead of using all time lags up to a given limit, we also
made a very minor edit to the code of the SOBI implementation
we used. A more detailed introduction to the basics of the SOBI
algorithm is given in the Supplementary Appendix.

2.4 FastICA

Independent component analysis (Jutten and Herault, 1991;
Comon, 1994) methods strive to solve the BSS problem by
seeking a transformation of the data which yields maximally
independent components in a statistical sense. This approach
is well motivated, since usually the original signals are more
independent than their mixtures. However, the independence
of the signals cannot be determined without knowing the

1 https://github.com/fieldtrip/fieldtrip/blob/master/external/eeglab/
sobi.m

probability distributions that generated them. Therefore, the
version of FastICA used in this study [FastICA for Matlab
2.52 (Karhunen, 2013)] and introduced by Hyvärinen (1999)
strives to obtain an independence-maximizing transformation
by seeking one that minimizes the mutual information of
the components. The mutual information is expressed in an
alternative form based on negentropy. The basics of FastICA
are introduced in the Supplementary Appendix along with
our choices for the contrast function and orthogonalization
parameters.

2.5 AMICA

AMICA is another ICA method, proposed by Palmer
et al. (2008). One key difference between AMICA and the
majority of BSS methods is that AMICA does not assume
the observed signals x(t) to be stationary, which leads to
the possibility of different models being valid at different
times. Consequently, AMICA offers the possibility of estimating
several models of the same data simultaneously. This is a
welcome option in artifact removal, not because we would
expect the distributions of the artifact signals to alter drastically
during the measurements, but because the separate models
can be estimated by concentrating on different features of
the data, thereby potentially uncovering multiple aspects of
the artifact signals and increasing the possibility of extracting
them more thoroughly. Like FastICA, AMICA approaches the
BSS problem by seeking maximally independent components
s(t), but it does it by directly estimating the components’
probability distributions which are approximated as a mixture
of several generalized Gaussian distributions or Gaussian scale
mixtures. This approach brings flexibility to the component
estimation by allowing their probability distributions to be
composed of numerous co-distributions, which themselves are
also more flexible than many other probability distributions
used in the context of BSS. In contrast, for example FastICA
assumes the components s(t) to have a probability distribution
of a quite restricted and well-defined form. A mathematically
more comprehensive introduction to AMICA is given in the
Supplementary Appendix.

The software implementation of AMICA used in this study
[AMICA 1.53 (Palmer, 2015)] has a wide range of options that
can be altered. For almost all of the options we used their
default values, including the number of mixtures to be used for
each component, which we kept at three. The only exception
was the number of models to be estimated. The default value
is one model, which did not yield satisfying results in a few
cases. For these subjects we increased the number of models
to three, which resulted in sufficient results every time. Having

2 https://research.ics.aalto.fi/ica/fastica/

3 https://sccn.ucsd.edu/∼jason/amica_web.html
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three as a default number of models would also be possible, but
since estimating three models and inspecting components from
three models is more time-consuming than with one model,
we used three models only when necessary. Estimating several
models may lead to situations where the saccades are extracted
the best in one model, but the clearest blink component is
found in another model. As different models have different
mixing matrices, the components are not directly mixable
between models. In these cases, we removed the targeted artifact
components in one model, mixed the components back to the
original signal space with the model’s own mixing matrix, then
demixed the data with the other model’s demixing matrix to
obtain that model’s components and finally removed the artifact
components which were estimated the best in that model.

The maximum number of iterations allowed for estimating
the models is one of the several adjustable parameters offered
in AMICA, and as with most other parameters, we kept its
value at the default, which is 2,000 iterations. In our tests, this
limit systematically acted as the main stopping criterion for
AMICA. We examined how many iterations it would take until
AMICA would stop as a result of reaching its other stopping
criterion, the minimum learning rate (default 1e-8), which
essentially measures the convergence of the whole model; in
these cases, AMICA ran for well over 10,000 iterations even
exceeding 20,000 iterations for some subjects. However, the
main ocular artifact components estimated using these two
limiting criteria had Pearson correlations between time series
almost systematically c. 0.999, indicating very high similarity.
Ocular artifact components thus seem to converge well already
in 2,000 iterations.

2.6 Component selection

The components corresponding to artifacts were primarily
selected by inspecting the components’ time series visually
and searching for the ones that express the signal shapes
characteristic to saccade and blink artifacts. As an additional
verification the sensor topographies of the components were
also inspected visually to see whether the strongest weights
lie on sensors the artifacts are known to affect the most.
The sensor topography information was exploited even further
by calculating rough source localization estimates for the
components. This was done by first creating a grid with
7-mm spacing covering each subject’s brain and calculating
the leadfields in every grid point. Subsequently, correlations
between the leadfields and components’ sensor weight matrices
were calculated and sorted from highest to lowest for every
component. Finally, 500 highest correlations were selected and
the grid points corresponding to them were plotted to see
which gridpoints had a leadfield best corresponding to the
component’s sensor topography and thus were most likely
to be the source of the component. For ocular artifacts, the

expected grid point spread was such that most of the 500 highest
correlated points were in the eye area, its immediate vicinity,
or at the edges of the head near the eye area. The analyses
required for component selection were conducted by using a
combination of various in-house-developed Matlab codes and
MEGIN Graph 2.94.6 and MEGIN Mrilab 1.7.25 softwares
(MEGIN Oy; Helsinki, Finland).

2.7 Comparing the artifact removal
methods

The performance of the two different artifact removal
pipelines was evaluated in two parts. In the first part, we
examined the components which were extracted by the methods
and labeled as artifacts. First, we listed the number of saccade
and blink components per pipeline and per subject. Then, we
quantified the similarity of the components extracted by the
two pipelines by calculating the Pearson correlations between
the sensor topographies of the components, for each subject.
If a pipeline yielded several components for the same artifact,
the analysis was conducted only by using the components
which were most purely artifactual (denoted as “primary
components” from here on).

In the second part, we compared the effects of removing
the artifact components from the MEG data. We estimated
the spatial distribution of signal power on selected frequency
bands using Dynamic Imaging of Coherent Sources (DICS)
(Gross et al., 2001). Spatial distributions of signal power
were estimated separately for the original (uncleaned) data
and data processed with each of the two artifact removal
pipelines. The differences between these distributions (SOBI-
FastICA vs. uncleaned, AMICA vs. uncleaned, SOBI-FastICA
vs. AMICA) were calculated to visualize the effects of the
pipelines. For the DICS calculations, one subject’s brain was
first fitted with a surface-based grid (9-mm spacing along the
surface of the cortex) that was transformed into the other
subjects’ brains where the calculations were performed. This
procedure yields spatially equivalent grid points across the
subjects and thus facilitates robust group-level analysis. To
ensure comparability, all DICS calculations were performed
with the same DICS filter for which weights were calculated
by using a cross-spectral density matrix averaged across the
cross-spectral density matrices of data cleaned with the two
different pipelines and the uncleaned data. Here, only the
number of singular values within the lowest ranked cleaned
data was used in the estimation of the pseudoinverse of the
cross spectral density matrix and the determination of the
beamformer weights, whereas these weights were then applied
to the condition specific fully ranked CSD for estimating the
cortical level signal power. We normalized all calculated power
differences by dividing the difference in each point by either
the original signal power in the same point in the uncleaned
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data (cleaned vs. uncleaned) or the power reduced by using
AMICA (SOBI-FastICA vs. AMICA). Comparisons were done
both on group and individual subject levels and for six different
frequency bands: 1–4, 5–8, 8–13, 15–25, 31–47, and 60–90 Hz.

We examined the subject-level variation in the effects of
the pipelines further by selecting all combinations of parcels
[according to Desikan-Killiany atlas (Desikan et al., 2006)]
and frequency bands which showed the largest group-level
differences in power reduction between the two pipelines.
Finally, systematic group-level differences in the effects of
the pipelines were evaluated by conducting two-sided t-tests
(p < 0.005, uncorrected) on the signal reduction differences
between the pipelines over all points, separately for each
frequency band. Additionally, the group-level mean differences
were examined for all parcel-frequency band combinations
which contained points with systematic group-level differences
detected in the t-tests. Our aim was to identify possible large
differences which appear consistently from subject to subject,
instead of focusing on statistically significant differences; this
is why we chose not to correct for multiple comparisons. The
comparison of the artifact removal methods was conducted
using in-house-developed Matlab code. The visualizations were
done with FreeSurfer 5.3.0 (Fischl, 2012). All visualized DICS
results were smoothed via an iterative procedure utilizing sparse
blurring matrices (Gramfort et al., 2014).

3 Results

3.1 Components

Figure 1A shows examples of the time series, sensor
topography and localization results of the saccade component
extracted by SOBI and AMICA in one participant (Subject 4).
In this case, the SOBI and AMICA components are almost
identical in all these three characteristics. The time series exhibit
the semiperiodic nature of reading-related saccades, with the
signal rising steadily until it returns to the start position with
the sharp descent that reflects the sweep to the beginning of
the next line. At around 15 s, one can notice a sharp descent
which is not as large as for the other sweeps and corresponds
to a partial return sweep targeted to an already read part of the
text on the same line. The scales of the components’ time series
(y-axis) differ between the methods but this is compensated by
a similar but inverse difference in the scales of the components’
weight matrices. This is a result of a difference in the way the
methods scale the weight matrix and the signals. The sensor
topographies show largest weights on the left- and rightmost
frontal sensors, which are normally the sensors closest to the
eyes. The weights decrease very steeply as the sensors’ distance
from the eyes increases. The localization results indicate that the
component most probably originated at the posterior wall of the
left eye or behind it. This corresponds well to the proposal that

a corneo-retinal potential is the origin of the saccadic signal.
The component may also contain some activity from rectus
muscles which rotate the eyes. The emphasis on the left eye in
the localization is likely a result of the approximate nature of the
localization method which stresses the most prominent origin
of the component instead of yielding a more detailed spatial
pattern.

For the blink component (Figure 1B, Subject 4), the
results are very similar between the two alternative approaches,
FastICA and AMICA. The time series contain several high-
amplitude spikes, which correspond to the blink artifacts. The
AMICA time series is inverted on the y-axis compared to the
FastICA time series, but this is counterbalanced by inverted
signs in the mixing matrices. The sensor topographies show
major emphasis on the sensors located next to the eyes, with
somewhat larger weights on the right side. The localization
results are clustered very tightly on the right eye, reflecting the
larger sensor weights on the right than left side.

The number of components required for extracting the
artifacts in each subject are shown in Table 1. AMICA
extracted the saccades into a single component in all subjects,
whereas SOBI did the same in 12 subjects; in one subject,
SOBI divided the saccades into two components with one
component containing most of the saccade power and the
other component only a minor part. Both approaches were
also successful in extracting blinks, but the results were not
as clear-cut as with saccades: AMICA extracted blinks into a
single component in 11 subjects and into two components in
two subjects, whereas FastICA extracted blinks into a single
component in nine subjects, into two in three subjects and
into three in one subject. For all subjects in whom AMICA
required multiple components to extract the blinks, FastICA
also required multiple components. Subject 7, for which FastICA
extracted the blinks into three components and AMICA into
two components, made unusually few blinks (see end of
Subsection “2.1 Data” for the special data input scheme required
in this case).

As quantified by the Pearson correlations (Table 1), the
artifact components extracted by the two alternative approaches
were highly similar. Most of the correlations exceeded 0.9 and
several 0.95. In many cases, however, the blink correlations were
lower than the saccade correlations. In Subject 7, for whom
many blink components were extracted by both pipelines, the
blink components showed also a particularly low correlation.
Most of the other lower correlations, the saccade correlation in
Subject 1 and the blink correlations in Subjects 8 and 9, were
also related to cases where one or both approaches required use
of more than one component.

The case of Subject 8 is exemplified in Figure 1C, illustrating
the time series, sensor topography and localization results for
the primary and secondary blink components extracted by
FastICA. The primary component is clearly a blink component
resembling those presented in Figure 1B. The secondary
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FIGURE 1

(A) Time series (left), sensor topographies (middle), and localization results (right) of the saccade component of a single subject for
second-order blind identification (SOBI) and adaptive mixture ICA (AMICA). The dots in the sensor topography plots indicate the root mean
squares of the mixing matrix weights of the two orthogonal gradiometers at a given location. The localization plots display sagittal and coronal
slices at the level of the eye. The pink triangles indicate the locations that are the most probable source areas of the illustrated component.
(B) Time series, sensor topographies and localization results of the blink component of a single subject for FastICA and AMICA. (C) Time series,
sensor topographies and localization results of the primary and secondary blink component of a single subject extracted with FastICA.

component, however, is less salient and can be identified as a
blink component only by the characteristic spike shape in the
time series which appears concurrently with the spike shape
of the primary component. The amplitude of the spike in the

secondary component is markedly lower than that of the spike
in the primary component indicating that it is a residual of
the blink artifact not captured by the primary component.
The largest weights in the sensor topography of the secondary
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TABLE 1 Number of components required by SOBI-FastICA and AMICA to extract saccade and blink artifacts and the Pearson correlations between
the components extracted by the different methods, per artifact type.

Subject no. No. of saccade
components

(SOBI)

No. of saccade
components
(AMICA)

No. of blink
components
(FastICA)

No. of blink
components
(AMICA)

Saccade
component
correlation

Blink
component
correlation

No. of AMICA
models,

FastICA special
data input (*)

1 2 1 1 1 −0.888 0.846 3

2 1 1 1 1 0.995 0.995 1

3 1 1 1 1 −0.967 0.962 1

4 1 1 1 1 0.990 −0.992 1

5 1 1 1 1 −0.920 −0.973 3

6 1 1 1 1 0.983 −0.991 3

7 1 1 3 2 −0.985 0.352 1, *

8 1 1 2 1 0.993 0.824 1

9 1 1 2 2 0.972 0.832 3

10 1 1 1 1 −0.995 −0.881 1

11 1 1 2 1 0.988 0.961 1

12 1 1 1 1 −0.955 0.902 1

13 1 1 1 1 −0.981 0.941 1

The negative sign in the correlation value indicates that the signs of the components were opposite but does not indicate any other dissimilarity. The last column contains the number of
AMICA models estimated for the subject. Additionally, the subject requiring the special data input scheme with FastICA has been indicated with * in the last column.

component are on the sensors located over the temporal
and parietal areas and the localization results imply that the
component originated posterior to the eyes. This indicates that
the secondary component is a mixture containing a substantial
portion of other signals along with the blink residuals.

3.2 Effect on MEG data

Figure 2 illustrates how much the removal of the artifact
components using each of the two pipelines decreases signal
power across the cortex in the six examined frequency bands.
The effect appears to be strongest in the most anterior areas
and the temporal poles, i.e., closest to the eyes, for all frequency
bands and with both artifact removal methods. However, the
removal also seems to affect, to a smaller degree, posterior parts
of the frontal cortex and the temporal cortex, especially the
inferior temporal cortex. The effect is minimal in the parietal
cortex, the occipital cortex, and the most posterior part of the
temporal cortex. The artifact removal operation impacts the
whole range of frequencies from 1 to 90 Hz.

Differences in the size of the removal effect between the
two alternative approaches were mostly subtle (Figure 3). The
SOBI-FastICA combination seemed to reduce power more than
AMICA in the right hemisphere, especially in the frontal areas,
at all frequency bands. The difference was largest in the most
anterior parts of the frontal cortex and the temporal poles, which
are also the areas that the artifact removal generally affects the
most. In the highest frequency bands, AMICA reduced power
more in the posterior part of the right hemisphere. In the left
hemisphere, there was more spatial variation regarding which

pipeline reduced signal power the most with AMICA reducing
power more in several areas throughout the hemisphere and
especially in the temporal cortex. This spatial variation in the
left hemisphere was present at all frequency bands.

There is, however, considerable subject-specific variation in
the effects of the artifact removal pipelines. Figure 4 displays the
power reduction difference maps for four individual participants
(5, 7, 8, and 10 in Table 1) at three frequency bands (cf.
Figures 2, 3 for the group-level view). Subjects 7 and 8 had more
than one blink component in either the FastICA decomposition
or both FastICA and AMICA decompositions, and subject 7
was the only participant with component correlation below
0.8 (see Table 1). The same general differences between the
effects of the methods that are visible in the averaged maps of
Figure 3 apply on the level of individual subjects: SOBI-FastICA
generally reduces power more in anterior areas and dominates
in the right hemisphere, whereas AMICA has a stronger effect
in posterior areas and in the left hemisphere. Nevertheless,
there can be large individual divergences from this template. As
an especially notable example, in subject 10, AMICA reduced
power more than SOBI-FastICA in several parts of the left
and right frontal cortex and temporal poles, areas which in
the grand-average plots in Figure 3 were dominated by the
SOBI-FastICA pipeline.

The intersubject variation in the effects of the artifact
removal pipelines was examined further at parcel level.
Figure 5 shows the distribution of power reduction differences
in the individual participants, focusing on the subset of
parcel-frequency band combinations for which the group-
level difference in relative power reduction exceeded
0.05. All such parcel-frequency band combinations were
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FIGURE 2

Reduction of signal power by SOBI-FastICA (Left) and AMICA (Right), relative to the original uncleaned data, in six frequency bands (rows),
averaged across subjects. More positive values indicate a larger reduction. In blue areas, the amount of reduced power was minimal and the
DICS method erroneously estimated an increase in power (a negative reduction).

concentrated to the right hemisphere. On average, SOBI-
FastICA reduced power more than AMICA, but there was
notable individual variation, even to the degree that in some
subjects AMICA was markedly more efficient in reducing
signal power (note, e.g., the large negative values in the frontal
pole).

Statistical evaluation (Figure 6) confirmed systematic
differences between the methods in the right frontal areas
and temporal pole. In the frequency bands spanning 5–25 Hz,
SOBI-FastICA reduced power more than AMICA, whereas
AMICA reduced power more only at a single point in the right
superior parietal area in the 31–47 and 60–90 Hz bands. In
the left hemisphere, the only systematic difference was more
power reduction with SOBI-FastICA than AMICA in the caudal
middle frontal area at 31–47 Hz.

Table 2 summarizes group-level mean differences in power
reduction between the pipelines for parcel-frequency band
combinations containing points with systematic differences in
power reduction (cf. Figure 6). The parcel-level differences are
mostly well in line with the differences at single points, as SOBI-
FastICA reduced power more than AMICA in the right frontal
and temporal cortices, in multiple frequency bands. AMICA

reduced power more in the right superior parietal parcel in the
31–47 and 60–90 Hz bands, but additionally also in the left
precentral parcel in the 31–47 Hz band. The results for the
left precentral parcel at 31–47 Hz are slightly anomalous: the
parcel-frequency band combination was included in the table
because SOBI-FastICA reduced power systematically more at
one point at the anterior edge of the parcel, but on the level
of the whole parcel, AMICA reduced power slightly more. The
largest average power reduction differences in Table 2 are seen
in the right rostral middle frontal, the superior temporal and
the middle temporal cortices and the right pars triangularis. In
the parcels where AMICA reduced power systematically more,
the average differences are smaller than in the majority of the
SOBI-FastICA-dominated parcels.

4 Discussion

Our goal was to find an effective means of removing ocular
artifacts from MEG data recorded during naturalistic reading of
continuous text, while also testing whether it is feasible to extract
the two major ocular artifact types, saccades and blinks, with one
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FIGURE 3

Group-level difference between power reduction by
SOBI-FastICA and AMICA, relative to the power level of the
AMICA pipeline. Red indicates areas where the SOBI-FastICA
pipeline resulted in a larger reduction of signal power, whereas
blue denotes areas where AMICA resulted in a larger reduction
of signal power.

single method. We tested two alternative approaches, of which
the first one used two different BSS methods, SOBI and FastICA
that were deemed to be especially suitable for extracting either
saccades or blinks, respectively. The second alternative utilized
one purportedly powerful method, AMICA, for removing both
artifact types. Both approaches proved to be effective, yielding
components which were clearly artifactual based on their
time series, the sensor-level spatial distribution, and source
localization. In most cases, both approaches extracted the
artifacts with just a single component per artifact type. Most
of the components extracted from the same subject, but by
a different method, yielded a Pearson correlation above 0.9,
both for saccades and blinks. Almost all the cases where the
correlation did not exceed 0.9 were those where either one
or both pipelines yielded more than one artifact component.
The grand-average DICS analysis of power reduction differences
between the pipelines showed that the amount of signal power
the pipelines reduced was on a comparable level in most cortical
areas, except for the right frontal cortex, where SOBI-FastICA
reduced systematically more power than AMICA across a wide
range of frequencies.

4.1 Effects of different pipelines in
artifact removal

Judged based on the number of components the
pipelines required to extract the artifacts, saccades were
more straightforward to identify than blinks. Saccades were
extracted with a single component, except for one subject in
whom SOBI-FastICA divided the artifact into two components.
Blinks seemed to pose a slightly harder task with multiple
components required in four subjects using SOBI-FastICA
and in two subjects using AMICA. One possible explanation is
that, in this data set, blinks occurred at a much lower rate than
saccades, which may make it harder for the methods to treat
them as a single artifact type and part of the same component.
The number of subjects in whom multiple components were
required was slightly higher for the SOBI-FastICA than AMICA
pipeline. At least a partial reason for this can be that since
saccades are removed first in the SOBI-FastICA pipeline, it is
likely that parts of blink artifacts are already included in the
saccade components and removed with them. Because of this,
the remaining blink artifacts become fractured and thus more
difficult to be perceived as a single component. AMICA, on the
other hand, forms the components simultaneously, possibly
allowing it to identify the artifacts as individual components.

The DICS estimation of power reduction showed that
spatially the two artifact removal alternatives had similar effects
on the data. Both affected signal power mainly in the frontal
and temporal cortices, with mostly minor differences in the
exact amount of signal removed from specific areas. However, in
closer examination, the SOBI-FastICA pipeline reduced signal
power systematically more than AMICA in the right frontal
areas. As saccades in a continuous reading task are mostly
directed rightwards, there could be a hemispheric imbalance
in the saccade artifact and thus SOBI-FastICA pipeline might
be more efficient than AMICA. However, because the saccade
artifact is in practice a shift in the signal baseline which follows
the direction of the gaze, the most important factor affecting
the areal power distribution of the artifact is not the direction
of the saccades, but the amount of time spent gazing in each
direction. Since the text stimuli were presented at the center
of the subjects’ field of view, saccades should not result in this
kind of hemispheric imbalance. It is also possible that SOBI-
FastICA removed more right-hemispheric cortical activity in
addition to the artifacts than AMICA. Such activity could be for
example related to eye movement control (Vernet et al., 2014)
and partially coupled to the ocular artifacts. It is also possible
that the synchronized movement of eyes during saccades that
were present during a large portion of the recording induced
high correlation levels within the data, thus leading to inaccurate
beamforming estimates and the detected difference between the
pipelines in the right frontal areas. However, as the placement
of the eyes is symmetrical and as common beamformer weights
were used in the estimation of cortical signal power, such
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FIGURE 4

Difference between power reduction by SOBI-FastICA and AMICA in four individual subjects (no. 5, 7, 8, and 10; cf. Table 1) for frequency bands
1–4, 15–25, and 60–90 Hz, relative to the power level of the AMICA pipeline. Red indicates areas where the SOBI-FastICA pipeline resulted in a
larger reduction of signal power, whereas blue denotes areas where AMICA resulted in a larger reduction of signal power.

inaccuracies are not very likely to cause the observed lateralized
difference between SOBI-FastICA and AMICA pipelines.

As regards different MEG signal frequencies, the DICS
estimations show that both artifact removal approaches had an
effect across all frequency bands. This is not surprising, as the
very non-sinusoidal step- or spike-like signal forms of the ocular
artifacts mean that their power is spread over a wide frequency
range, even though most of the ocular artifact power may lie in
the range of 0–20 Hz (Keren et al., 2010). In the case of AMICA,
power was indeed reduced most at lower frequencies from 0 to
25 Hz and notably less at the two highest frequency bands (31–
47 and 60–90 Hz). The power reduction results for AMICA seem
to reflect especially well the frequencies reported to contain most
of the saccade power (4–20 Hz) (Keren et al., 2010), as the power
reduction was weaker also at the lowest frequency band, which
coincides with the frequencies of 0–4.5 Hz reported to contain
most of the blink power (Keren et al., 2010). The primary ocular
artifact frequencies were not reflected as clearly in the power
reduction results for SOBI-FastICA.

These observations are based on results averaged over
13 subjects. However, it is also important to note there is

considerable individual-level variation in the effects of the
artifact removal methods, as the examination on the level of
individual subjects shows. While the averaged results give a
comprehensive overview of the general effects of the methods
and their differences, the details of the results depend on the
specific dataset, and a single subject’s data may thus not be
affected in a way that is identical to the averaged results.

4.2 Methodological considerations

The main objective of this study was to compare the
performances of a two-stage approach and a one-stage approach
in ocular artifact removal. The performances were tested by
using real measured data, which has the obvious disadvantage
that it is impossible to fully know how much artifactual signal
there is in the data, and what precisely is artifact and what
is neural activity. Simulated data would give full control over
these parameters. While simulations were our first choice,
we eventually failed to generate data which would have been
sufficiently similar to real data in order to be suitable for this type
of performance testing. If the simulated data do not resemble
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FIGURE 5

Individual variation of power reduction by SOBI-FastICA vs. AMICA in the six parcel and frequency band combinations for which the group-level
difference between the methods exceeded 0.05. All such parcels were found in the right hemisphere. The results have been normalized by
dividing them with the amount of power reduced by AMICA. Positive sign indicates that SOBI-FastICA reduced more power and negative sign
that AMICA did. The colors denote the different parcel–frequency combinations. The colors were created with the linspacer function written by
Lansey (2021) which uses colors derived mainly from ColorBrewer 2.0 (Brewer, 2021).

real data, tests conducted on it may yield a far too optimistic
view of the pipeline functionality and not give an accurate
picture on how the tested methods perform in realistic artifact
removal situations.

Suitable simulated data should meet essentially two criteria.
Firstly, the signals constituting the data, especially the ones
corresponding to artifacts, should closely resemble their real-
life counterparts. Secondly, the simulated signals should mix in
a sufficiently complex fashion, so that the task of identifying
them is not too easy for the artifact removal methods. Our main
approach to this problem was to randomly generate continuous
signals and mix them based on a realistic source model. The
ocular artifact signals were generated by using information on
the different waveform characteristics and the appearance rate
of the artifacts extracted from real measurements. The rest
of the data consisted of a large number of signals built from
randomly scrambled and distorted combinations of various
basic waveforms and noise types. Nevertheless, we were not able
to generate simulated data that would not have been excessively
easy for the pipelines to unmix, except by overwhelming
the component signals with an unrealistic amount of noise.

Despite our failure, we encourage others to continue the
development of such simulated data, which would be needed
for definite quantitative testing and comparison of artifact
removal methods.

The use of real measured data instead of simulated data also
dictated our choice of metrics for the performance comparisons.
As there is no precise knowledge of what is artifact and what is
neural activity, it is difficult to define a measure that would yield
quantitative information of the success of the artifact removal.
This fundamental uncertainty undermines the usefulness of
measuring, e.g., the amount of signal power removed at the
times of ocular artifacts. Another potentially interesting metric,
correlation between the extracted ocular artifact components
and the EOG channels, has the same problems as using
linear regression with EOG references as an ocular artifact
removal method, namely that EOG channels contain also neural
activity, and that EOG measures electrical activity whereas MEG
measures magnetic activity.

In the present study, we chose to focus on SOBI, FastICA
and AMICA in removing ocular artifacts from the MEG data.
Of these, the choice of AMICA was unambiguous due to the
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FIGURE 6

Systematic group-level differences (two-sided t-test, p ≤ 0.005,
uncorrected) in power reduction by SOBI-FastICA and AMICA.
P-values illustrated. The “(no significant results)” texts indicate
that no significant results were found on the given hemisphere
on the given frequency band. Orange indicates areas where the
SOBI-FastICA pipeline reduced more power, and blue areas
where AMICA reduced more power.

high performance level and the flexibility of the method. As
regards SOBI, while its operational principles are very well-
suited for the removal of saccades from continuous reading
data, similar but potentially more effective approaches have
been proposed (Congedo et al., 2008). However, SOBI was
chosen as it is arguably a more widely known method. Also,
for FastICA, a few noteworthy alternatives may exist. Some
studies comparing different artifact removal methods indicate
that, of the more well-known ICA methods, JADE, Infomax
or Extended Infomax, of course AMICA, or even some non-
ICA methods (see e.g., Romero et al., 2008; Delorme et al.,
2012) might perform better than FastICA in selected scenarios.
Both of the methods in the SOBI-FastICA pipeline were deemed
necessary in separate tests where both the ability of SOBI to
extract blinks and the ability of FastICA to extract saccades
were observed to be insufficient. The processing with SOBI
and FastICA was performed in this particular order, because
we observed that removing blinks first may prevent SOBI from
finding saccades very effectively.

Preprocessing methods are also an important part of artifact
removal pipelines. We kept the preprocessing part of our
pipelines minimal in order to concentrate on the effects that

the SOBI-FastICA pipeline and AMICA have on the data. One
notable preprocessing step that was left out of the study is
high-pass filtering, which has been shown to be beneficial in
conjunction with ICA (e.g., Winkler et al., 2015). In our own
limited tests with these pipelines and data, high-pass filtering
resulted in saccade components becoming more mixed with
other activity, thus effectively decreasing the performance of
the pipelines. This performance reduction, which seems to
contradict the usual observations of the benefits of high-pass
filtering, may result from the use of MEG instead of EEG. EEG
measurements often suffer from various types of low-frequency
drifts due to, e.g., electrode movement that do not appear
similarly in MEG measurements. As a result, filtering these drifts
out from EEG data facilitates the extraction of ocular artifacts
from EEG data, whereas in MEG this may in fact impede the
identification of ocular artifacts by reducing the amount of
information available on them.

The present results are influenced also by our criteria of
labeling components as ocular artifacts, which we based on
visual inspection of the components’ time series and sensor
topographies as well as source localization. This choice was
especially inspired by Jung et al. (2001), who used similar criteria
for removing blink artifacts from event-related potentials. The
analyses and estimation of sensor topographies was based only
on gradiometers as they more readily allow the identification
of artifactual spatial configurations than magnetometers and
as the choice of the sensor type has only a small impact on
source-level estimates of neural activity (Garcés et al., 2017).
Multiple other indicators for detecting artifactual components
have been suggested especially for automatic artifact removal
(Delorme et al., 2001; Barbati et al., 2004; Escudero et al., 2007;
Nolan et al., 2010; Mognon et al., 2011; Winkler et al., 2011;
Plöchl et al., 2012; Chaumon et al., 2015), but we did not find in
the literature alternative or additional criteria that would have
yielded further useful information in identifying artifacts with
certainty in manual inspection. Resorting to automatic detection
was not an option here, since it was of utmost importance that
the components labeled as artifacts could be verified to contain
artifactual activity, and it was only possible to do this manually.
Concurrently recorded eye tracker data was not explicitly used
here in artifact identification (apart from guiding to artifacts
in time series inspection), as eye-tracker-based criteria did not
seem to offer any true benefit beyond the criteria now used.

As an additional criterion for detecting artifact components,
left out from this study as redundant but potentially useful
in other studies, we can recommend calculating the Pearson
correlation between the components and the EOG channels
(e.g., Joyce et al., 2004; Nolan et al., 2010; Chaumon et al.,
2015). High correlation with the horizontal EOG channel
may suggest a saccade component and a high correlation
with the vertical EOG channel a blink component. If
eye tracker data is available, it may be used to increase
the accuracy of this criterion especially for blinks by

Frontiers in Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2022.974162
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-974162 December 16, 2022 Time: 15:12 # 15

Mäkelä et al. 10.3389/fnins.2022.974162

TABLE 2 Group-level mean differences in power reduction by SOBI-FastICA and AMICA for parcel-frequency band combinations containing points
with systematic group-level differences (cf. Figure 6).

Parcel 1–4 Hz 5–8 Hz 8–13 Hz 15–25 Hz 31–47 Hz 60–90 Hz

Left precentral – – – – −0.002 –

Right caudal middle frontal – 0.014 0.017 0.026 0.024 0.026

Right postcentral – 0.009 – – – –

Right pars triangularis – 0.039 0.047 – – –

Right supramarginal 0.011 – – – – –

Right banks superior temporal – 0.021 – – – –

Right middle temporal – – 0.032 0.033 0.026 –

Right rostral middle frontal – 0.042 0.048 0.057 – 0.049

Right superior parietal – – – – −0.009 −0.009

Right superior frontal 0.012 0.015 – 0.019 – –

Right precentral – 0.016 – 0.025 – –

Right superior temporal 0.031 0.041 0.041 0.035 – –

The results have been normalized by dividing them with the amount of power reduced by AMICA. Positive sign indicates that SOBI-FastICA reduced more power and negative sign that
AMICA did. Dash denotes that no points with systematic differences were found.

performing the calculation only on segments which are
known to contain artifacts. We point out that even though
correlation with EOG channels does not work as an absolute
measure of the quality of the artifact removal process, it is
still suitable for locating possible artifactual activity from
components.

A final methodological choice which may have impacted
our results is the way we have divided the data when feeding
it to the pipelines. We chose to process all the data from a
single subject at once (both reading task and scanning task)
in order to ensure that the effects of artifact removal are
uniform across the data. This kind of uniformity is desirable
because the data from the two tasks would be contrasted when
analyzed from the perspective of reading research and any
differences between the tasks resulting from artifact removal
may confound the analysis. A problem which may arise from
the use of such long, partially concatenated data is the lack
of stationarity, meaning that the properties of the signals
differ significantly at different time points in the data. For
ocular artifacts, this could mean significant changes in their
amplitudes, appearance rate, some other statistical properties
or spatial topography, for example as a result of small head
movement. However, in the study of continuous data it is
implicitly assumed that the signals are stationary, i.e., it is
possible to study the phenomenon of interest by using the
entire recording. This assumption of stationarity may similarly
be extended to the removal of artifacts. Additionally, minor
changes in the properties of the artifacts are not expected to
hinder their extraction substantially and may simply lead to
an increase in the amount of other signals mixing into the
artifact components. If uniformity of artifact removal across
different experimental conditions is not required for the study,
the data could be processed in shorter pieces. For example

Jung et al. (2000) have suggested using epochs of only 10 s in
duration.

4.3 Usability of the methods

In addition to the effectiveness of the method, the usability
of the method may also influence the choice of the artifact
removal tool. SOBI is available in Matlab at least as a part
of the EEGLAB and FieldTrip toolboxes and as solitary
implementations. In Python, SOBI is available both as user
written implementations and as a part of the Shogun toolbox
(Sonnenburg et al., 2010). FastICA is also readily available and
can be applied in Matlab through the official FastICA toolbox.
A Python implementation of FastICA is found at least from the
MNE (Gramfort et al., 2013) and scikit-learn (Pedregosa et al.,
2012) toolboxes.

AMICA is available in Matlab as a solitary implementation
as well as a plug-in in the EEGLAB toolbox. According to
our knowledge, no Python implementations are currently in
distribution. Setting up a working AMICA pipeline (without
EEGLAB) proved somewhat time-consuming. A large part of
the code in the AMICA implementations is wrapped into a
binary and therefore not easily modifiable. AMICA has a large
set of parameters and a somewhat complex output structure,
with a rather limited set of instructions. However, the default
values of the parameters seemed to be well set for basic use, with
only the number of models requiring adjustment in some cases.

4.4 Conclusion

We conclude that ocular artifact removal on naturalistic
MEG reading data can be performed effectively with both
the combination of SOBI and FastICA as well as a single
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overall powerful method in the form of AMICA. Our cautious
recommendation is to use AMICA because the use of a single
method instead of two reduces the uncertainty inherent in
ocular artifact removal as it is easier to inspect all the different
components when they come from only one method. The nature
of AMICA as an overall powerful method means also that it can
be used more readily for removing all desired types of artifacts
in situations where the need for artifact removal is not limited to
ocular artifacts. However, if the use of AMICA is not feasible, we
find the SOBI-FastICA pipeline to be a highly recommendable
alternative for removing artifacts from MEG data on naturalistic
reading of continuous texts.
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