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Introduction

Electroencephalogram (EEG) is an electrophysiological signal generated by brain

activity in the cranial cavity, which is recorded from the surface of the scalp

(Nitish and Tong, 2004). For clinical diagnosis and research, it is an important tool

for accurately capturing the electrical activity of the human brain, particularly for

monitoring the depth of anesthesia and conducting psychophysiological studies (Ira,

1998; Hosseini and Khalilzadeh, 2010). Furthermore, EEG can be combined with

artificial intelligence techniques to identify neurological disorders and syndromes (Paul

et al., 2015). Especially for Alzheimer’s disease (AD), EEG is a powerful diagnostic

tool (Jonkman, 1997; Jacek et al., 2001).

Previously, the early diagnosis of AD was based on the assay of biomarkers, such as

amyloid β and phosphorylated protein tau in cerebrospinal fluid. However, cerebrospinal

fluid is difficult to access and requires invasive collection procedures. Neuropsychological

tests are widely used in the diagnosis of AD as an alternative to physiological tests. But

its results are susceptible to multiple factors such as the subjects’ educational level. As

an enhancement of these methods, new technologies including PET and genetic testing

are being used to detect biomarkers or disease-causing genes (Nicolaas et al., 2012).

However, these innovative technologies are prohibitively expensive and inconvenient to

use, making it difficult for them to gain widespread acceptance. The EEG is a noninvasive,

inexpensive, and high-resolution imaging technique that is effective in diagnosing and

studying AD. Therefore, EEG has received increasing attention and become one of the

most promising methods for early diagnosis of AD.

The EEG observed at the scalp, however, consists of multiple signals. Signals from

the cerebral cortex are transmitted to the scalp through volume conductors. During

transmission, the EEG signals may be contaminated by external interference, such as

baseline wander, EMG interference, and power-line interference (PLI). The cancellation

of interference is essential for obtaining more useful information from the actual EEG

signal and, therefore, has attracted a lot of attention (Thomas et al., 2001; Michal, 2002;

Xinbo et al., 2005). Baseline wander is a low-frequency signal. Commonly used methods
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to eliminate baseline wander are wavelet transform, median

filter, and high pass filter (Lisheng et al., 2006; Mahesh et al.,

2008; Antonio and Villani, 2013). EMG interference originates

from the contraction and vibration of the internal muscle tissue,

which inevitably affects the acquisition of EEG signals. Among

the common methods to eliminate EMG interference, ensemble

empirical mode decomposition denoising is considered to be

more effective (Shing-Hong et al., 2018). Due to effects such as

capacitive coupling and magnetic induction, PLI emerges as a

major source of interference that leads to the deterioration of

signal quality (James and Webster, 1973). To eliminate PLI in

EEG, several techniques have been proposed and implemented.

Methods based on the digital notch filter (DNF) to remove

PLI are prevalent. Ferdjallah used three different adaptive

DNFs to cope with PLI in different cases (Mohammed and

Barr, 1994). Nevertheless, there is an overlap between the

spectral counterparts of PLI and those of the EEG signal. Due

to factors like the Gibbs effect, DNF may introduce severe

signal distortion and produce ringing artifacts (Sabine and

Dalal, 2019). Discrete wavelet transform (DWT) excels in the

separation of signal components and the extraction of transient

features. Thenappan utilized DWT to obtain denoised EEG

signals (Thenappan, 2021). But DWT performs imperfectly

in dealing with a stationary component like PLI. Sparse

representation (SR) has received increasing attention in the

classification and processing of biomedical signals (Sandeep and

Chandra Ray, 2018; Hong et al., 2019; Sunil Kumar and Lee,

2022). It uses linear combinations of atoms from a dictionary

to represent a signal. EEG signal classification using the SR-

based method has been demonstrated to be highly noise-robust

and accurate (Younghak et al., 2015). Gu proposed an SR-

based classification model for EEG signal detection to enhance

its classification performance (Xiaoqing et al., 2020). Satija

proposed a novel sparse representation framework that can

adaptively learn dictionaries based on ECG noise types for

representing and removing various interference (Udit et al.,

2017). The SR-based method is equally effective in suppressing

PLI in the EEG. It achieves a better PLI suppression performance

in EEG by separating stationary contents from non-stationary

contents. However, the sparsity of PLI cannot be achieved when

the harmonic information changes abruptly. Hence, to perform

this method properly, there is a requirement for pre-checking.

A novel criterion for evaluating the sparsity of PLI is

discussed in this article, which is based on the phenomenon of

harmonic distortion. The sparsity of PLI will be evaluated by

comparing the bandwidth changes of the fast Fourier transform

(FFT) spectrum.

EEG for the diagnosis of AD

Typical pathological features of AD include senile plaque

deposition, neuronal fiber tangles, and cholinergic neuron

reduction. It has been reported that the reduction of cholinergic

neurons is one of the main pathogenesis of AD (Jan Krzysztof

and Berse, 2000). As a result, patients with AD experience a

rhythmic slowing of the waves on their EEGs. According to

their frequency, EEG signals can be divided into five bands:

α from 8 to 13Hz, β from 14 to 30Hz, θ from 4 to 7Hz,

δ from 0.5 to 3Hz, and γ above 30Hz. In general, α and

β waves are collectively referred to as fast waves, whereas θ

and δ waves are collectively referred to as slow waves. There

is an increase in slow waves and a decrease in fast waves in

the EEG of AD patients (Yong Tae, 2006). In addition, several

studies have reported decreased non-linear structure in the

EEG of patients with AD due to a reduction in the dynamic

complexity of the brain (Christoph et al., 1994; Jelles et al.,

1999). This may be a result of neuronal loss and neocortical

disconnection. The EEG can be used as one of the most

important tools for diagnosing and classifying AD with so

many pathological features shown in it. A classical method of

EEG analysis in the clinic is visual inspection, but it is more

sensitive to external interference. Following the development

of computerized techniques, a variety of mathematical analysis

methods are applied to EEG signal analysis, such as wavelet

analysis, neural networks, and power spectral density estimation.

With these time-frequency analysis methods, the EEG can

be further expanded into quantitative electroencephalography

(QEEG). The QEEG provides a new perspective for the early

diagnosis and study of AD as a complement to visual inspection.

Combining computer technology, it is possible to visualize the

changes in the cognitive function of patients by displaying

the time-frequency characteristics of EEG signals. EEG has

increasingly shown its great potential as a noninvasive marker

and will play a promising role in the diagnosis and research of

AD (Una and Jelic, 2019).

PLI cancellation methods based on
sparse representation

SR-based denoising methods have the advantage of

eliminating the problems caused by spectral overlap between

PLI and EEG signals. Therefore, the distortion of EEG

features during the removal of PLI can be substantially

reduced. In conventional signal representation theory, the

signal is decomposed on an orthogonal basis. However,

conventional methods cannot ensure the sparsity of the

results of signal decomposition when analyzing signal

components. Sparse representation, as an emerging

and reliable signal processing technology, uses linear

combinations of atoms from a dictionary to represent

a signal. The objective is to obtain an optimal sparse

solution of the coefficient vector. However, this requires

a proper over-complete dictionary. Thus, the key to
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achieving sparse representation lies in the selection of the

over-complete dictionary.

SR-based denoising theory assumes that the target signal

has some fixed features. The target signal component is

uniquely correlated to an over-complete dictionary, which

ensures its sparsity and prevents other components from

being sparsely represented by this dictionary. This is the

basis for selecting the over-complete dictionary. According to

engineering experience, PLI can be modeled as a sinusoidal

component composed of a simple harmonic wave. For

determining a sinusoidal wave, only a few harmonic features

are required, including amplitude, frequency, and phase. This

ensures the sparsity of a sinusoidal signal. Based on the

harmonic parameters, the SR-based PLI cancellation method

can select the proper over-complete dictionary. Harmonic

atoms are well matched to harmonic signals and poorly

matched to EEG signal. Therefore, an over-complete dictionary

consisting of harmonic atoms can sparsely represent the

harmonic signals but not the EEG signal. As a result, the

PLI in EEG can be sparsely represented and reconstructed

as a compensation signal. PLI suppression is achieved by

subtracting the compensation signal from the corrupted

EEG signal.

In the literature, the redundant Fourier dictionary,

derived from the orthogonal Fourier basis, has been used

as an over-complete dictionary (Bin-qiang et al., 2021).

Consisting of redundant harmonic atoms with equally

spaced frequencies, it can sparsely represent the PLI signal

in EEG. After the selection of an over-complete dictionary,

the coefficient optimization problem can be solved by

matching pursuit (MP) or basis pursuit (BP). Although

the current algorithms based on MP or BP have a fast

convergence speed, complex iterations are inevitable. The

sparse representation can be combined with other spectral

analysis methods to reduce computational complexity.

Tan developed a dual-step correction algorithm based on

implicit sparse representation for suppressing PLI from EEG

measurements (Jin-Lin et al., 2021). This does not require

a predefined dictionary. The compensation signal will be

constructed by estimating harmonic parameters with high

precision. Complex iterations are avoided and the efficiency

is higher.

The conditions for achieving sparse representation of

harmonics can be summarized as single frequency, constant

amplitude, and phase continuation. There is an assumption

that PLI is a single sinusoidal component in the EEG, but this

assumption is often unrealistic. The sparsity of the PLI in EEG

cannot be maintained when the harmonic information changes

suddenly. Distortion of the PLI signal may thereby invalidate

the SR-based PLI cancellation methods. Consequently, it is

necessary to establish a criterion for evaluating the sparsity of

PLI in advance.

Criterion for evaluating the sparsity
of power-line interference in EEG

Theoretically, PLI is a 50Hz or 60Hz (with a variation

of ±2Hz) sinusoidal wave (Kaichen et al., 2022). However, a

number of non-linear loads can cause harmonic distortion in the

power system (Lundquist, 2001;MuhamadHafiz Ab et al., 2021).

To quantify the level of harmonics, total harmonic distortion

(THD) is commonly used as a figure of merit in engineering

practice (Muhammad Tanveer et al., 1984). THD is defined as

the ratio of the sum of the powers of all harmonic components

to the power of the fundamental frequency. To evaluate the

sparsity of PLI before applying the SR-based method, however,

it is only necessary to determine if distortion has occurred in

the PLI without performing precise quantitative measurements

such as THD. In the spectrum of a sinusoidal signal, there is

only one spectral line and the energy is concentrated within a

narrow band. When a change in harmonic information occurs

abruptly, however, the sinusoidal signal will inevitably contain

high-frequency components. The frequency components other

than the fundamental wave will appear in the spectrum of the

distorted PLI signal, resulting in a much larger bandwidth.

Therefore, harmonic distortion in PLI can be reflected on the

basis of this distinct difference.

The time domain waveform and FFT spectrum of

an undistorted PLI are displayed in Figure 1A. The FFT

spectrum illustrates a high concentration of energy within

an extremely narrow frequency band area. However,

when the PLI distorts, sudden changes in harmonic

information can cause harmonic distortion. It is shown

that there are some high-frequency components in the

FFT spectrum that interfere with components in other

frequencies (Figure 1B). Figure 1C compares the FFT

spectrum of PLI in both cases. The bandwidth of the FFT

spectrum of the distorted PLI signal is significantly larger

than that of the undistorted PLI signal. This difference

is used in the proposed criterion to determine whether

the harmonic information of the actual PLI signal has

abruptly changed.

In order to establish the sparsity evaluation criterion, the

PLI component is modeled as a single sinusoidal component.

After digitization and the FFT, the bandwidth of an undistorted

PLI signal can be calculated theoretically. Theoretically, an

infinite single sinusoid has zero bandwidth. In practice, a

finite sinusoid has a small but non-zero bandwidth. It is

a very small theoretical value of about 1Hz. There are

various ways to define and calculate bandwidth. Considering

the other frequency components caused by distortion, it is

appropriate to use the power bandwidth. Power bandwidth

is defined as f2 − f1, where f1 < f < f2 defines

the frequency band in which 99% of the total power

resides (Richard and William, 2003).
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FIGURE 1

(A) Time domain waveform and FFT spectrum of an undistorted PLI signal; (B) time domain waveform and FFT spectrum of a distorted PLI

signal; (C) comparison of FFT spectrum of PLI signals in both cases; and (D) the procedure of the proposed method (by Figdraw).

PLI is caused by the time-varying electromagnetic fields

produced by AC sources and power lines (John, 2009). Hence,

it is possible to directly obtain the actual PLI signal for

analysis by detecting the power frequency electromagnetic

signal in the environment. The proposed criterion requires

the calculation of the bandwidth of the FFT spectrum of

the actual PLI signal and comparison with its theoretical

value. The sparsity of PLI can only be achieved when the

actual value is close to the theoretical value. If the actual

bandwidth is significantly larger than its theoretical value,

additional processing is required, which is shown in the

Discussions section.

The steps for implementing the proposed criterion will be

presented below. Specifically, the first step requires obtaining

the actual PLI signal and performing the FFT to calculate its

bandwidth. The second step requires calculating the theoretical

bandwidth and comparing it to the actual value. This can be

viewed as a simple pattern recognition problem. For example,

the ratio of the two values can be used as a discriminant function

to determine which pattern class (sparse or dense) the actual

PLI signal belongs to. Following the sparsity evaluation, the

third step requires a decision about whether to use the SR-based

method or to perform additional preprocessing. It is possible

to achieve the sparse representation of the actual PLI in EEG

after confirming that it is sparse. Thus, the compensation signal

can be constructed and subtracted from the original EEG signal

to obtain the denoised signal. The procedure of the complete

method is shown in Figure 1D.

Discussions

For harmonic analysis, sparse representation can be a

very powerful tool. According to the above arguments, the

proposed pre-checking criterion can promote the application

of sparse representation in PLI suppression of EEG signals.

In the proposed criterion, the difference in the FFT spectrum

of the undistorted PLI signal and the distorted PLI signal

is utilized. The bandwidth of the distorted PLI signal

increases significantly. Therefore, by calculating the actual
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bandwidth of the FFT spectrum, the sparsity of PLI can

be evaluated. It is possible to implement the evaluation

criterion algorithmically with the introduction of parameters

for quantitative analysis, such as the ratio or difference

between actual and theoretical values. In the literature, sample

entropy (SampEn) is used as an index for the evaluation

of sparsity (Giancarlo et al., 2020). However, SampEN

measures suffer from the problem of heavy computations

and, hence, are difficult to be used in real-time applications.

The proposed criterion based on spectral variation is more

efficient for evaluating the sparsity of PLI, which can also

be incorporated into other harmonic analysis methods based

on SR.

Sinusoidal waves have a limited number of features required

to uniquely identify them. Thus, a PLI signal can be easily

represented sparsely. In engineering practice, however, it is

not always the case that PLI is constant. Once the PLI is

confirmed to be distorted, standard dictionaries (e.g., Fourier

and wavelet, etc.) cannot capture its precise information. It

is therefore necessary to perform some pre-processing before

using SR-based methods in such cases. Dictionary learning

is an iterative method through which a dictionary can be

learned from a collection of signal components (Manas and

Das, 2019). In spite of this, dictionary learning requires a

significant amount of computation due to the complexity of

the matrix multiplication operation. In addition, spectrum

correction techniques are used to obtain harmonic parameters

using window functions in a more efficient manner (Xie

and Kang, 1996; He et al., 2012). As a result, spectrum

correction can be used as a means of reducing the distortion

of PLI.
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