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Feature extraction is a key task in the processing of surface electromyography

(SEMG) signals. Currently, most of the approaches tend to extract features

with deep learning methods, and show great performance. And with the

development of deep learning, in which supervised learning is limited by

the excessive expense incurred due to the reliance on labels. Therefore,

unsupervised methods are gaining more and more attention. In this study,

to better understand the different attribute information in the signal data,

we propose an information-based method to learn disentangled feature

representation of SEMG signals in an unsupervised manner, named Layer-

wise Feature Extraction Algorithm (LFEA). Furthermore, due to the difference

in the level of attribute abstraction, we specifically designed the layer-wise

network structure. In TC score and MIG metric, our method shows the best

performance in disentanglement, which is 6.2 lower and 0.11 higher than the

second place, respectively. And LFEA also get at least 5.8% accuracy lead

than other models in classifying motions. All experiments demonstrate the

effectiveness of LEFA.

KEYWORDS

information theory, feature extraction, unsupervised learning, information
bottleneck, disentangled representation, surface electromyography

Introduction

Feature engineering is an important component of pattern recognition and signal
processing. Learning good representations from observed data can help reveal the
underlying structures. In recent decades, feature extraction methods (He et al., 2016;
Howard et al., 2017; Hassani and Khasahmadi, 2020; Zbontar et al., 2021) have
drawn considerable attention. Due to the high cost of obtaining labels, supervised
learning methods suffer from data volume limitations. Unsupervised learning methods
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therefore becomes critical for feature extraction. Most of
these are based on probabilistic models, such as maximum
likelihood estimation (Myung, 2003), maximum a posteriori
probability estimation (Richard and Lippmann, 1991), and
mutual information (MI) (Thomas and Joy, 2006). Methods
such as principal component analysis (PCA) (Abdi and
Williams, 2010), linear discriminant analysis (Izenman, 2013),
isometric feature mapping (Tenenbaum et al., 2000), and
Laplacian eigenmaps (Belkin and Niyogi, 2003) are widely used
owing to their good performance, high efficiency, flexibility, and
simplicity. Other algorithms are based on reconstruction errors
or generative criteria, such as autoencoders (Bengio et al., 2013)
and generative adversarial networks (GANs) (Goodfellow et al.,
2014). Occasionally, the reconstruction error criterion also has a
probabilistic interpretation.

In recent years, deep learning has become a dominant
method of representation learning, particularly in the
supervised case. A neural network simulates the mechanism
of hierarchical information processing in the brain and is
optimized using the back propagation (BP) algorithm (LeCun
et al., 1988). Because several feature engineering tasks are
unsupervised, that is, no label information is available in
the real situation and collecting considerable labeled data is
expensive, methods to discover the feature representation in
an unsupervised case have been significantly developed in
recent years. MI maximization (Bell and Sejnowski, 1995)
and minimization criteria (Matsuda and Yamaguchi, 2003)
are powerful tools for capturing salient features of data
and disentangling these features. In particular, variational
autoencoder (VAE) (Kingma and Welling, 2013) based models
and GAN have exhibited effective applications in disentangled
representations. There are two benefits of learning disentangled
representations. First, models with disentangled representations
are more explainable (Bengio et al., 2013; Liu et al., 2021).
Second, disentangled representations make it easier and more
efficient to manipulate training-data synthesis. However, the
backpropagation algorithm still requires a high amount of
computation and data.

To extract features information in SEMG signal data, we
propose a Layer-wise Feature Extraction Algorithm (LFEA)
based on information theory in the unsupervised case, which
includes a hierarchical structure to capture disentangled
features. In each layer, we split the feature into two
independent blocks, and ensure the information separation
between the blocks via information constraint, which we
called Information Separation Module (ISM). Moreover, to
ensure the expressiveness of the representation without losing
crucial information, we propose the Information Representation
Module (IRM) to enable the learned representation to
reconstruct the original signal data. Meanwhile, redundant
information would affect the quality of the representation
and thus degrade the effectiveness of downstream tasks, for
which Information Compression Module (ICM) is proposed

to reduce the redundant and noisy information. In terms of
the optimization algorithm, our back-propagation process is
only performed in a single layer and not back propagated
throughout the network, which can greatly reduce the
amount of computation while having no effect on the
effectiveness of our method. Regarding the experiments, we
have made improvement and strengths in terms of motion
classification and representation disentanglement over the
traditional methods of surface electromyography (SEMG).
Especially, on NinaPro database 2 (DB2) dataset, our approach
gets a significant 4% improvement in the motion classification,
and better model stability.

This manuscript is organized as follows. In Section 2, we
introduce the related work. The proposed method LFEA is
described in Section 3. We present the numerical results in
Section 4. Section 5 gives the conclusion of this manuscript.

Related work

Disentangled representation

The disentanglement problem has played a significant
role, particularly because of its better interpretability and
controllability. The VAE variants construct representations in
which each dimension is independent and corresponds to
a dedicated attribute. β-VAE (Higgins et al., 2016) adds a
hyperparameter to control the trade-off between compression
and expression. An analysis of β-VAE by Burgess et al. (2018)
is provided, and the capacity term is proposed to obtain
a better balance of the reconstruction error. Penalizing the
total correlation term to reinforce the independence among
representation dimensions was proposed in Factor VAE (Kim
and Mnih, 2018) and β-TCVAE (Chen et al., 2018). FHVAE
(Hsu et al., 2017) and DSVAE (Yingzhen and Mandt, 2018)
constructed a new model architecture and factorized the
latent variables into static and dynamic parts. Cheng et al.
(2020b) described a GAN model using MI. Similar to our
study, Gonzalez-Garcia et al. (2018) proposed a model to
disentangle the attributes of paired data into shared and
exclusive representations.

Information theory

Shannon’s MI theory (Shannon, 2001) is a powerful tool
for characterizing good representation. However, one major
problem encountered in the practical application of information
theory is computational difficulties in high-dimensional spaces.
Numerous feasible computation methods have been proposed,
such as Monte Carlo sampling, population coding, and
the mutual information neural estimator (Belghazi et al.,
2018). In addition, the information bottleneck (IB) principle
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(Tishby et al., 2000; Tishby and Zaslavsky, 2015; Shwartz-Ziv
and Tishby, 2017; Jeon et al., 2021) learns an informative
latent representation of target attributes. A variational model to
make IB computation easier was introduced in variational IB
(Alemi et al., 2016). A stair disentanglement net was proposed
to capture attributes in respective aligned hidden spaces and
extend the IB principle to learn a compact representation.

Surface electromyography signal
feature extraction

With the development of SEMG signal acquisition
technology, the analysis and identification of SEMG signals has
also drawn the attention of researchers.

As machine learning has demonstrated excellent feature
extraction capabilities in areas such as images and speech, it
can also be a good solution for recognizing SEMG signals.
The basic motivation was to construct and simulate neural
networks for human brain analysis and learning. Deep neural
networks can extract the features of SEMG signals while
effectively avoiding the absence of valid information in the
signal and improving the accuracy of recognition. Xing et al.
(2018) used a parallel architecture model with five convolutional
neural networks to extract and classify SEMG signals. Atzori
et al. (2016) used a convolutional network to classify an
average of 50 hand movements from 67 intact subjects and 11
transradial amputees, achieving a better recognition accuracy
than traditional machine learning methods. Zhai et al. (2017)
proposed a self-calibrating classifier. This can automatically
calibrate the original classifier. The calibrated classifier also
obtains a higher accuracy than the uncalibrated classifier. In
addition, He et al. (2018) incorporated a long short-term
memory network (Hochreiter and Schmidhuber, 1997) into
a multilayer perceptron and achieved better classification of
SEMG signals in the NinaPro DB1 dataset.

As stated, deep learning methods can help overcome
the limitations of traditional methods and lead to better
performance of SEMG. Furthermore, deep-learning methods
can provide an extensive choice of models to satisfy different
conditional requirements.

Method

Preliminary

Information theory is commonly used to describe stochastic
systems. Among the dependency measurements, mutual
information (MI) was used to measure the correlation between

random variables or factors. Given two random variables X and
Z, the MI is defined as follows:

I (X;Z) = Ep(x,z)

[
log

p(x, z)
p(x)p(z)

]
(1)

Regarding the data processing flow as a Markov chain
X→ Z→ Y , the information bottleneck (IB) principle desires
that the useful information in the input X can pass through
the ‘bottleneck’ while the noise and irrelevant information are
filtered out. The IB principle is expressed as follow:

min RIB = I (X;Z)− βI(Z;Y) (2)

where, β is the tradeoff parameter between the complexity of the
representation and the amount of relevant essential information.

Framework

The diagram of our proposed Layer-wise Feature Extraction
Algorithm (LFEA) is illustrated in Figure 1. Our algorithm aims
to learn a representation that satisfies three main properties:
“Compression,” “Expression” and “Disentanglement.” To this
end, three key information process modules are introduced,
including the information compression module (ICM),
information expression module (IEM), and information
separation module (ISM) in each layer.

In the ICM, input si−1 of layer i is compressed into hi (s0
=

X). In the IEM, zi as part of hi is constrained to represent the
original input X. In the ISM section, si and zi are irrelevant. The
parameters of the ICM and IEM in layer i are denoted as φi and
θi. The data information flow can be expressed as follows:

hi
∼ qφi

(
hi
|si−1) , (3)

hi
=
(
zi, si) , (4)

X̃ ∼ pθi
(
X̃|zi) , (5)

where, s0
= X, and qφi and pθi are the condition distributions

with φi and θi for hi and X̃. In following sections, we describe
these three modules in detail.

Information compression module

According to (3), hi is the hidden representation of si−1. To
ensure information ‘compression,’ the optimal representation of
si−1 should forget redundant information altogether, that is, hi

represents si−1 with the lowest bits. Formally, the objective in
the i-th layer to be minimized is as follows:

minLICM ,Iφi
(
Si−1
;Hi) (6)
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FIGURE 1

The diagram of Layer-wise Feature Extraction Algorithm (LFEA). LEFA contains three core modules: Information Compression Module (ICM),
Information Expression Module (IEM) and Information Separation Module (ISM), to ensure compression, expression and disentanglement of
representation, respectively.

Due to intractability of mutual information, optimizing
LICM with gradient methods directly is not feasible. We therefore
derived the upper bound of LICM with the variational inference
method and get decomposition as follows:

Iφi
(
Si−1
;Hi)

= Eq
φi(si−1,hi)

[
log

qφi
(
hi
|si−1) p

(
h
)

qφi(hi)p
(
h
) ]

= Lupper
ICM − DKL

(
qφi

(
hi)
||p
(
h
))

, (7)

where, p
(
h
)

is the prior, and Lupper
ICM is the upper bound of LICM

defined as follows:

Lupper
ICM = Eq

φi(si−1)
[
DKL

(
qφi

(
hi
|si−1)

||p
(
h
))]

,

DKL (P, Q) = EP

[
log

p
q

]
. (8)

Information expression module

With the ICM guaranteeing the information compression,
LFEA also need to ensure the expressiveness of the
representation to the data. We therefore propose the
information expression module (IEM). To ensure sufficient
information to reconstruct the original data X, we maximize the
MI between and Zi in i-th layer, that is,

maxLIEM ,Iφi,θi
(
zi;X

)
(9)

For LIEM , we can obtain a lower bound using the variational
approximation method as follows:

LIEM ≥ Llower
IEM − DKL

(
p (x) ||pθi(x)

)
, (10)

where, pθi(x)

Llower
IEM = Ep(x)

[
Eq

φi(zi|x) log pθi(x|zi)
]

(11)

can be viewed as the reconstruction loss.

Information separation module

To achieve disentanglement of representations
(Independent of each block z1, z2, . . . , zn in Z), we further
introduce the information separation module (ISM) in each
layer. In i-th layer, the principle of ISM is to ensure that there is
no intersection information between zi and si, that is,

maxLISM ,Iφi
(
zi; si

)
= DKL

(
qφi(hi)||qφi(zi)qφi(si)

)
. (12)

In practice, the products of qφi(zi) and qφi(si) are not
analytical in nature. We introduce discriminator D̂(.) (see
Figure 2) to distinguish samples from the joint distribution and
the product of the marginal distribution, that is,

LISM ≈ Le
IEM = Eq

φi(hi)[log
D(.)

1− D(.)
]. (13)
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FIGURE 2

Discriminator D(.). To compute and optimize LISM, we need an additional discriminator as shown in Eq. (13).

FIGURE 3

Movements in NinaPro DB2. (A) Isometric, isotomic hand configurations. (B) Basic movements of the wrist. (C) Grasps and functional
movements. (D) Single and multiple fingers force measurement patterns. (E) Rest position. Available from: http://ninapro.hevs.ch/node/123.

TABLE 1 Subject attribute information of NinaPro DB2 dataset.

Subject Hand Laterality Gender Age Height (cm) Weight (kg)

1 Intact Right Handed Male 29 187 75

2 Intact Right Handed Male 29 183 75

3 Intact Right Handed Male 31 174 69

4 Intact Left Handed Female 30 154 50

5 Intact Right Handed Male 25 175 70
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FIGURE 4

Sample data image.

TABLE 2 Detail parameters for LFEA.

Parameter Value

Number of layers 4

Size of zi 5

λ 0.1

β 0.2

TABLE 3 Results of TC score.

Method TC score MIG

LFEA (Ours) 12.3 0.72

VAE 23.6 0.54

β-VAE 25.8 0.61

PCA 18.5 0.49

We compare our method the classic methods including VAE, β-VAE and PCA. Our
HFEA method is much better than others. The bold indicates the best results.

Algorithm optimization

As presented above, our model contains three modules:
ICM, IEM, and ISM. However, during optimization, the
back-propagation algorithm is computationally intensive and
potentially problematic when training deep networks, so we
propose a layer-wise training step. After training one layer of
the network, we fix the parameters of the trained layers and only
train the next layer in the next step. Finally, we can obtain the
final model after training all the layers. Such optimization design
allows for training parameters at the bottom layers without bac-
propagation from the top layers, avoiding the problems that
often occur with deep network optimization, like vanishing and
exploding gradient.

Numerical results

Dataset

In our experiments, we used the NinaPro∗ DB2 dataset
and DB5 dataset. Atzori et al. (2014), Gijsberts et al.
(2014) as the benchmark to perform numerical comparisons.
NinaPro is a standard dataset for the gesture recognition
of sparse multichannel SEMG signals. The SEMG signals in
DB2 were obtained from 40 subjects and included 49 types
of hand movements (see Figure 3).

Detailed attribute information of the five subjects in
NinaPro DB2 is shown in Table 1. The original SEMG signal was
processed through sliding windows, and the size of the sample
data used in the experiment was (200,12). Figure 4 shows 20
processed data points.

DB1 consists of 11 subjects and the data set of each subject
contains three types of gestures, which are Exercise A, Exercise
B, and Exercise C. Exercise A includes 12 basic movements
of fingers (see Figure 5). Exercise B includes 17 movements.
Exercise C includes 23 grasping and functional movements.

We preprocessed the dataset with the digital filter to cutoff
frequency and sliding window to split signal, which follows He
et al. (2018).

Model setting

In the following experiments, we used four layers model.
The loss function is as follows:

min L ,Lupper
ICM −λLlower

IEM +βLISM,
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FIGURE 5

12 basic movements signal of fingers in Exercise A.

FIGURE 6

Feature distribution in layer 1–4 with (A–D).

Detail parameters are listed in Table 2.

Results

First, we used total correlation (TC) as the
quantitative metric for the quality of the disentanglement
of the representation. TC is defined as follows:

TC
(
z1, z2, z3, z4)
= Ep(z1,z2,z3,z4)

[
log

p
(
z1, z2, z3, z4)

p
(
z1
)

p
(
z2
)

p
(
z3
)

p
(
z4
)] .

The TC was estimated using a three-like algorithm
(Cheng et al., 2020a). A low TC score indicated that the
representation had less variance. MIG metric (Chen et al., 2018)
is another disentanglement metric; the higher the value, the
more disentangled representation is. We compared the quality
of disentanglement among PCA, β-VAE, VAE, and HFEA.
Table 3 shows the comparison results on TC score and MIG
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TABLE 4 Classification results on NinaPro DB2 dataset.

Methods Windowing Train/Test Accuracy

LFEA + SVM(Ours) 200 ms 2/1 75.2± 2.3%

CNN 200 ms 2/1 65.7± 5.9%

LSTM + MLP 200 ms 1/1 75.4± 8.2%

Random forest 200 ms 2/1 75.0± 5.1%

KNN 200 ms 2/1 61.1± 3.4%

SVM 200 ms 2/1 67.2± 5.2%

The bold indicates better result.

metric. In TC score and MIG metric, HFEA has the best
performance, which is 6.2 lower and 0.11 higher than the second
place, respectively.

Furthermore, in Figure 6, we visualize the distribution of
z1, z2, z3, and z4, respectively in a two-dimensional space based
on t-distributed stochastic neighbor embedding. We can find
that the variance of representation decreases with deeper layers,
which indicates that the deeper networks learn more robust
representations.

Classification results on NinaPro DB2 dataset is described in
Table 4. Our method is based on LFEA and SVM and the feature
Z used in SVM is computed by LFEA.

Z =
(
z1, z2, z3, z4)

The methods used for comparison include LSTM + CNN
(He et al., 2018), k-nearest neighbor (KNN), support vector

machine (SVM), random forest, and convolutional neural
network (CNN) (Atzori et al., 2016). In all experiments, our
method was second best in all methods and only 0.2% lower than
the best. What is more, our method showed more stable results
(2.3% fluctuations) than others.

Discrimination results for Exercise A, Exercise B, and
Exercise C in DB1 and DB2 is shown in Figures 7, 8,
respectively. For each exercise, we compare feature
combinations from layer 1–4. Detail feature combinations
is described in Table 5. Tables 6–8 list the classification
accuracy with different feature combinations for
DB1, respectively.

Discrimination value in Tables 6–8 measures the
representation capability of feature in each layer. The
higher the value, the better the feature representation
ability. In Exercise A, C4 obtains the highest discrimination
value, which means feature z3 plays the most import
role in Exercise A. Similarly, feature z2 makes little
difference in Exercise A.

Conclusion

In this manuscript, we propose an Unsupervised Layer-
wise Feature Extraction Algorithm (LFEA) to perform the
sEMG signal processing and downstream classification
tasks. The model contains three core modules: Information
Compression Module (ICM), Information Expression

FIGURE 7

Feature discrimination results for DB1.
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FIGURE 8

Feature discrimination results for DB2.

TABLE 5 Feature combinations.

C1
(
z1, z2, z3, z4)

C2
(
z2, z3, z4)

C3
(
z1, z3, z4)

C4
(
z1, z2, z4)

C5
(
z1, z2, z3)

TABLE 6 Classification results with different feature
combinations for Exercise A.

Feature
Combinations

Accuracy Discrimination
(C1-Accuracy)

C1 0.79 0

C2 0.72 0.07

C3 0.74 0.05

C4 0.53 0.26

C5 0.61 0.18

The bold values mean the lowest and highest discrimination values.

Module (IEM) and Information Separation Module (ISM),
that ensure that the learning representation is compact,
informative and disentangled. We further use a layer-wise
optimization procedure to reduce the computation cost
and avoid some optimization problem, like vanishing and
exploding gradient. Experimentally, we also verify that
the untangling effect and downstream classification tasks
give better results.

In the future, we hope to combine the advantages of
supervised and unsupervised to build a semi-supervised
learning framework that can be adapted to more
scenarios.

TABLE 7 Classification results with different feature
combinations for Exercise B.

Feature Combinations Accuracy Discrimination (-C1)

C1 0.8 0

C2 0.53 0.27

C3 0.59 0.21

C4 0.69 0.11

C5 0.73 0.07

The bold values mean the lowest and highest discrimination values.

TABLE 8 Classification results with different feature
combinations for Exercise C.

Feature Combinations Accuracy Discrimination (-C1)

C1 0.82 0

C2 0.63 0.19

C3 0.64 0.18

C4 0.74 0.08

C5 0.71 0.11

The bold values mean the lowest and highest discrimination values.
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