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SET binding protein 1 (SETBP1) is essential for human development, and

pathogenic germline variants in SETBP1 lead to a recognizable developmental

syndrome and variable clinical features. In this study, we assessed a

patient with facial dysmorphism, intellectual disability and delayed motor

development. Whole genome sequencing identified a novel de novo variation

of the SETBP1 (c.2631C > A; p. S877R) gene, which is located in the SKI

domain, as a likely pathogenic variant for the proband’s phenotype. RNA

sequencing was performed to investigate the potential molecular mechanism

of the novel variation in SETBP1. In total, 77 and 38 genes were identified

with aberrant expression and splicing, respectively. Moreover, the biological

functions of these genes were involved in DNA/protein binding, expression

regulation, and the cell cycle, which may advance our understanding of the

pathogenesis of SETBP1 in vivo.
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Introduction

The SET binding protein 1 (SETBP1) gene is an oncogene located on the long (q) arm
of chromosome 18 at position 12.3. The protein encoded by the SETBP1 gene contains
several motifs and has been shown to bind the SET nuclear oncogene, which is associated
with DNA replication and gene expression regulation (Piazza et al., 2018). Mutations
in SETBP1 are involved in multiple diseases, leading to extremely complex genotype-
phenotype correlations for the SETBP1 gene (Acuna-Hidalgo et al., 2017). Somatic
mutations of SETBP1 appear to be gain-of-function mutations and are associated with
several hematological malignancies, such as myeloid leukemia (Makishima et al., 2013;
Meggendorfer et al., 2013; Piazza et al., 2013; Sakaguchi et al., 2013; Thol et al., 2013;
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Fabiani et al., 2014; Patnaik et al., 2014; Inoue et al., 2015). In
addition, germline loss-of-function mutations in the SETBP1
gene are correlated with developmental delay, which has a
spectrum of symptoms, including absent speech/expressive
language delays and mild-severe intellectual disability (Filges
et al., 2011). In contrast, germline gain-of-function mutations
in the SETBP1 gene are linked with Schinzel–Giedion
syndrome (SGS; OMIM 269150) (Acuna-Hidalgo et al., 2017;
Leonardi et al., 2020).

SGS is a rare genetic disorder characterized by characteristic
facial features, multiple malformations, and neurological
problems (Schinzel and Giedion, 1978; Minn et al., 2002; Al-
Mudaffer et al., 2008). Germline de novo mutations in the
SETBP1 gene cluster to a hotspot of 12 base pairs in exon
4 of the SETBP1 protein cause SGS (Hoischen et al., 2010).
This mutational hotspot is highly conserved and is part of a
degron motif targeted by the SCF-βTrCP1 E3 ligase (Piazza
et al., 2013). Previous studies have demonstrated that somatic
mutations occurring in the hotspot region in the SETBP1 gene
may cause a functional loss of the degron motif, resulting
in accumulation of SETBP1 protein in cells and inhibition
of the PP2A phosphatase through the SETBP1–SET–PP2A
axis (Cristobal et al., 2010; Oakley et al., 2012; Makishima
et al., 2013). However, the understanding of the pathogenic
mechanism of germline mutations in the SETBP1 gene is
inadequate. Additional clinical and functional investigation is
warranted to promote our understanding of the molecular
mechanisms of SGS.

Recently, several studies have implemented total RNA
sequencing integrated with whole-genome sequencing (WGS)
to facilitate interpretation of the pathogenicity of variants
by revealing expression and splicing outliers (Kremer et al.,
2017; Hollein et al., 2020; Peymani et al., 2022; Yepez et al.,
2022). This approach provides an opportunity to explore the
molecular mechanisms of germline mutations in the SETBP1
gene. In this study, we present the clinical characterization
of a patient diagnosis as SGS and conducted WGS of
parent-offspring trio. The results revealed a novel de novo
mutation in SETBP1 that was predicted to be deleterious
based on the concordance of generic damage prediction tools.
Furthermore, RNA sequencing was performed in this family,
and numerous aberrant expression/splicing genes provided
supporting evidence for the role of SETBP1 and insight
into the molecular mechanisms of germline mutations in the
SETBP1 gene.

Materials and methods

Ethical compliance

Informed consent was obtained from the patient’s parents.
This study was approved by the ethics committee of the Second
Affiliated Hospital of Chongqing Medical University.

DNA isolation and whole genome
sequencing

We sequenced the patient and her parents following the
MGI-2000 protocol outsourced to BGI. Genomic DNA was
isolated from peripheral blood using a blood genomic DNA
extraction kit (Tiangen Biotech, Beijing, China) in accordance
with the manufacturer’s protocol. One microgram of genomic
DNA was randomly fragmented by Covaris, and the fragmented
DNA was selected by an Agencourt AMPure XP-Medium kit
to an average size of 200–400 bp, followed by adapter ligation
and PCR amplification. The products were recovered by the
AxyPrep Mag PCR clean up Kit. The double-stranded PCR
products were heat-denatured and circularized by the splint
oligo sequence. The single-strand circle DNA (ssCir DNA) was
formatted as the final library and qualified by QC. WGS was
performed on the MGI-2000 platform with an average depth of
30x, meaning that the entire genome was sequenced an average
of 30 times.

RNA isolation and sequencing

Total RNA was extracted from peripheral blood and
enriched by oligo-dT bead capture, and cDNA was synthesized
according to the manufacturer’s protocol. cDNA libraries were
constructed using the Illumina trueSeq stranded mRNA sample
prep kit protocol (Illumina). Pooled samples were sequenced
using a NovaSeq 6000 sequencing system.

Single-nucleotide variant/INDEL
identification, annotation and
interpretation

The raw data produced on the MGI-2000 platform were
filtered and aligned against the human reference genome
(hg19) using the Burrows–Wheeler Alignment tool (Li and
Durbin, 2009) after evaluation according to Illumina Sequence
Control Software (SCS). The single-nucleotide polymorphisms
(SNPs) were called by using Genome Analysis ToolKit software
(Van der Auwera et al., 2013).

Variants were annotated using ANNOVAR (Wang et al.,
2010). The effects of single-nucleotide variants (SNVs) were
predicted by the SIFT, Polyphen-2, and MutationTaster
programs. Variants were filtered by a minor allele frequency
(MAF) of < 0.1% in the gnomAD (Karczewski et al., 2020), 1000
Genome (Genomes Project et al., 2015), ExAC (Lek et al., 2016)
databases and the Exome Variant Server (EVS; NHLBI Exome
Sequencing Project).

All variants were interpreted according to ACMG/AMP
standards and categorized as pathogenic, likely pathogenic,
variants of unknown clinical significance (VUS), likely
benign and benign (Richards et al., 2015). Variant validation
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was performed using Sanger sequencing (ABI 3730xl
Genetic Analyzer).

Copy number variation identification
and annotation

Copy number variations (CNVs) were detected by
CNVnator, 100-bp bins and standard parameters were used
to calculate the read-depth (RD) signal (Abyzov et al., 2011).
The CNVs identified were compared with CNVs from the
Database of Genomic Variants1 to exclude previously reported
polymorphisms. The non-polymorphic CNVs were compared
with the entries in the DECIPHER,2 ISCA,3 ClinGen4, or

1 http://projects.tcag.ca/variation/

2 http://decipher.sanger.ac.uk/

3 http://www.iccg.org/

4 https://search.clinicalgenome.org/kb/gene-dosage

ClinVar5 databases, evaluated against the literature for known
syndromes and overlapping causal aberrations and further
analyzed according to the type and size of aberration, function,
and expression profile of genes.

Quality control for RNA-seq data
Fastp was used to filter low-quality reads from raw

sequencing reads to obtain clean reads (Chen et al., 2018b).
Then, FastQC and multiQC were used to evaluate the quality of
sequencing data, and the average quality score for overall RNA
sequences was > 30, indicating that a large percentage of the
sequences were high quality (Ewels et al., 2016). DROP v1.2.1
was used to compute the evaluation metrics of mapping with
sequencing depth, percentage of mapped reads, and the number
of expressed genes (Yepez et al., 2021). The match between
the RNA-seq sample and its annotated DNA sample was also
determined by DROP with a cutoff of 0.8.

5 http://www.ncbi.nlm.nih.gov/clinvar/

FIGURE 1

The pedigree and clinical features of the patient. (A) Family pedigree of the patient in this study. (B) Dysmorphic features, including a prominent
forehead, midface hypoplasia and protruding tongue. (C) Sanger sequencing of the SETBP1 gene (c.2631C > A; p. S877R) variant in genomic
DNA from the family, confirming that the variant of the SETBP1 gene identified in the patient is de novo.
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Detection of aberrant expression
Aberrant expression was fully detected based on DROP

v1.2.1 (Yepez et al., 2021). The clean RNA-sequencing reads
were mapped to the human reference genome (hg19) using
STAR (2.7.8a) with the Gencode v29 annotation (Dobin
et al., 2013). The summarize Overlaps function from the
Genomic Alignments R package was used to count reads. To
increase statistical power, we performed aberrant expression
and splicing analysis by combining our data with 367 blood
samples from GTEx data.6 Genes with a 95th percentile
FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) < 1 were considered as lowly expressed
in samples and were removed in downstream analysis.
In total, nearly 10,000 genes were included. OUTRIDER
was applied to identify expression outliers (Brechtmann
et al., 2018). Technical and biological covariates, such
as sex, age and sequencing batch, were automatically
controlled by OUTRIDER, which used an autoencoder
implementation. Genes were defined as having aberrant
expression with a p < 0.01. Reverse transcription-quantitative

6 https://zenodo.org/record/5638707#.Yt4B63ZByUk

PCR (RT-qPCR) was performed to validate candidate
gene expression.

Detection of aberrant splicing
FRASER, which has been included in DROP, was used

to obtain splicing outliers (Mertes et al., 2021). Exon–exon
and exon–intron junctions with less than 20 reads in all
samples were filtered out. In addition, junctions in which the
total number of reads at the donor/acceptor splice site was
0 in more than 90% of the samples were also filtered out.
Similar to OUTRIDER, FRASER also applies an autoencoder
implementation to automatically control the technical and
biological covariates. Splicing outlier genes were defined as
genes with an adjusted p < 0.05. Outlier junctions were defined
as those in splicing outlier genes, with an adjusted p < 0.05.

Pathway enrichment analysis
Functional enrichment of the aberrantly expressed and

spliced genes was performed with KOBAS-i, a service that
provides comprehensive pathway enrichment analysis using
several databases, including GO, KEGG, Reactome, and GWAS
catalogs (Bu et al., 2021). An adjusted p< 0.1 was selected as the
threshold for significant pathways.

FIGURE 2

Schematic presentation of the linear SETBP1 protein of the SKI domain with all pathogenic variants. Red indicates the reported variant in the
present study that caused an amino acid change (p. S877R) in a highly conserved region. Blue and black indicate variants found in SGS patients
and other intellectual disability patients from public data and the literature. The consensus sequence shows the conserved score for each amino
acid across eight species. Different colors of the consensus sequence represent different amino acids, and the larger the character, the more
conserved the amino acid is.
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FIGURE 3

Sashimi plot of the RACK1 gene. The coverage for each alignment track is plotted as a bar graph. Arcs representing splice junctions connect
exons. Arcs display the number of reads split across the junction (junction depth). Genomic coordinates and the gene annotation track are
shown below the junction tracks. The aberrant splicing event for the RACK1 gene in the patient is an alternative acceptor site, which is supported
by 325 reads. The X-axis is the genomic region for the RACK1 gene. The bottom of the figure shows the different transcripts of the RACK1 gene.

Results

Clinical features of the patient

A 3-year-old female was referred to our hospital with global
developmental delay, hypertonia and facial dysmorphism. The
patient was born after 39 weeks with a normal gestation history.
Her parents had no medical history (Figure 1A). She was found
to have a motor and language development delay at 2 years old.
She had characteristic facial features, including microcephaly, a
prominent forehead, midface hypoplasia, a high palatal arch and
a protruding tongue (Figure 1B).

Brain MRI at 8 months of age showed delayed myelination
of brain white matter and enlargement of the lateral ventricle,
and the bilateral frontotemporal extracerebral space was
significantly widened. Her karyotype analysis revealed
normal results.

Whole genome sequencing analysis

An average of 102G sequencing data were acquired after
WGS for the family member, and no pathogenic CNVs were
detected in the proband’s WGS data (Supplementary Figure 1).
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FIGURE 4

RT-qPCR validation. The relative expression of candidate genes (SETBP1, WDFY3, AK1, RUNX1, HLA-B) in patient and control blood cells was
quantified by RT-qPCR. β-Actin mRNA was used as an internal control. The experiments were performed in triplicate. Data are shown as the
mean ± SE. Two sample t-test was performed to test whether the expression of these genes between case and control are significant difference
or not. Statistical significance is presented relative to control as *P < 0.05 and **P < 0.01. The X-axis on the left presents the mean expression of
the SETBP1, WDFY3, AK1, and RUNX1 genes. The X-axis on the right presents the mean expression of the HLA-B gene. SE, standard error.

After variant pathogenicity classification according to ACMG
guidelines, one de novo missense variant located in the
SETBP1 gene (PS2 + PM2_Supporting + PP3), NM_015559.2:
g.42531936C > A, c.2631C > A (NM_000052.7), affected highly
conserved residues in close proximity to the canonical region in
the SKI domain (p. S877R shown in red in Figure 2), indicating
a likely pathogenic variant for the proband’s phenotype. Sanger
sequencing confirmed that the c.2631C > A variant was a novel
de novo variant (Figure 1C and Supplementary Figure 2). In
addition, this variant has never been reported in the ClinVar
database, HGMD database, or gnomAD database before.

Transcriptome analysis

RNA sequencing was performed to investigate the potential
molecular mechanism of the novel mutation in SETBP1
(c.2631C > A; p.S877R). Aberrant analysis results and RT-
qPCR showed that the RNA expression of the SETBP1 gene
in the patient and control was similar. In total, 77 and 38
genes were identified with aberrant expression and splicing
in the patient, respectively (Supplementary Tables 1, 2 and
Supplementary Figures 3–8). Several genes directly targeted
by SETBP1 or associated with neurodevelopmental disorders
(NDDs) have been identified as aberrant genes in patient.
For example, the receptor for activated C kinase 1 (RACK1)
gene and RUNX Family Transcription Factor 1 (RUNX1) gene.
RACK1 was a part of the IRE1-RACK1-PP2A complex and was

aberrantly spliced in the patient (Figure 3). TheRACK1 gene can
modulate neurodegeneration by promoting ERK degradation
in Machado-Joseph disease (MJD) and Huntington’s disease
(HD) models and participates in the process of neuronal
differentiation by regulating SCN1A expression (Adams et al.,
2011; Dong et al., 2014; Xie et al., 2021). RUNX1 is a direct
transcriptional target of SETBP1 and encodes a transcription
factor involved in the generation of hematopoietic stem cells
and their differentiation into myeloid and lymphoid lines
(Vishwakarma et al., 2016). Relative quantification of a subset of
genes (SETBP1, WDFY3, AK1, RUNX1, and HLA-B) by means
of RT-qPCR confirmed the accuracy of aberrant analysis with
RNA-seq data (Figure 4; two sample t-tests; PSETBP1 = 0.485;
PWDFY 3 = 0.015; PAK1 = 0.037; PRUNX1 = 0.015 and
PHLA−B = 0.004). We next performed enrichment analyses
of the aberrantly expressed and spliced genes to delineate
the most relevant biological pathways. Functional annotation
demonstrated that the biological functions of these genes were
involved in DNA/protein binding, expression regulation, and
the cell cycle (Figure 5 and Supplementary Tables 3, 4).

Mutation pattern and
genotype-phenotype correlations in
the SKI domain of SETBP1

To evaluate the correlation between associated variants in
the SKI domain and the phenotype of SETBP1, a systematic
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FIGURE 5

Pathway enrichment results of genes with aberrant expression (A) and with aberrant splicing (B). Colors represent pathway items from different
databases. The X-axis shows the log-transformed adjusted p-value. Pathways with an adjusted p < 0.1 were selected as significant pathways
and plotted.

search of original papers was performed (Hoischen et al., 2010;
Filges et al., 2011; De Rubeis et al., 2014; Carvalho et al., 2015;
Miyake et al., 2015; Takeuchi et al., 2015; Volk et al., 2015; Li
et al., 2016; Acuna-Hidalgo et al., 2017; Stessman et al., 2017;
Chen et al., 2018a; Daum et al., 2019; Hildebrand et al., 2020;
Kurtz-Nelson et al., 2020; Leonardi et al., 2020). A total of 41
variants with SETBP1-related NDDs located in the SKI domain
were included, including 28 with missense mutations and
13 with loss-of-function mutations (Supplementary Table 5).
Overall, variants clustering to a hotspot of 12 base pairs coding
for residues 868 to 871 of the SETBP1 protein are known to
be associated with severe forms of SGS, possibly through a

dominant negative effect (Hoischen et al., 2010). In our study, a
novel variant near this region was associated with a similar form
of this disease (Figure 2).

Discussion

In this study, we reported a patient of SGS with severe
intellectual disability, developmental delay, epilepsy, hypertonia
and distinctive facial dysmorphism. WGS and Sanger validation
revealed that these phenotypes may be caused by a novel
de novo germline missense mutation of the SETBP1 gene
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(NM_015559.2: c.2631C > A), which can cause the amino
acid change p. S877R (serine - arginine). Due to the extremely
low prevalence and great phenotypic heterogeneity of SGS, it
is difficult to recognize by clinicians and is usually diagnosed
based on the reminiscent clinical features (Acuna-Hidalgo et al.,
2017). In this case, an accurate genetic diagnosis significantly
improved the management of the patient and reproduction of
this family.

Our results revealed that germline de novo heterozygous
missense variants adjacent to the mutation hotspot of the
SETBP1 gene tend to cause atypical SGS. Previous studies have
shown that germline de novo mutations in the SETBP1 gene
cluster to residues 868–871 of the SETBP1 protein, which are
associated with severe forms of SGS (Hoischen et al., 2010).
In this study, the de novo variant identified in this patient
is located in residue 877, which is close to the mutation
hotspot of the SETBP1 gene. Some phenotypes in this
patient were mild relative to typical SGS patients, including
ventriculomegaly, skeletal abnormalities, and hydronephrosis.
In addition, several individuals with atypical SGS carrying
heterozygous missense variants outside the mutation hotspot
have been reported. Acuna-Hidalgo et al. (2017) identified
four individuals carrying SETBP1 variants in close proximity
to the canonical mutation hotspot, including p.(Glu862Lys),
p.(Ser867Arg), and p.(Thr873Ile), who showed a milder
developmental phenotype with clinical characteristics that
partially overlapped with classical SGS. Moreover, individuals
with variants located further from the mutation hotspot showed
a variable clinical phenotype ranging from mild to severe
intellectual disability (Leonardi et al., 2020; Wong et al., 2022).
These findings highlight that the variable severity of broad
clinical features depends on the proximity of variants to the
mutation hotspot.

Integrative analyses identified that the missense variant
reported in this study likely disrupts SETBP1 protein functions
via mechanisms including DNA/protein binding, transcription
and the cell cycle. While the transcription of the SETBP1
gene was not affected, it is possible that this missense SETBP1
mutation has a subtle but distinct effect on the regulation,
since 77 aberrantly expressed and 38 spliced genes have been
identified in the patient. Consistent findings have been reported
by other researchers. In a recent paper, Wong et al. revealed
through cellular experiments that classical SGS variants located
in the mutation hotspot showed increased protein stability and
higher SETBP1 protein levels, while SETBP1 variants outside
the mutation hotspot disrupt DNA binding and transcription
independent of protein abundance (Wong et al., 2022). Future
studies that delineate the structural impact of SETBP1 variants
and how they affect interactions with other genes will contribute
to the understanding of their impacts on protein functions
and thus etiology.

Taken together, our findings expand the current
understanding of the genetics and clinical spectrum of

SETBP1 variants. In addition, by integrating WGS and RNA-
seq analyses, we provide insight into the pathogenicity of
a germline de novo SETBP1 variant in a patient diagnosed
with atypical SGS.
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